Semi-supervised Dependency Parsing using Lexical Affinities

Seyed Abolghasem Mirroshandel

Alexis Nasr’  Joseph Le Roux®

Laboratoire d’Informatique Fondamentale de Marseille- CNRS - UMR 7279
Université Aix-Marseille, Marseille, France
°LIPN, Université Paris Nord & CNRS, Villetaneuse, France
*Computer Engineering Department, Sharif university of Technology, Tehran, Iran

(ghasem.mirroshandel@lif.univ-mrs.fr,

alexis.nasr@lif.univ-mrs.fr,

leroux@univ-parisl3.fr)

Abstract

Treebanks are not large enough to reliably
model precise lexical phenomena. This de-
ficiency provokes attachment errors in the
parsers trained on such data. We propose
in this paper to compute lexical affinities,
on large corpora, for specific lexico-syntactic
configurations that are hard to disambiguate
and introduce the new information in a parser.
Experiments on the French Treebank showed
arelative decrease of the error rate of 7.1% La-
beled Accuracy Score yielding the best pars-
ing results on this treebank.

1 Introduction

Probabilistic parsers are usually trained on treebanks
composed of few thousands sentences. While this
amount of data seems reasonable for learning syn-
tactic phenomena and, to some extent, very frequent
lexical phenomena involving closed parts of speech
(POS), it proves inadequate when modeling lexical
dependencies between open POS, such as nouns,
verbs and adjectives. This fact was first recognized
by (Bikel, 2004) who showed that bilexical depen-
dencies were barely used in Michael Collins’ parser.

The work reported in this paper aims at a better
modeling of such phenomena by using a raw corpus
that is several orders of magnitude larger than the
treebank used for training the parser. The raw cor-
pus is first parsed and the computed lexical affinities
between lemmas, in specific lexico-syntactic config-
urations, are then injected back in the parser. Two
outcomes are expected from this procedure, the first
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is, as mentioned above, a better modeling of bilexi-
cal dependencies and the second is a method to adapt
a parser to new domains.

The paper is organized as follows. Section 2 re-
views some work on the same topic and highlights
their differences with ours. In section 3, we describe
the parser that we use in our experiments and give
a detailed description of the frequent attachment er-
rors. Section 4 describes how lexical affinities be-
tween lemmas are calculated and their impact is then
evaluated with respect to the attachment errors made
by the parser. Section 5 describes three ways to in-
tegrate the lexical affinities in the parser and reports
the results obtained with the three methods.

2 Previous Work

Coping with lexical sparsity of treebanks using raw
corpora has been an active direction of research for
many years.

One simple and effective way to tackle this prob-
lem is to put together words that share, in a large
raw corpus, similar linear contexts, into word clus-
ters. The word occurrences of the training treebank
are then replaced by their cluster identifier and a new
parser is trained on the transformed treebank. Us-
ing such techniques (Koo et al., 2008) report signi-
ficative improvement on the Penn Treebank (Marcus
et al., 1993) and so do (Candito and Seddah, 2010;
Candito and Crabbé, 2009) on the French Treebank
(Abeillé et al., 2003).

Another series of papers (Volk, 2001; Nakov
and Hearst, 2005; Pitler et al., 2010; Zhou et al.,
2011) directly model word co-occurrences. Co-
occurrences of pairs of words are first collected in a
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raw corpus or internet n-grams. Based on the counts
produced, lexical affinity scores are computed. The
detection of pairs of words co-occurrences is gen-
erally very simple, it is either based on the direct
adjacency of the words in the string or their co-
occurrence in a window of a few words. (Bansal
and Klein, 2011; Nakov and Hearst, 2005) rely on
the same sort of techniques but use more sophisti-
cated patterns, based on simple paraphrase rules, for
identifying co-occurrences.

Our work departs from those approaches by the
fact that we do not extract the lexical information
directly on a raw corpus, but we first parse it and
then extract the co-occurrences on the parse trees,
based on some predetermined lexico-syntactic pat-
terns. The first reason for this choice is that the lin-
guistic phenomena that we are interested in, such as
as PP attachment, coordination, verb subject and ob-
ject can range over long distances, beyond what is
generally taken into account when working on lim-
ited windows. The second reason for this choice was
to show that the performances that the NLP commu-
nity has reached on parsing, combined with the use
of confidence measures allow to use parsers to ex-
tract accurate lexico-syntactic information, beyond
what can be found in limited annotated corpora.

Our work can also be compared with self train-
ing approaches to parsing (McClosky et al., 2006;
Suzuki et al., 2009; Steedman et al., 2003; Sagae
and Tsujii, 2007) where a parser is first trained on
a treebank and then used to parse a large raw cor-
pus. The parses produced are then added to the ini-
tial treebank and a new parser is trained. The main
difference between these approaches and ours is that
we do not directly add the output of the parser to the
training corpus, but extract precise lexical informa-
tion that is then re-injected in the parser. In the self
training approach, (Chen et al., 2009) is quite close
to our work: instead of adding new parses to the tree-
bank, the occurrence of simple interesting subtrees
are detected in the parses and introduced as new fea-
tures in the parser.

The way we introduce lexical affinity measures in
the parser, in 5.1, shares some ideas with (Anguiano
and Candito, 2011), who modify some attachments
in the parser output, based on lexical information.
The main difference is that we only take attachments
that appear in an n-best parse list into account, while
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they consider the first best parse and compute all po-
tential alternative attachments, that may not actually
occur in the n-best forests.

3 The Parser

The parser used in this work is the second order
graph based parser (McDonald et al., 2005; Kiibler
et al., 2009) implementation of (Bohnet, 2010). The
parser was trained on the French Treebank (Abeillé
et al., 2003) which was transformed into dependency
trees by (Candito et al., 2009). The size of the tree-
bank and its decomposition into train, development
and test sets is represented in table 1.

nb of sentences | nb of words
FTB_TRAIN 9 881 278 083
FTB_DEV 1239 36 508
FTB_TEST 1235 36 340

Table 1: Size and decomposition of the French Treebank

The part of speech tagging was performed with
the MELT tagger (Denis and Sagot, 2010) and lem-
matized with the MACAON tool suite (Nasr et al.,
2011). The parser gave state of the art results for
parsing of French, reported in table 2.

pred. POS tags gold POS tags

punct | no punct | punct | no punct
LAS | 88.02 | 90.24 | 88.88 | 91.12
UAS | 90.02 | 92,50 |90.71 | 93.20

Table 2: Labeled and unlabeled accuracy score for auto-
matically predicted and gold POS tags with and without
taking into account punctuation on FTB_TEST.

Figure 1 shows the distribution of the 100 most
common error types made by the parser. In this
figure, x axis shows the error types and y axis
shows the error ratio of the related error type
(rumbr o sto ot the speciic5e) e efine an error
type by the POS tag of the governor and the POS
tag of the dependent. The figure presents a typical
Zipfian distribution with a low number of frequent
error types and a large number of unfrequent error
types. The shape of the curve shows that concen-
trating on some specific frequent errors in order to
increase the parser accuracy is a good strategy.
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Figure 1: Distribution of the types of errors

Table 3 gives a finer description of the most com-
mon types of error made by the parser. Here we
define more precise patterns for errors, where some
lexical values are specified (for prepositions) and, in
some cases, the nature of the dependency is taken
into account. Every line of the table corresponds to
one type of error. The first column describes the
error type. The second column indicates the fre-
quency of this type of dependency in the corpus. The
third one displays the accuracy for this type of de-
pendency (the number of dependencies of this type
correctly analyzed by the parser divided by the to-
tal number of dependencies of this type). The fourth
column shows the contribution of the errors made on
this type of dependency to the global error rate. The
last column associates a name with some of the error
types that will prove useful in the remainder of the
paper to refer to the error type.

Table 3 shows two different kinds of errors that
impact the global error rate. The first one concerns
very common dependencies that have a high accu-
racy but, due to their frequency, hurt the global er-
ror rate of the parser. The second one concerns low
frequency, low accuracy dependency types. Lines 2
and 3, respectively attachment of the preposition a to
a verb and the subject dependency illustrate such a
contrast. They both impact the total error rate in the
same way (2.53% of the errors). But the first one
is a low frequency low accuracy type (respectively
0.88% and 69.11%) while the second is a high fre-
quency high accuracy type (respectively 3.43% and
93.03%). We will see in 4.2.2 that our method be-
haves quite differently on these two types of error.
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dependency | freq. | acc. | contrib. | name
N—N 1.50 | 72.23 | 291

V—a 0.88 | 69.11 | 2.53 | VaN
V—suj — N | 3.43 | 93.03 | 2.53 | SBJ
N — CC 0.77 1 69.78 | 2.05 | NcN
N — de 3.70 | 92.07 | 2.05 | NdeN
V —de 0.66 | 74.68 | 1.62 | VdeN
V—obj — N | 2.74 | 90.43 | 1.60 | OBJ
V —en 0.66 | 81.20 | 1.24

V — pour 0.46 | 67.78 | 1.10

N — ADJ 6.18 | 96.60 | 0.96 | ADJ
N—a 0.29 | 70.64 | 0.72 | NaN
N — pour 0.12 | 38.64 0.67

N —en 0.15 | 47.69 | 0.57

Table 3: The 13 most common error types

4 Creating the Lexical Resource

The lexical resource is a collection of tuples
(C,g,d,s) where C' is a lexico-syntactic configu-
ration, g is a lemma, called the governor of the
configuration, d is another lemma called the depen-
dent and s is a numerical value between O and 1,
called the lexical affinity score, which accounts for
the strength of the association between g and d in

obj
=

the context C. For example the tuple ((V,g)
(N, d), eat, oyster,0.23) defines a simple configu-

ration (V,g) (N,d) that is an object depen-
dency between verb g and noun d. When replac-
ing variables ¢ and d in C respectively with eat
and oyster, we obtain the fully specified lexico syn-

obj
-

tactic pattern(V/, eat) Yy (N, oyster), that we call
an instantiated configuration. The numerical value
0.23 accounts for how much eat and oyster like
to co-occur in the verb-object configuration. Con-
figurations can be of arbitrary complexity but they
have to be generic enough in order to occur fre-
quently in a corpus yet be specific enough to model
a precise lexico syntactic phenomenon. The context
(*,9) = (%, d), for example is very generic but does
not model a precise linguistic phenomenon, as selec-
tional preferences of a verb, for example. Moreover,
configurations need to be error-prone. In the per-
spective of increasing a parser performances, there
is no point in computing lexical affinity scores be-
tween words that appear in a configuration for which



the parser never makes mistakes.

The creation of the lexical resource is a three stage
process. The first step is the definition of configura-
tions, the second one is the collection of raw counts
from the machine parsed corpora and the third one is
the computation of lexical affinities based on the raw
counts. The three steps are described in the follow-
ing subsection while the evaluation of the created
resource is reported in subsection 4.2.

4.1 Computing Lexical Affinities

A set of 9 configurations have been defined. Their
selection is a manual process based on the analysis
of the errors made by the parser, described in sec-
tion 3, as well as on the linguistic phenomena they
model. The list of the 9 configurations is described
in Table 4. As one can see on this table, configu-
rations are usually simple, made up of one or two
dependencies. Linguistically, configurations OBJ
and SBJ concern subject and object attachments,
configuration ADJ is related to attachments of ad-
jectives to nouns and configurations NdeN, VdeN,
VaN, and NaN indicate prepositional attachments.
We have restricted ourselves here to two common
French prepositions a and de. Configurations NcN
and V¢V deal respectively with noun and verb coor-
dination.

Name Description

OBJ | (V,qg) Y (N, d)
SBI | (V,g) sy (N, d)
ADJ | (N,g) = ADJ
NdeN | (N,g) — (P,de) — (N,d)
VdeN | (V,g) — (P,de) — (N,d)
NaN | (N,g) —(P,a)— (N,d)
VaN | (V.g)  — (Pa) —  (V.d)
NcN (N,g) — (CC,*) — (N,d)
Vev | (Vig) — (CC,x) —  (V,d)

Table 4: List of the 9 configurations.

The computation of the number of occurrences of
an instantiated configuration in the corpus is quite
straightforward, it consists in traversing the depen-
dency trees produced by the parser and detect the
occurrences of this configuration.

At the end of the counts collection, we have gath-
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CORPUS | Sent. nb. | Tokens nb.
AFP 1024 797 | 31486 618
ESTREP | 1103630 | 19 635 985
WIKI 1592035 | 33 821 460
TOTAL 3720 462 | 84 944 063

Table 5: sizes of the corpora used to gather lexical counts

ered for every lemma [ its number of occurrences as
governor (resp. dependent) of configuration C' in the
corpus, noted C(C, [, x) (resp. C(C, x,1)), as well as
the number of occurrences of configuration C' with
lemma [, as a governor and lemma [; as a depen-
dent, noted C(C,1ly,ls). We are now in a position
to compute the score s(C, 4, l4). This score should
reflect the tendency of [, and [, to appear together
in configuration C. It should be maximal if when-
ever [y occurs as the governor of configuration C,
the dependent position is occupied by [z and, sym-
metrically, if whenever [ occurs as the dependent of
configuration C, the governor position is occupied
by l,. A function that conforms such a behavior is
the following:

S(C, lga ld)

o 1 C(Cv lgvld) + C(C7 lg7ld)
- C(C,l4, %) C(C,x*,1y)

2
it takes its values between 0 (I, and [4 never
co-occur) and 1 (g and d always co-occur). This
function is close to pointwise mutual information
(Church and Hanks, 1990) but takes its values be-
tween O and 1.

4.2 Evaluation

Lexical affinities were computed on three corpora of
slightly different genres. The first one, is a collection
of news report of the French press agency Agence
France Presse, the second is a collection of news-
paper articles from a local French newspaper : [’Est
Républicain. The third one is a collection of articles
from the French Wikipedia. The size of the different
corpora are detailed in table 5. The corpus was first
POS tagged, lemmatized and parsed in order to get
the 50 best parses for every sentence. Then the lexi-
cal resource was built, based on the 9 configurations
described in table 4.

The lexical resource has been evaluated on
FTB_DEV with respect to two measures: coverage



and correction rate, described in the next two sec-
tions.

4.2.1 Coverage

Coverage measures the instantiated configura-
tions present in the evaluation corpus that are in the
resource. The results are presented in table 6. Every
line represents a configuration, the second column
indicates the number of different instantiations of
this configuration in the evaluation corpus, the third
one indicates the number of instantiated configura-
tions that were actually found in the lexical resource
and the fourth column shows the coverage for this
configuration, which is the ratio third column over
the second. Last column represents the coverage of
the training corpus (the lexical resource is extracted
on the training corpus) and the last line represents
the same quantities computed on all configurations.

Table 6 shows two interesting results: firstly the
high variability of coverage with respect to configu-
rations, and secondly the low coverage when the lex-
ical resource is computed on the training corpus, this
fact being consistent with the conclusions of (Bikel,
2004). A parser trained on a treebank cannot be ex-
pected to reliably select the correct governor in lex-
ically sensitive cases.

Conf. | occ. | pres. | cov. | T cov.
OBJ | 1017 | 709 | 0.70 | 0.21
SBJ 1210 | 825 | 0.68 | 0.24
ADJ | 1791 | 1239 | 0.69 | 0.33
NdeN | 1909 | 1287 | 0.67 | 0.31
VdeN | 189 | 107 | 0.57 | 0.16
NaN 123 61 | 0.50 | 0.20
VaN 422 | 273 | 0.65 | 0.23
NcN 220 55 1 0.25 | 0.10
VeV 165 93 | 0.56 | 0.04
by 7046 | 4649 | 0.66 | 0.27

Table 6: Coverage of the lexical resource over FTB_DEV.

4.2.2 Correction Rate

While coverage measures how many instantiated
configurations that occur in the treebank are actu-
ally present in the lexical resource, it does not mea-
sure if the information present in the lexical resource
can actually help correcting the errors made by the
parser.
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We define Correction Rate (CR) as a way to ap-
proximate the usefulness of the data. Given a word
d present in a sentence S and a configuration C, the
set of all potential governors of d in configuration
C, in all the n-best parses produced by the parser is
computed. This set is noted G = {g1,...,g;}. Let
us note GG, the element of G that maximizes the lex-
ical affinity score. When the lexical resource gives
no score to any of the elements of G, G, is left un-
specified.

Ideally, G should not be the set of governors in
the n-best parses but the set of all possible governors
for d in sentence S. Since we have no simple way
to compute the latter, we will content ourselves with
the former as an approximation of the latter.

Let us note Gy the governor of d in the (first)
best parse produced and G'r the governor of d in the
correct parse. CR measures the effect of replacing
Gy with Gy,

We have represented in table 7 the different sce-
narios that can happen when comparing Gy, Gr
and G..

G = Gror G unspec. | CC
Gy=Ggr | G #Gpg CE
G =Gg EC
Gg # Gr | Gp # Gror G, unspec. | EE
Gré¢ g NA

Table 7: Five possible scenarios when comparing the
governor of a word produced by the parser (Gg), in
the reference parse (Gr) and according to the lexical re-
source (Gp).

In scenarios CC and CE, the parser did not make
a mistake (the first letter, C, stands for correct). In
scenario CC, the lexical affinity score was compat-
ible with the choice of the parser or the lexical re-
source did not select any candidate. In scenario CE,
the lexical resource introduced an error. In scenar-
ios EC and EE, the parser made an error. In EC,
the error was corrected by the lexical resource while
in EE, it wasn’t. Either because the lexical resource
candidate was not the correct governor or it was un-
specified. The last case, NA, indicates that the cor-
rect governor does not appear in any of the n-best
parses. Technically this case could be integrated in
EE (an error made by the parser was not corrected
by the lexical resource) but we chose to keep it apart



since it represents a case where the right solution
could not be found in the n-best parse list (the cor-
rect governor is not a member of set G).

Let’s note ng the number of occurrences of sce-
nario S for a given configuration. We compute CR
for this configuration in the following way:

CR old error number - new error number

old error number
NEc — NCE
nNErg +Npc +NNA

When CR is equal to 0, the correction did not have
any impact on the error rate. When CR > 0, the error
rate is reduced and if CR < 0 it is increased'.

CR for each configuration is reported in table 8.
The counts of the different scenarios have also been
reported.

Conf. ncc Nce nec NEE NMNA CR
OBJ 992 30 51 5 17 | 0.29
SBJ 1131 35 61 16 34 0.23
ADJ 2220 42 16 20 6 | -0.62
NdeN | 2083 93 42 44 21 | -0.48
VdeN 150 2 49 1 13 0.75
NaN 89 5 21 10 2 0.48
VaN 273 19 132 8 11 0.75
NcN 165 17 12 31 12 | -0.09
VceN 120 21 14 11 5| -0.23
% 7223 264 398 146 121 0.20

Table 8: Correction Rate of the lexical resource with re-
spect to FTB_DEV.

Table 8 shows very different results among con-
figurations. Results for PP attachments VdeN, VaN
and NaN are quite good (a CR of 75% for a given
configuration, as VdeN indicates that the number of
errors on such a configuration is decreased by 25%).
It is interesting to note that the parser behaves quite
badly on these attachments: their accuracy (as re-
ported in table 3) is, respectively 74.68, 69.1 and
70.64. Lexical affinity helps in such cases. On
the other hand, some attachments like configuration
ADIJ and NdeN, for which the parser showed very
good accuracy (96.6 and 92.2) show very poor per-
formances. In such cases, taking into account lexical
affinity creates new errors.

'One can note, that contrary to coverage, CR does not mea-

sure a characteristic of the lexical resource alone, but the lexical
resource combined with a parser.
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On average, using the lexical resource with this
simple strategy of systematically replacing G g with
G, allows to decrease by 20% the errors made on
our 9 configurations and by 2.5% the global error
rate of the parser.

4.3 Filtering Data with Ambiguity Threshold

The data used to extract counts is noisy: it con-
tains errors made by the parser. Ideally, we would
like to take into account only non ambiguous sen-
tences, for which the parser outputs a single parse
hypothesis, hopefully the good one. Such an ap-
proach is obviously doomed to fail since almost ev-
ery sentence will be associated to several parses.
Another solution would be to select sentences for
which the parser has a high confidence, using confi-
dence measures as proposed in (Sdnchez-Séez et al.,
2009; Hwa, 2004). But since we are only interested
in some parts of sentences (usually one attachment),
we don’t need high confidence for the whole sen-
tence. We have instead used a parameter, defined on
single dependencies, called the ambiguity measure.
Given the n best parses of a sentence and a depen-
dency 9, present in at least one of the n best parses,
let us note C(J) the number of occurrences of § in
the n best parse set. We note AM () the ambiguity
measure associated to d. It is computed as follows:

An ambiguity measure of 0 indicates that J is non
ambiguous in the set of the n best parses (the word
that constitutes the dependent in ¢ is attached to the
word that constitutes the governor in J in all the n-
best analyses). When n gets large enough this mea-
sure approximates the non ambiguity of a depen-
dency in a given sentence.

Ambiguity measure is used to filter the data when
counting the number of occurrences of a configura-
tion: only occurrences that are made of dependen-
cies ¢ such that AM (0) < 7 are taken into account.
T is called the ambiguity threshold.

The results of coverage and CR given above were
computed for 7 equal to 1, which means that, when
collecting counts, all the dependencies are taken into
account whatever their ambiguity is. Table 9 shows
coverage and CR for different values of 7. As ex-
pected, coverage decreases with 7. But, interest-



ingly, decreasing 7, from 1 down to 0.2 has a posi-
tive influence on CR. Ambiguity threshold plays the
role we expected: it allows to reduce noise in the
data, and corrects more errors.

7=1.0 T7=0.4 T7=0.2 7 =20.0

cov/CR cov/CR cov/CR cov/CR
OBJ 0.70/0.29 0.58/0.36 0.52/0.36 0.35/0.38
SBJ 0.68/0.23 0.64/0.23 0.62/0.23 0.52/0.23
ADJ 0.69/-0.62 | 0.61/-0.52 | 0.56/-0.52 | 0.43/-0.38
NdeN | 0.67/-0.48 | 0.58/-0.53 | 0.52/-0.52 | 0.38/-0.41
VdeN | 0.57/0.75 0.44/0.73 0.36/0.73 0.20/0.30
NaN 0.50/0.48 0.34/0.42 0.28/0.45 0.15/0.48
VaN 0.65/0.75 0.50/0.8 0.41/0.80 0.26/0.48
NcN 0.25/-0.09 0.19/0 0.16/0.02 0.07/0.13
Vev 0.56/-0.23 | 0.42/-0.07 | 0.28/0.03 0.08/0.07
Avg 0.66/0.2 0.57/0.23 0.51/0.24 0.38/0.17

Table 9: Coverage and Correction Rate on FTB_DEV for
several values of ambiguity threshold.

5 Integrating Lexical Affinity in the Parser

We have devised three methods for taking into ac-
count lexical affinity scores in the parser. The first
two are post-processing methods, that take as input
the n-best parses produced by the parser and mod-
ify some attachments with respect to the information
given by the lexical resource. The third method in-
troduces the lexical affinity scores as new features in
the parsing model. The three methods are described
in 5.1, 5.2 and 5.3. They are evaluated in 5.4.

5.1 Post Processing Method

The post processing method is quite simple. It is
very close to the method that was used to compute
the Correction Rate of the lexical resource, in 4.2.2:
it takes as input the n-best parses produced by the
parser and, for every configuration occurrence C
found in the first best parse, the set (G) of all po-
tential governors of C, in the n-best parses, is com-
puted and among them, the word that maximizes the
lexical affinity score (G1) is identified.

Once G, is identified, one can replace the choice
of the parser (Gy) with G. This method is quite
crude since it does not take into account the confi-
dence the parser has in the solution proposed. We
observed, in 4.2.2 that CR was very low for configu-
rations for which the parser achieves good accuracy.
In order to introduce the parser confidence in the fi-
nal choice of a governor, we compute C(Gy) and
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C(G1,) which respectively represent the number of
times G and G, appear as the governor of config-
uration C'. The choice of the final governor, noted
G, depends on the ratio of C(G;) and C(G). The
complete selection strategy is the following:

1. if Gy = G, or G, is unspecified, G= Gp.

2. if Gy # Gy, G is determined as follows:

|

where « is a coefficient that is optimized on the
development data set.

Gu if Ggl >a
Gp,

otherwise

We have reported, in table 10 the values of CR,
for the 9 different features, using this strategy, for
7 = 1. We do not report the values of CR for other
values of 7 since they are very close to each other.
The table shows several noticeable facts. First, the
new strategy performs much better than the former
one (crudely replacing G'iy by GG), the value of CR
increased from 0.2 to 0.4, which means that the er-
rors made on the nine configurations are now de-
creased by 40%. Second, CR is now positive for ev-
ery configuration: the number of errors is decreased
for every configuration.

Conf. | OBJ | SUJ | ADJ | NdeN | VdeN
CR 0.45 | 0.46 | 0.14 | 0.05 0.73

Conf. | NaN | VaN | NcN | VeV b
CR 0.12 | 0.8 | 0.12 0.1 0.4

Table 10: Correction Rate on FTB_DEV when taking into
account parser confidence.

5.2 Double Parsing Method

The post processing method performs better than the
naive strategy that was used in 4.2.2. But it has an
important drawback: it creates inconsistent parses.
Recall that the parser we are using is based on a sec-
ond order model, which means that the score of a de-
pendency depends on some neighboring ones. Since
with the post processing method only a subset of the
dependencies are modified, the resulting parse is in-
consistent: the score of some dependencies is com-
puted on the basis of other dependencies that have
been modified.



In order to compute a new optimal parse tree
that preserves the modified dependencies, we have
used a technique proposed in (Mirroshandel and
Nasr, 2011) that modifies the scoring function of the
parser in such a way that the dependencies that we
want to keep in the parser output get better scores
than all competing dependencies.

The double parsing method is therefore a three
stage method. First, sentence S is parsed, producing
the n-best parses. Then, the post processing method
is used, modifying the first best parse. Let’s note
D the set of dependencies that were changed in this
process. In the last stage, a new parse is produced,
that preserves D.

5.3 Feature Based Method

In the feature based method, new features are
added to the parser that rely on lexical affinity
scores. These features are of the following form:
(C,1g,1q,9c(s)), where C' is a configuration num-
ber, s is the lexical affinity score (s = s(C,l4,1q))
and d.(-) is a discretization function.

Discretization of the lexical affinity scores is nec-
essary in order to fight against data sparseness. In
this work, we have used Weka software (Hall et al.,
2009) to discretize the scores with unsupervised bin-
ning. Binning is a simple process which divides
the range of possible values a parameter can take
into subranges called bins. Two methods are im-
plemented in Weka to find the optimal number of
bins: equal-frequency and equal-width. In equal-
frequency binning, the range of possible values are
divided into k bins, each of which holds the same
number of instances. In equal-width binning, which
is the method we have used, the range are divided
into k subranges of the same size. The optimal num-
ber of bins is the one that minimizes the entropy of
the data. Weka computes different number of bins
for different configurations, ranging from 4 to 10.
The number of new features added to the parser is
equal to ) B(C) where C is a configuration and
B(C) is the number of bins for configuration C'.

5.4 Evaluation

The three methods described above have been evalu-
ated on FTB_TEST. Results are reported in table 11.
The three methods outperformed the baseline (the
state of the art parser for French which is a second
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order graph based method) (Bohnet, 2010). The best
performances were obtained by the Double Parsing
method that achieved a labeled relative error reduc-
tion of 7,1% on predicted POS tags, yielding the
best parsing results on the French Treebank. It per-
forms better than the Post Processing method, which
means that the second parsing stage corrects some
inconsistencies introduced in the Post Processing
method. The performances of the Feature Based
method are disappointing, it achieves an error reduc-
tion of 1.4%. This result is not easy to interpret. It
is probably due to the limited number of new fea-
tures introduced in the parser. These new features
probably have a hard time competing with the large
number of other features in the training process.

pred. POS tags gold POS tags

punct [ no punct | punct [ no punct

BL | LAS | 88.02 90.24 88.88 91.12

UAS | 90.02 92.50 90.71 93.20

PP | LAS | 88.45 90.73 89.46 91.78

UAS | 90.61 93.20 91.44 93.86

DP | LAS | 88.87 91.10 89.72 91.90

UAS | 90.84 93.30 91.58 93.99

FB | LAS | 88.19 90.33 89.29 91.43

UAS | 90.22 92.62 91.09 93.46
Table 11: Parser accuracy on FTB_TEST using the

standard parser (BL) the post processing method (PP),
the double parsing method (DP) and the feature based
method.

6 Conclusion

Computing lexical affinities, on large corpora, for
specific lexico-syntactic configurations that are hard
to disambiguate has shown to be an effective way
to increase the performances of a parser. We have
proposed in this paper one method to compute lexi-
cal affinity scores as well as three ways to introduce
this new information in a parser. Experiments on a
French corpus showed a relative decrease of the er-
ror rate of 7.1% Labeled Accuracy Score.
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