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Abstract

Classically, training relation extractors relies
on high-quality, manually annotated training
data, which can be expensive to obtain. To
mitigate this cost, NLU researchers have con-
sidered two newly available sources of less
expensive (but potentially lower quality) la-
beled data from distant supervision and crowd
sourcing. There is, however, no study com-
paring the relative impact of these two sources
on the precision and recall of post-learning an-
swers. To fill this gap, we empirically study
how state-of-the-art techniques are affected by
scaling these two sources. We use corpus sizes
of up to 100 million documents and tens of
thousands of crowd-source labeled examples.
Our experiments show that increasing the cor-
pus size for distant supervision has a statis-
tically significant, positive impact on quality
(F1 score). In contrast, human feedback has a
positive and statistically significant, but lower,
impact on precision and recall.

1 Introduction

Relation extraction is the problem of populating a
target relation (representing an entity-level relation-
ship or attribute) with facts extracted from natural-
language text. Sample relations include people’s ti-
tles, birth places, and marriage relationships.

Traditional relation-extraction systems rely on
manual annotations or domain-specific rules pro-
vided by experts, both of which are scarce re-
sources that are not portable across domains. To
remedy these problems, recent years have seen in-
terest in the distant supervision approach for rela-

tion extraction (Wu and Weld, 2007; Mintz et al.,
2009). The input to distant supervision is a set of
seed facts for the target relation together with an
(unlabeled) text corpus, and the output is a set of
(noisy) annotations that can be used by any ma-
chine learning technique to train a statistical model
for the target relation. For example, given the tar-
get relation birthPlace(person, place) and a seed
fact birthPlace(John, Springfield), the sentence
“John and his wife were born in Springfield in 1946”
(S1) would qualify as a positive training example.

Distant supervision replaces the expensive pro-
cess of manually acquiring annotations that is re-
quired by direct supervision with resources that al-
ready exist in many scenarios (seed facts and a
text corpus). On the other hand, distantly labeled
data may not be as accurate as manual annotations.
For example, “John left Springfield when he was
16” (S2) would also be considered a positive ex-
ample about place of birth by distant supervision
as it contains both John and Springfield. The hy-
pothesis is that the broad coverage and high redun-
dancy in a large corpus would compensate for this
noise. For example, with a large enough corpus, a
distant supervision system may find that patterns in
the sentence S1 strongly correlate with seed facts of
birthPlacewhereas patterns in S2 do not qualify
as a strong indicator. Thus, intuitively the quality of
distant supervision should improve as we use larger
corpora. However, there has been no study on the
impact of corpus size on distant supervision for re-
lation extraction. Our goal is to fill this gap.

Besides “big data,” another resource that may
be valuable to distant supervision is crowdsourc-
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ing. For example, one could employ crowd work-
ers to provide feedback on whether distant super-
vision examples are correct or not (Gormley et al.,
2010). Intuitively the crowd workforce is a perfect
fit for such tasks since many erroneous distant la-
bels could be easily identified and corrected by hu-
mans. For example, distant supervision may mistak-
enly consider “Obama took a vacation in Hawaii” a
positive example for birthPlace simply because
a database says that Obama was born in Hawaii;
a crowd worker would correctly point out that this
sentence is not actually indicative of this relation.

It is unclear however which strategy one should
use: scaling the text corpus or the amount of human
feedback. Our primary contribution is to empirically
assess how scaling these inputs to distant supervi-
sion impacts its result quality. We study this ques-
tion with input data sets that are orders of magnitude
larger than those in prior work. While the largest
corpus (Wikipedia and New York Times) employed
by recent work on distant supervision (Mintz et al.,
2009; Yao et al., 2010; Hoffmann et al., 2011) con-
tain about 2M documents, we run experiments on
a 100M-document (50X more) corpus drawn from
ClueWeb.1 While prior work (Gormley et al., 2010)
on crowdsourcing for distant supervision used thou-
sands of human feedback units, we acquire tens of
thousands of human-provided labels. Despite the
large scale, we follow state-of-the-art distant super-
vision approaches and use deep linguistic features,
e.g., part-of-speech tags and dependency parsing.2

Our experiments shed insight on the following
two questions:

1. How does increasing the corpus size impact the
quality of distant supervision?

2. For a given corpus size, how does increasing
the amount of human feedback impact the qual-
ity of distant supervision?

We found that increasing corpus size consistently
and significantly improves recall and F1, despite re-
ducing precision on small corpora; in contrast, hu-
man feedback has relatively small impact on preci-
sion and recall. For example, on a TAC corpus with
1.8M documents, we found that increasing the cor-
pus size ten-fold consistently results in statistically

1http://lemurproject.org/clueweb09.php/
2We used 100K CPU hours to run such tools on ClueWeb.

significant improvement in F1 on two standardized
relation extraction metrics (t-test with p=0.05). On
the other hand, increasing human feedback amount
ten-fold results in statistically significant improve-
ment on F1 only when the corpus contains at least
1M documents; and the magnitude of such improve-
ment was only one fifth compared to the impact of
corpus-size increment.

We find that the quality of distant supervision
tends to be recall gated, that is, for any given rela-
tion, distant supervision fails to find all possible lin-
guistic signals that indicate a relation. By expanding
the corpus one can expand the number of patterns
that occur with a known set of entities. Thus, as a
rule of thumb for developing distant supervision sys-
tems, one should first attempt to expand the training
corpus and then worry about precision of labels only
after having obtained a broad-coverage corpus.

Throughout this paper, it is important to under-
stand the difference between mentions and entities.
Entities are conceptual objects that exist in the world
(e.g., Barack Obama), whereas authors use a variety
of wordings to refer to (which we call “mention”)
entities in text (Ji et al., 2010).

2 Related Work

The idea of using entity-level structured data (e.g.,
facts in a database) to generate mention-level train-
ing data (e.g., in English text) is a classic one: re-
searchers have used variants of this idea to extract
entities of a certain type from webpages (Hearst,
1992; Brin, 1999). More closely related to relation
extraction is the work of Lin and Patel (2001) that
uses dependency paths to find answers that express
the same relation as in a question.

Since Mintz et al. (2009) coined the name “dis-
tant supervision,” there has been growing interest in
this technique. For example, distant supervision has
been used for the TAC-KBP slot-filling tasks (Sur-
deanu et al., 2010) and other relation-extraction
tasks (Hoffmann et al., 2010; Carlson et al., 2010;
Nguyen and Moschitti, 2011a; Nguyen and Mos-
chitti, 2011b). In contrast, we study how increas-
ing input size (and incorporating human feedback)
improves the result quality of distant supervision.

We focus on logistic regression, but it is interest-
ing future work to study more sophisticated prob-
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Figure 1: The workflow of our distant supervision system. Step 1 is preprocessing; step 4 is final evaluation. The key
steps are distant supervision (step 2), where we train a logistic regression (LR) classifier for each relation using (noisy)
examples obtained from sentences that match Freebase facts, and human feedback (step 3) where a crowd workforce
refines the LR classifiers by providing feedback to the training data.

abilistic models; such models have recently been
used to relax various assumptions of distant supervi-
sion (Riedel et al., 2010; Yao et al., 2010; Hoffmann
et al., 2011). Specifically, they address the noisy as-
sumption that, if two entities participate in a rela-
tion in a knowledge base, then all co-occurrences of
these entities express this relation. In contrast, we
explore the effectiveness of increasing the training
data sizes to improve distant-supervision quality.

Sheng et al. (2008) and Gormley et al. (2010)
study the quality-control issue for collecting train-
ing labels via crowdsourcing. Their focus is the col-
lection process; in contrast, our goal is to quantify
the impact of this additional data source on distant-
supervision quality. Moreover, we experiment with
one order of magnitude more human labels. Hoff-
mann et al. (2009) study how to acquire end-user
feedback on relation-extraction results posted on an
augmented Wikipedia site; it is interesting future
work to integrate this source in our experiments.
One technique for obtaining human input is active
learning. We tried several active-learning techniques
as described by Settles (2010), but did not observe
any notable advantage over uniform sampling-based
example selection.3

3 Distant Supervision Methodology

Relation extraction is the task of identifying re-
lationships between mentions, in natural-language
text, of entities. An example relation is that two per-
sons are married, which for mentions of entities x
and y is denoted R(x, y). Given a corpus C con-

3More details in our technical report (Zhang et al., 2012).

taining mentions of named entities, our goal is to
learn a classifier for R(x, y) using linguistic features
of x and y, e.g., dependency-path information. The
problem is that we lack the large amount of labeled
examples that are typically required to apply super-
vised learning techniques. We describe an overview
of these techniques and the methodological choices
we made to implement our study. Figure 1 illus-
trates the overall workflow of a distant supervision
system. At each step of the distant supervision pro-
cess, we closely follow the recent literature (Mintz
et al., 2009; Yao et al., 2010).

3.1 Distant Supervision

Distant supervision compensates for a lack of train-
ing examples by generating what are known as
silver-standard examples (Wu and Weld, 2007). The
observation is that we are often able to obtain a
structured, but incomplete, database D that instanti-
ates relations of interest and a text corpus C that con-
tains mentions of the entities in our database. For-
mally, a database is a tuple D = (E, R̄) where E is
a set of entities and R̄ = (R1 . . . , RN ) is a tuple of
instantiated predicates. For example, Ri may con-
tain pairs of married people.4 We use the facts in Ri

combined with C to generate examples.
Following recent work (Mintz et al., 2009; Yao et

al., 2010; Hoffmann et al., 2011), we use Freebase5

as the knowledge base for seed facts. We use two
text corpora: (1) the TAC-KBP6 2010 corpus that

4We only consider binary predicates in this work.
5http://freebase.com
6KBP stands for “Knowledge-Base Population.”
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consists of 1.8M newswire and blog articles7, and
(2) the ClueWeb09 corpus that is a 2009 snapshot
of 500M webpages. We use the TAC-KBP slot fill-
ing task and select those TAC-KBP relations that are
present in the Freebase schema as targets (20 rela-
tions on people and organization).

One problem is that relations in D are defined at
the entity level. Thus, the pairs in such relations are
not embedded in text, and so these pairs lack the
linguistic context that we need to extract features,
i.e., the features used to describe examples. In turn,
this implies that these pairs cannot be used directly
as training examples for our classifier. To generate
training examples, we need to map the entities back
to mentions in the corpus. We denote the relation
that describes this mapping as the relation EL(e, m)
where e ∈ E is an entity in the database D and m is
a mention in the corpus C. For each relation Ri, we
generate a set of (noisy) positive examples denoted
R+

i defined as R+
i =

{(m1, m2) | R(e1, e2) ∧ EL(e1, m1) ∧ EL(e2, m2)}

As in previous work, we impose the constraint that
both mentions (m1, m2) ∈ R+

i are contained in the
same sentence (Mintz et al., 2009; Yao et al., 2010;
Hoffmann et al., 2011). To generate negative ex-
amples for each relation, we follow the assumption
in Mintz et al. (2009) that relations are disjoint and
sample from other relations, i.e., R−i = ∪j 6=iR

+
j .

3.2 Feature Extraction

Once we have constructed the set of possible men-
tion pairs, the state-of-the-art technique to generate
feature vectors uses linguistic tools such as part-
of-speech taggers, named-entity recognizers, de-
pendency parsers, and string features. Following
recent work on distant supervision (Mintz et al.,
2009; Yao et al., 2010; Hoffmann et al., 2011),
we use both lexical and syntactic features. After
this stage, we have a well-defined machine learn-
ing problem that is solvable using standard super-
vised techniques. We use sparse logistic regression
(`1 regularized) (Tibshirani, 1996), which is used in
previous studies. Our feature extraction process con-
sists of three steps:

7http://nlp.cs.qc.cuny.edu/kbp/2010/

1. Run Stanford CoreNLP with POS tagging and
named entity recognition (Finkel et al., 2005);

2. Run dependency parsing on TAC with the En-
semble parser (Surdeanu and Manning, 2010)
and on ClueWeb with MaltParser (Nivre et al.,
2007)8; and

3. Run a simple entity-linking system that utilizes
NER results and string matching to identify
mentions of Freebase entities (with types).9

The output of this processing is a repository of struc-
tured objects (with POS tags, dependency parse, and
entity types and mentions) for sentences from the
training corpus. Specifically, for each pair of entity
mentions (m1, m2) in a sentence, we extract the fol-
lowing features F (m1, m2): (1) the word sequence
(including POS tags) between these mentions after
normalizing entity mentions (e.g., replacing “John
Nolen” with a place holder PER); if the sequence
is longer than 6, we take the 3-word prefix and the
3-word suffix; (2) the dependency path between the
mention pair. To normalize, in both features we use
lemmas instead of surface forms. We discard fea-
tures that occur in fewer than three mention pairs.

3.3 Crowd-Sourced Data

Crowd sourcing provides a cheap source of human
labeling to improve the quality of our classifier. In
this work, we specifically examine feedback on the
result of distant supervision. Precisely, we construct
the union of R+

1 ∪ . . . R+
N from Section 3.1. We

then solicit human labeling from Mechanical Turk
(MTurk) while applying state-of-the-art quality con-
trol protocols following Gormley et al. (2010) and
those in the MTurk manual.10

These quality-control protocols are critical to en-
sure high quality: spamming is common on MTurk
and some turkers may not be as proficient or care-
ful as expected. To combat this, we replicate
each question three times and, following Gormley

8We did not run Ensemble on ClueWeb because we had very
few machines satisfying Ensemble’s memory requirement. In
contrast, MaltParser requires less memory and we could lever-
age Condor (Thain et al., 2005) to parse ClueWeb with Malt-
Parser within several days (using about 50K CPU hours).

9We experiment with a slightly more sophisticated entity-
linking system as well, which resulted in higher overall quality.
The results below are from the simple entity-linking system.

10http://mturkpublic.s3.amazonaws.com/docs/
MTURK_BP.pdf
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et al. (2010), plant gold-standard questions: each
task consists of five yes/no questions, one of which
comes from our gold-standard pool.11 By retaining
only those answers that are consistent with this pro-
tocol, we are able to filter responses that were not
answered with care or competency. We only use an-
swers from workers who display overall high consis-
tency with the gold standard (i.e., correctly answer-
ing at least 80% of the gold-standard questions).

3.4 Statistical Modeling Issues
Following Mintz et al. (2009), we use logistic re-
gression classifiers to represent relation extractors.
However, while Mintz et al. use a single multi-class
classifier for all relations, Hoffman et al. (2011) and
use an independent binary classifier for each individ-
ual relation; the intuition is that a pair of mentions
(or entities) might participate in multiple target rela-
tions. We experimented with both protocols; since
relation overlapping is rare for TAC-KBP and there
was little difference in result quality, we focus on the
binary-classification approach using training exam-
ples constructed as described in Section 3.1.

We compensate for the different sizes of distant
and human labeled examples by training an objec-
tive function that allows to tune the weight of human
versus distant labeling. We separately tune this pa-
rameter for each training set (with cross validation),
but found that the result quality was robust with re-
spect to a broad range of parameter values.12

4 Experiments

We describe our experiments to test the hypothe-
ses that the following two factors improve distant-
supervision quality: increasing the
(1) corpus size, and
(2) the amount of crowd-sourced feedback.

We confirm hypothesis (1), but, surprisingly, are un-
able to confirm (2). Specifically, when using logis-
tic regression to train relation extractors, increasing
corpus size improves, consistently and significantly,
the precision and recall produced by distant supervi-
sion, regardless of human feedback levels. Using the

11We obtain the gold standard from a separate MTurk sub-
mission by taking examples that at least 10 out of 11 turkers
answered yes, and then negate half of these examples by alter-
ing the relation names (e.g., spouse to sibling).

12More details in our technical report (Zhang et al., 2012).

methodology described in Section 3, human feed-
back has limited impact on the precision and recall
produced from distant supervision by itself.

4.1 Evaluation Metrics

Just as direct training data are scarce, ground truth
for relation extraction is scarce as well. As a result,
prior work mainly considers two types of evaluation
methods: (1) randomly sample a small portion of
predictions (e.g., top-k) and manually evaluate pre-
cision/recall; and (2) use a held-out portion of seed
facts (usually Freebase) as a kind of “distant” ground
truth. We replace manual evaluation with a stan-
dardized relation-extraction benchmark: TAC-KBP
2010. TAC-KBP asks for extractions of 46 relations
on a given set of 100 entities. Interestingly, the Free-
base held-out metric (Mintz et al., 2009; Yao et al.,
2010; Hoffmann et al., 2011) turns out to be heavily
biased toward distantly labeled data (e.g., increasing
human feedback hurts precision; see Section 4.6).

4.2 Experimental Setup

Our first group of experiments use the 1.8M-doc
TAC-KBP corpus for training. We exclude from it
the 33K documents that contain query entities in
the TAC-KBP metrics. There are two key param-
eters: the corpus size (#docs) M and human feed-
back budget (#examples) N . We perform different
levels of down-sampling on the training corpus. On
TAC, we use subsets with M = 103, 104, 105, and
106 documents respectively. For each value of M ,
we perform 30 independent trials of uniform sam-
pling, with each trial resulting in a training corpus
DM

i , 1 ≤ i ≤ 30. For each training corpus DM
i , we

perform distant supervision to train a set of logistic
regression classifiers. From the full corpus, distant
supervision creates around 72K training examples.

To evaluate the impact of human feedback, we
randomly sample 20K examples from the input cor-
pus (we remove any portion of the corpus that is
used in an evaluation). Then, we ask three differ-
ent crowd workers to label each example as either
positive or negative using the procedure described in
Section 3.3. We retain only credible answers using
the gold-standard method (see Section 3.3), and use
them as the pool of human feedback that we run ex-
periments with. About 46% of our human labels are
negative. Denote by N the number of examples that
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Figure 2: Impact of input sizes under the TAC-KBP metric, which uses documents mentioning 100 predefined entities
as testing corpus with entity-level ground truth. We vary the sizes of the training corpus and human feedback while
measuring the scores (F1, recall, and precision) on the TAC-KBP benchmark.

we want to incorporate human feedback for; we vary
N in the range of 0, 10, 102, 103, 104, and 2 × 104.
For each selected corpus and value of N , we per-
form without-replacement sampling from examples
of this corpus to select feedback for up to N exam-
ples. In our experiments, we found that on aver-
age an M -doc corpus contains about 0.04M distant
labels, out of which 0.01M have human feedback.
After incorporating human feedback, we evaluate
the relation extractors on the TAC-KBP benchmark.
We then compute the average F1, recall, and preci-
sion scores among all trials for each metric and each
(M,N) pair. Besides the KBP metrics, we also eval-
uate each (M,N) pair using Freebase held-out data.
Furthermore, we experiment with a much larger cor-
pus: ClueWeb09. On ClueWeb09, we vary M over
103, . . . , 108. Using the same metrics, we show at
a larger scale that increasing corpus size can signifi-
cantly improve both precision and recall.

4.3 Overall Impact of Input Sizes

We first present our experiment results on the TAC
corpus. As shown in Figure 2, the F1 graph closely
tracks the recall graph, which supports our earlier
claim that quality is recall gated (Section 1). While
increasing the corpus size improves F1 at a roughly
log-linear rate, human feedback has little impact un-
til both corpus size and human feedback size ap-
proch maximum M, N values. Table 1 shows the
quality comparisons with minimum/maximum val-
ues of M and N .13 We observe that increasing the
corpus size significant improves per-relation recall

13When the corpus size is small, the total number of exam-
ples with feedback can be smaller than the budget size N – for
example, when M = 103 there are on average 10 examples
with feedback even if N = 104.

M = 103 M = 1.8× 106

N = 0 0.124 0.201
N = 2× 104 0.118 0.214

Table 1: TAC F1 scores with max/min values of M /N .

and F1 on 17 out of TAC-KBP’s 20 relations; in con-
trast, human feedback has little impact on recall, and
only significantly improves the precision and F1 of
9 relations – while hurting F1 of 2 relations (i.e.,
MemberOf and LivesInCountry).14

(a) Impact of corpus size changes.
M\N 0 10 102 103 104 2e4

103 → 104 + + + + + +
104 → 105 + + + + + +
105 → 106 + + + + + +

106 → 1.8e6 0 0 0 + + +

(b) Impact of feedback size changes.
N\M 103 104 105 106 1.8e6
0→ 10 0 0 0 0 0

10→ 102 0 0 0 + +
102 → 103 0 0 0 + +
103 → 104 0 0 0 0 +
104 → 2e4 0 0 0 0 -
0→ 2e4 0 0 0 + +

Table 2: Two-tail t-test with d.f.=29 and p=0.05 on the
impact of corpus size and feedback size changes respec-
tively. (We also tried p=0.01, which resulted in change
of only a single cell in the two tables.) In (a), each col-
umn corresponds to a fixed human-feedback budget size
N . Each row corresponds to a jump from one corpus size
(M ) to the immediate larger size. Each cell value indi-
cates whether the TAC F1 metric changed significantly:
+ (resp. -) indicates that the quality increased (resp. de-
creased) significantly; 0 indicates that the quality did not
change significantly. Table (b) is similar.

14We report more details on per-relation quality in our tech-
nical report (Zhang et al., 2012).

830



(a) Impact of corpus size changes.

(b) Impact of human feedback size.

Figure 3: Projections of Figure 2 to show the impact of corpus size and human feedback amount on TAC-KBP F1,
recall, and precision.

4.4 Impact of Corpus Size

In Figure 3(a) we plot a projection of the graphs
in Figure 2 to show the impact of corpus size on
distant-supervision quality. The two curves corre-
spond to when there is no human feedback and when
we use all applicable human feedback. The fact
that the two curves almost overlap indicates that hu-
man feedback had little impact on precision or re-
call. On the other hand, the quality improvement
rate is roughly log-linear against the corpus size.
Recall that each data point in Figure 2 is the aver-
age from 30 trials. To measure the statistical signif-
icance of changes in F1, we calculate t-test results
to compare adjacent corpus size levels given each
fixed human feedback level. As shown in Table 2(a),
increasing the corpus size by a factor of 10 consis-
tently and significantly improves F1. Although pre-
cision decreases as we use larger corpora, the de-
creasing trend is sub-log-linear and stops at around
100K docs. On the other hand, recall and F1 keep
increasing at a log-linear rate.

4.5 Impact of Human Feedback

Figure 3(b) provides another perspective on the re-
sults under the TAC metric: We fix a corpus size
and plot the F1, recall, and precision as functions
of human-feedback amount. Confirming the trend
in Figure 2, we see that human feedback has little

Figure 4: TAC-KBP quality of relation extractors trained
using different amounts of human labels. The horizontal
lines are comparison points.

impact on precision or recall with both corpus sizes.

We calculate t-tests to compare adjacent human
feedback levels given each fixed corpus size level.
Table 2(b)’s last row reports the comparison, for var-
ious corpus sizes (and, hence, number of distant la-
bels), of (i) using no human feedback and (ii) using
all of the human feedback we collected. When the
corpus size is small (fewer than 105 docs), human
feedback has no statistically significant impact on
F1. The locations of +’s suggest that the influence
of human feedback becomes notable only when the
corpus is very large (say with 106 docs). However,
comparing the slopes of the curves in Figure 3(b)
against Figure 3(a), the impact of human feedback
is substantially smaller. The precision graph in Fig-
ure 3(b) suggests that human feedback does not no-
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Figure 5: Impact of input sizes under the Freebase held-
out metric. Note that the human feedback axis is in the
reverse order compared to Figure 2.

tably improve precision on either the full corpus or
on a small 1K-doc corpus. To assess the quality of
human labels, we train extraction models with hu-
man labels only (on examples obtained from distant
supervision). We vary the amount of human labels
and plot the F1 changes in Figure 4. Although the
F1 improves as we use more human labels, the best
model has roughly the same performance as those
trained from distant labels (with or without human
labels). This suggests that the accuracy of human
labels is not substantially better than distant labels.

4.6 Freebase Held-out Metric

In addition to the TAC-KBP benchmark, we also fol-
low prior work (Mintz et al., 2009; Yao et al., 2010;
Hoffmann et al., 2011) and measure the quality us-
ing held-out data from Freebase. We randomly par-
tition both Freebase and the corpus into two halves.
One database-corpus pair is used for training and the
other pair for testing. We evaluate the precision over
the 103 highest-probability predictions on the test
set. In Figure 5, we vary the size of the corpus in the
train pair and the number of human labels; the pre-
cision reaches a dramatic peak when we the corpus
size is above 105 and uses little human feedback.
This suggests that this Freebase held-out metric is
biased toward solely relying on distant labels alone.

4.7 Web-scale Corpora

To study how a Web corpus impacts distant-
supervision quality, we select the first 100M English
webpages from the ClueWeb09 dataset and measure
how distant-supervision quality changes as we vary
the number of webpages used. As shown in Fig-
ure 6, increasing the corpus size improves F1 up to

Figure 6: Impact of corpus size on the TAC-KBP quality
with the ClueWeb dataset.

107 docs (p = 0.05), while at 108 the two-tailed
significance test reports no significant impact on F1
(p = 0.05). The dip in precision in Figure 6 from
106 to either 107 or 108 is significant (p = 0.05),
and it is interesting future work to perform a de-
tailed error analysis. Recall from Section 3 that to
preprocess ClueWeb we use MaltParser instead of
Ensemble. Thus, the F1 scores in Figure 6 are not
comparable to those from the TAC training corpus.

5 Discussion and Conclusion

We study how the size of two types of cheaply avail-
able resources impact the precision and recall of dis-
tant supervision: (1) an unlabeled text corpus from
which distantly labeled training examples can be ex-
tracted, and (2) crowd-sourced labels on training
examples. We found that text corpus size has a
stronger impact on precision and recall than human
feedback. We observed that distant-supervision sys-
tems are often recall gated; thus, to improve distant-
supervision quality, one should first try to enlarge
the input training corpus and then increase precision.

It was initially counter-intuitive to us that human
labels did not have a large impact on precision. One
reason is that human labels acquired from crowd-
sourcing have comparable noise level as distant la-
bels – as shown by Figure 4. Thus, techniques that
improve the accuracy of crowd-sourced answers are
an interesting direction for future work. We used a
particular form of human input (yes/no votes on dis-
tant labels) and a particular statistical model to in-
corporate this information (logistic regression). It
is interesting future work to study other types of
human input (e.g., new examples or features) and
more sophisticated techniques for incorporating hu-
man input, as well as machine learning methods that
explicitly model feature interactions.

832



Acknowledgements

We gratefully acknowledge the support of the
Defense Advanced Research Projects Agency
(DARPA) Machine Reading Program under Air
Force Research Laboratory (AFRL) prime contract
no. FA8750-09-C-0181. Any opinions, findings,
and conclusions or recommendations expressed in
this material are those of the author(s) and do not
necessarily reflect the view of DARPA, AFRL, or
the US government. We are thankful for the gen-
erous support from the Center for High Through-
put Computing, the Open Science Grid, and Miron
Livny’s Condor research group at UW-Madison. We
are also grateful to Dan Weld for his insightful com-
ments on the manuscript.

References
S. Brin. 1999. Extracting patterns and relations from the

world wide web. In Proceedings of The World Wide
Web and Databases, pages 172–183.

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hr-
uschka Jr, and T. Mitchell. 2010. Toward an architec-
ture for never-ending language learning. In Proceed-
ings of the Conference on Artificial Intelligence, pages
1306–1313.

J. Finkel, T. Grenager, and C. Manning. 2005. Incorpo-
rating non-local information into information extrac-
tion systems by Gibbs sampling. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics, pages 363–370.

M. Gormley, A. Gerber, M. Harper, and M. Dredze.
2010. Non-expert correction of automatically gen-
erated relation annotations. In Proceedings of the
NAACL HLT Workshop on Creating Speech and Lan-
guage Data with Amazon’s Mechanical Turk, pages
204–207.

M. Hearst. 1992. Automatic acquisition of hyponyms
from large text corpora. In Proceedings of the 14th
Conference on Computational Linguistics-Volume 2,
pages 539–545.

R. Hoffmann, S. Amershi, K. Patel, F. Wu, J. Fogarty,
and D.S. Weld. 2009. Amplifying community con-
tent creation with mixed initiative information extrac-
tion. In Proceedings of the 27th international confer-
ence on Human factors in computing systems, pages
1849–1858. ACM.

R. Hoffmann, C. Zhang, and D. Weld. 2010. Learn-
ing 5000 relational extractors. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics, pages 286–295.

R. Hoffmann, C. Zhang, X. Ling, L. Zettlemoyer, and
D. Weld. 2011. Knowledge-based weak supervision
for information extraction of overlapping relations. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics, pages 541–550.

H. Ji, R. Grishman, H.T. Dang, K. Griffitt, and J. Ellis.
2010. Overview of the TAC 2010 knowledge base
population track. In Text Analysis Conference.

D. Lin and P. Pantel. 2001. Discovery of inference rules
for question-answering. Natural Language Engineer-
ing, 7(4):343–360.

M. Mintz, S. Bills, R. Snow, and D. Jurafsky. 2009. Dis-
tant supervision for relation extraction without labeled
data. In Proceedings of the Annual Meeting of the As-
sociation for Computational Linguistics, pages 1003–
1011.

T.V.T. Nguyen and A. Moschitti. 2011a. End-to-end re-
lation extraction using distant supervision from exter-
nal semantic repositories. In Proceeding of the Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pages 277–282.

T.V.T. Nguyen and A. Moschitti. 2011b. Joint distant and
direct supervision for relation extraction. In Proceed-
ing of the International Joint Conference on Natural
Language Processing, pages 732–740.

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit,
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