
Dual Decomposition
for Natural Language Processing

Alexander M. Rush and Michael Collins

Decoding complexity

focus: decoding problem for natural language tasks

y∗ = arg max
y

f (y)

motivation:

• richer model structure often leads to improved accuracy

• exact decoding for complex models tends to be intractable



Decoding tasks
many common problems are intractable to decode exactly

high complexity

• combined parsing and part-of-speech tagging (Rush et al.,
2010)

• “loopy” HMM part-of-speech tagging

• syntactic machine translation (Rush and Collins, 2011)

NP-Hard

• symmetric HMM alignment (DeNero and Macherey, 2011)

• phrase-based translation

• higher-order non-projective dependency parsing (Koo et al.,
2010)

in practice:

• approximate decoding methods (coarse-to-fine, beam search,
cube pruning, gibbs sampling, belief propagation)

• approximate models (mean field, variational models)

Motivation

cannot hope to find exact algorithms (particularly when NP-Hard)

aim: develop decoding algorithms with formal guarantees

method:

• derive fast algorithms that provide certificates of optimality

• show that for practical instances, these algorithms often yield
exact solutions

• provide strategies for improving solutions or finding
approximate solutions when no certificate is found

dual decomposition helps us develop algorithms of this form



Dual Decomposition (Komodakis et al., 2010; Lemaréchal, 2001)

goal: solve complicated optimization problem

y∗ = arg max
y

f (y)

method: decompose into subproblems, solve iteratively

benefit: can choose decomposition to provide “easy” subproblems

aim for simple and efficient combinatorial algorithms

• dynamic programming

• minimum spanning tree

• shortest path

• min-cut

• bipartite match

• etc.

Related work

there are related methods used NLP with similar motivation

related methods:

• belief propagation (particularly max-product) (Smith and
Eisner, 2008)

• factored A* search (Klein and Manning, 2003)

• exact coarse-to-fine (Raphael, 2001)

aim to find exact solutions without exploring the full search space



Tutorial outline

focus:

• developing dual decomposition algorithms for new NLP tasks

• understanding formal guarantees of the algorithms

• extensions to improve exactness and select solutions

outline:

1. worked algorithm for combined parsing and tagging

2. important theorems and formal derivation

3. more examples from parsing, sequence labeling, MT

4. practical considerations for implementing dual decomposition

5. relationship to linear programming relaxations

6. further variations and advanced examples

1. Worked example

aim: walk through a dual decomposition algorithm for combined
parsing and part-of-speech tagging

• introduce formal notation for parsing and tagging

• give assumptions necessary for decoding

• step through a run of the dual decomposition algorithm



Combined parsing and part-of-speech tagging

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

goal: find parse tree that optimizes

score(S → NP VP) + score(VP → V NP) +

...+ score(United1,N) + score(V,N) + ...

Constituency parsing
notation:

• Y is set of constituency parses for input
• y ∈ Y is a valid parse
• f (y) scores a parse tree

goal:
arg max

y∈Y
f (y)

example: a context-free grammar for constituency parsing

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet



Part-of-speech tagging
notation:

• Z is set of tag sequences for input

• z ∈ Z is a valid tag sequence

• g(z) scores of a tag sequence

goal:
arg max

z∈Z
g(z)

example: an HMM for part-of speech tagging

United1 flies2 some3 large4 jet5

N V D A N

Identifying tags
notation: identify the tag labels selected by each model

• y(i , t) = 1 when parse y selects tag t at position i

• z(i , t) = 1 when tag sequence z selects tag t at position i

example: a parse and tagging with y(4,A) = 1 and z(4,A) = 1

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

y

United1 flies2 some3 large4 jet5

N V D A N

z



Combined optimization

goal:
arg max

y∈Y,z∈Z
f (y) + g(z)

such that for all i = 1 . . . n, t ∈ T ,

y(i , t) = z(i , t)

i.e. find the best parse and tagging pair that agree on tag labels

equivalent formulation:

arg max
y∈Y

f (y) + g(l(y))

where l : Y → Z extracts the tag sequence from a parse tree

Dynamic programming intersection
can solve by solving the product of the two models

example:

• parsing model is a context-free grammar

• tagging model is a first-order HMM

• can solve as CFG and finite-state automata intersection

replace S → NP VP with
SN,N → NPN,V VPV ,N

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet



Parsing assumption
the structure of Y is open (could be CFG, TAG, etc.)

assumption: optimization with u can be solved efficiently

arg max
y∈Y

f (y) +
∑
i ,t

u(i , t)y(i , t)

generally benign since u can be incorporated into the structure of f

example: CFG with rule scoring function h

f (y) =
∑

X→Y Z∈y
h(X → Y Z ) +

∑
(i ,X )∈y

h(X → wi )

where

arg maxy∈Y f (y) +
∑
i ,t

u(i , t)y(i , t) =

arg maxy∈Y
∑

X→Y Z∈y
h(X → Y Z ) +

∑
(i ,X )∈y

(h(X → wi ) + u(i ,X ))

Tagging assumption
we make a similar assumption for the set Z
assumption: optimization with u can be solved efficiently

arg max
z∈Z

g(z)−
∑
i ,t

u(i , t)z(i , t)

example: HMM with scores for transitions T and observations O

g(z) =
∑

t→t′∈z
T (t → t ′) +

∑
(i ,t)∈z

O(t → wi )

where

arg maxz∈Z g(z)−
∑
i ,t

u(i , t)z(i , t) =

arg maxz∈Z
∑

t→t′∈z
T (t → t ′) +

∑
(i ,t)∈z

(O(t → wi )− u(i , t))



Dual decomposition algorithm

Set u(1)(i , t) = 0 for all i , t ∈ T

For k = 1 to K

y (k) ← arg max
y∈Y

f (y) +
∑
i ,t

u(k)(i , t)y(i , t) [Parsing]

z(k) ← arg max
z∈Z

g(z)−
∑
i ,t

u(k)(i , t)z(i , t) [Tagging]

If y (k)(i , t) = z(k)(i , t) for all i , t Return (y (k), z(k))

Else u(k+1)(i , t)← u(k)(i , t)− αk(y (k)(i , t)− z(k)(i , t))

Algorithm step-by-step

[Animation]



Main theorem

theorem: if at any iteration, for all i , t ∈ T

y (k)(i , t) = z(k)(i , t)

then (y (k), z(k)) is the global optimum

proof: focus of the next section

2. Formal properties

aim: formal derivation of the algorithm given in the previous
section

• derive Lagrangian dual

• prove three properties

I upper bound

I convergence

I optimality

• describe subgradient method



Lagrangian
goal:

arg max
y∈Y,z∈Z

f (y) + g(z) such that y(i , t) = z(i , t)

Lagrangian:

L(u, y , z) = f (y) + g(z) +
∑
i ,t

u(i , t) (y(i , t)− z(i , t))

redistribute terms

L(u, y , z) =

f (y) +
∑
i ,t

u(i , t)y(i , t)

 +

g(z)−
∑
i ,t

u(i , t)z(i , t)



Lagrangian dual

Lagrangian:

L(u, y , z) =

f (y) +
∑
i ,t

u(i , t)y(i , t)

 +

g(z)−
∑
i ,t

u(i , t)z(i , t)


Lagrangian dual:

L(u) = max
y∈Y,z∈Z

L(u, y , z)

= max
y∈Y

f (y) +
∑
i ,t

u(i , t)y(i , t)

 +

max
z∈Z

g(z)−
∑
i ,t

u(i , t)z(i , t)





Theorem 1. Upper bound

define:

• y∗, z∗ is the optimal combined parsing and tagging solution
with y∗(i , t) = z∗(i , t) for all i , t

theorem: for any value of u

L(u) ≥ f (y∗) + g(z∗)

L(u) provides an upper bound on the score of the optimal solution

note: upper bound may be useful as input to branch and bound or
A* search

Theorem 1. Upper bound (proof)

theorem: for any value of u, L(u) ≥ f (y∗) + g(z∗)

proof:

L(u) = max
y∈Y,z∈Z

L(u, y , z) (1)

≥ max
y∈Y,z∈Z:y=z

L(u, y , z) (2)

= max
y∈Y,z∈Z:y=z

f (y) + g(z) (3)

= f (y∗) + g(z∗) (4)



Formal algorithm (reminder)

Set u(1)(i , t) = 0 for all i , t ∈ T

For k = 1 to K

y (k) ← arg max
y∈Y

f (y) +
∑
i ,t

u(k)(i , t)y(i , t) [Parsing]

z(k) ← arg max
z∈Z

g(z)−
∑
i ,t

u(k)(i , t)z(i , t) [Tagging]

If y (k)(i , t) = z(k)(i , t) for all i , t Return (y (k), z(k))

Else u(k+1)(i , t)← u(k)(i , t)− αk(y (k)(i , t)− z(k)(i , t))

Theorem 2. Convergence
notation:

• u(k+1)(i , t)← u(k)(i , t) + αk(y (k)(i , t)− z(k)(i , t)) is update

• u(k) is the penalty vector at iteration k

• αk is the update rate at iteration k

theorem: for any sequence α1, α2, α3, . . . such that

lim
t→∞

αt = 0 and
∞∑
t=1

αt =∞,

we have
lim
t→∞

L(ut) = min
u

L(u)

i.e. the algorithm converges to the tightest possible upper bound

proof: by subgradient convergence (next section)



Dual solutions

define:

• for any value of u

yu = arg max
y∈Y

f (y) +
∑
i ,t

u(i , t)y(i , t)


and

zu = arg max
z∈Z

g(z)−
∑
i ,t

u(i , t)z(i , t)


• yu and zu are the dual solutions for a given u

Theorem 3. Optimality

theorem: if there exists u such that

yu(i , t) = zu(i , t)

for all i , t then

f (yu) + g(zu) = f (y∗) + g(z∗)

i.e. if the dual solutions agree, we have an optimal solution

(yu, zu)



Theorem 3. Optimality (proof)

theorem: if u such that yu(i , t) = zu(i , t) for all i , t then

f (yu) + g(zu) = f (y∗) + g(z∗)

proof: by the definitions of yu and zu

L(u) = f (yu) + g(zu) +
∑
i ,t

u(i , t)(yu(i , t)− zu(i , t))

= f (yu) + g(zu)

since L(u) ≥ f (y∗) + g(z∗) for all values of u

f (yu) + g(zu) ≥ f (y∗) + g(z∗)

but y∗ and z∗ are optimal

f (yu) + g(zu) ≤ f (y∗) + g(z∗)

Dual optimization

Lagrangian dual:

L(u) = max
y∈Y,z∈Z

L(u, y , z)

= max
y∈Y

f (y) +
∑
i ,t

u(i , t)y(i , t)

 +

max
z∈Z

g(z)−
∑
i ,t

u(i , t)z(i , t)


goal: dual problem is to find the tightest upper bound

min
u

L(u)



Dual subgradient

L(u) = max
y∈Y

f (y) +
∑
i,t

u(i , t)y(i , t)

 + max
z∈Z

g(z)−
∑
i,t

u(i , t)z(i , t)


properties:
• L(u) is convex in u (no local minima)
• L(u) is not differentiable (because of max operator)

handle non-differentiability by using subgradient descent

define: a subgradient of L(u) at u is a vector gu such that for all v

L(v) ≥ L(u) + gu · (v − u)

Subgradient algorithm

L(u) = max
y∈Y

f (y) +
∑
i,t

u(i , t)y(i , t)

 + max
z∈Z

g(z)−
∑
i,j

u(i , t)z(i , t)


recall, yu and zu are the argmax’s of the two terms

subgradient:

gu(i , t) = yu(i , t)− zu(i , t)

subgradient descent: move along the subgradient

u′(i , t) = u(i , t)− α (yu(i , t)− zu(i , t))

guaranteed to find a minimum with conditions given earlier for α



3. More examples

aim: demonstrate similar algorithms that can be applied to other
decoding applications

• context-free parsing combined with dependency parsing

• corpus-level part-of-speech tagging

• combined translation alignment

Combined constituency and dependency parsing

setup: assume separate models trained for constituency and
dependency parsing

problem: find constituency parse that maximizes the sum of the
two models

example:

• combine lexicalized CFG with second-order dependency parser



Lexicalized constituency parsing
notation:

• Y is set of lexicalized constituency parses for input
• y ∈ Y is a valid parse
• f (y) scores a parse tree

goal:
arg max

y∈Y
f (y)

example: a lexicalized context-free grammar

S(flies)

NP(United)

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

Dependency parsing

define:

• Z is set of dependency parses for input

• z ∈ Z is a valid dependency parse

• g(z) scores a dependency parse

example:

*0 United1 flies2 some3 large4 jet5



Identifying dependencies
notation: identify the dependencies selected by each model

• y(i , j) = 1 when constituency parse y selects word i as a
modifier of word j

• z(i , j) = 1 when dependency parse z selects word i as a
modifier of word j

example: a constituency and dependency parse with y(3, 5) = 1
and z(3, 5) = 1

S(flies)

NP(United)

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet

y

*0 United1 flies2 some3 large4 jet5

z

Combined optimization

goal:
arg max

y∈Y,z∈Z
f (y) + g(z)

such that for all i = 1 . . . n, j = 0 . . . n,

y(i , j) = z(i , j)



Algorithm step-by-step

[Animation]

Corpus-level tagging

setup: given a corpus of sentences and a trained sentence-level
tagging model

problem: find best tagging for each sentence, while at the same
time enforcing inter-sentence soft constraints

example:

• test-time decoding with a trigram tagger

• constraint that each word type prefer a single POS tag



Corpus-level tagging
full model for corpus-level tagging

He saw an American man

The smart man stood outside

Man is the best measure

N

Sentence-level decoding
notation:

• Yi is set of tag sequences for input sentence i
• Y = Y1× . . .×Ym is set of tag sequences for the input corpus
• Y ∈ Y is a valid tag sequence for the corpus
• F (Y ) =

∑
i

f (Yi ) is the score for tagging the whole corpus

goal:
arg max

Y∈Y
F (Y )

example: decode each sentence with a trigram tagger

He

P

saw

V

an

D

American

A

man

N

The

D

smart

A

man

N

stood

V

outside

R



Inter-sentence constraints
notation:

• Z is set of possible assignments of tags to word types

• z ∈ Z is a valid tag assignment

• g(z) is a scoring function for assignments to word types
(e.g. a hard constraint - all word types only have one tag)

example: an MRF model that encourages words of the same type
to choose the same tag

z1

man

N

man

N

man

N

N

z2

man

N

man

N

man

A

N

g(z1) > g(z2)

Identifying word tags
notation: identify the tag labels selected by each model

• Ys(i , t) = 1 when the tagger for sentence s at position i
selects tag t

• z(s, i , t) = 1 when the constraint assigns at sentence s
position i the tag t

example: a parse and tagging with Y1(5,N) = 1 and
z(1, 5,N) = 1

He saw an American man

The smart man stood outside

Y

man man man

z



Combined optimization

goal:
arg max

Y∈Y,z∈Z
F (Y ) + g(z)

such that for all s = 1 . . .m, i = 1 . . . n, t ∈ T ,

Ys(i , t) = z(s, i , t)

Algorithm step-by-step

[Animation]



Combined alignment (DeNero and Macherey, 2011)

setup: assume separate models trained for English-to-French and
French-to-English alignment

problem: find an alignment that maximizes the score of both
models with soft agreement

example:

• HMM models for both directional alignments (assume correct
alignment is one-to-one for simplicity)

English-to-French alignment

define:

• Y is set of all possible English-to-French alignments

• y ∈ Y is a valid alignment

• f (y) scores of the alignment

example: HMM alignment

The1 ugly2 dog3 has4 red5 fur6

1 3 2 4 6 5



French-to-English alignment

define:

• Z is set of all possible French-to-English alignments

• z ∈ Z is a valid alignment

• g(z) scores of an alignment

example: HMM alignment

Le1 chien2 laid3 a4 fourrure5 rouge6

1 2 3 4 6 5

Identifying word alignments
notation: identify the tag labels selected by each model

• y(i , j) = 1 when e-to-f alignment y selects French word i to
align with English word j

• z(i , j) = 1 when f-to-e alignment z selects French word i to
align with English word j

example: two HMM alignment models with y(6, 5) = 1 and
z(6, 5) = 1

The1 ugly2 dog3 has4 red5 fur6

1 3 2 4 6 5

y

Le1 chien2 laid3 a4 fourrure5 rouge6

1 2 3 4 6 5

z



Combined optimization

goal:
arg max

y∈Y,z∈Z
f (y) + g(z)

such that for all i = 1 . . . n, j = 1 . . . n,

y(i , j) = z(i , j)

Algorithm step-by-step

[Animation]



4. Practical issues

aim: overview of practical dual decomposition techniques

• tracking the progress of the algorithm

• extracting solutions if algorithm does not converge

• lazy update of dual solutions

Tracking progress

at each stage of the algorithm there are several useful values

track:

• y (k), z(k) are current dual solutions

• L(u(k)) is the current dual value

• y (k), l(y (k)) is a potential primal feasible solution

• f (y (k)) + g(l(y (k))) is the potential primal value

useful signals:

• L(u(k))− L(u(k−1)) is the dual change (may be positive)

• min
k

L(u(k)) is the best dual value (tightest upper bound)

• max
k

f (y (k)) + g(l(y (k))) is the best primal value

the optimal value must be between the best dual and primal values



Approximate solution

upon agreement the solution is exact, but this may not occur

otherwise, there is an easy way to find an approximate solution

choose: the structure y (k ′) where

k ′ = arg max
k

f (y (k)) + g(l(y (k)))

is the iteration with the best primal score

guarantee: the solution yk
′

is non-optimal by at most

(min
t

L(ut))− (f (y (k ′)) + g(l(y (k ′))))

there are other methods to estimate solutions, for instance by
averaging solutions (see Nedić and Ozdaglar (2009))

Lazy decoding

idea: don’t recompute y (k) or z(k) from scratch each iteration

lazy decoding: if subgradient u(k) is sparse, then y (k) may be
very easy to compute from y (k−1)

use:

• very helpful if y or z factors naturally into several parts

• decompositions with this property are very fast in practice

example:

• in corpus-level tagging, only need to recompute sentences
with a word type that received an update



5. Linear programming

aim: explore the connections between dual decomposition and
linear programming

• basic optimization over the simplex

• formal properties of linear programming

• full example with fractional optimal solutions

• tightening linear program relaxations

Simplex
define:
• ∆y is the simplex over Y where α ∈ ∆y implies

αy ≥ 0 and
∑
y

αy = 1

• ∆z is the simplex over Z
• δy : Y → ∆y maps elements to the simplex

example:

Y = {y1, y2, y3}
vertices

• δy (y1) = (1, 0, 0)

• δy (y2) = (0, 1, 0)

• δy (y3) = (0, 0, 1)

δy (y1)

δy (y2) δy (y3)

∆y



Linear programming

optimize over the simplices ∆y and ∆z instead of the discrete sets
Y and Z

goal: optimize linear program

max
α∈∆y ,β∈∆z

∑
y

αy f (y) +
∑
z

βzg(z)

such that for all i , t∑
y

αyy(i , t) =
∑
z

βzz(i , t)

Lagrangian

Lagrangian:

M(u, α, β) =
∑
y

αy f (y) +
∑
z

βzg(z) +
∑
i,t

u(i , t)

(∑
y

αyy(i , t)−
∑
z

βzz(i , t)

)

=

(∑
y

αy f (y) +
∑
i,t

u(i , t)
∑
y

αyy(i , t)

)
+

(∑
z

βzg(z)−
∑
i,t

u(i , t)
∑
z

βzz(i , t)

)

Lagrangian dual:

M(u) = max
α∈∆y ,β∈∆z

M(u, α, β)



Strong duality

define:

• α∗, β∗ is the optimal assignment to α, β in the linear program

theorem:
min
u

M(u) =
∑
y

α∗y f (y) +
∑
z

β∗zg(z)

proof: by linear programming duality

Dual relationship

theorem: for any value of u,

M(u) = L(u)

note: solving the original Lagrangian dual also solves dual of the
linear program



Primal relationship
define:

• Q ⊆ ∆y ×∆z corresponds to feasible solutions of the original
problem

Q = {(δy (y), δz(z)): y ∈ Y, z ∈ Z,
y(i , t) = z(i , t) for all (i , t)}

• Q′ ⊆ ∆y ×∆z is the set of feasible solutions to the LP

Q′ = {(α, β): α ∈ ∆Y , β ∈ ∆Z ,∑
y αyy(i , t) =

∑
z βzz(i , t) for all (i , t)}

• Q ⊆ Q′

solutions:
max
q∈Q

h(q) ≤ max
q∈Q′

h(q) for any h

Concrete example

• Y = {y1, y2, y3}
• Z = {z1, z2, z3}
• ∆y ⊂ R3, ∆z ⊂ R3

Y
x

a

He

a

is

y1

x

b

He

b

is

y2

x

c

He

c

is

y3

Z a

He

b

is

z1

b

He

a

is

z2

c

He

c

is

z3



Simple solution

Y
x

a

He

a

is

y1

x

b

He

b

is

y2

x

c

He

c

is

y3

Z a

He

b

is

z1

b

He

a

is

z2

c

He

c

is

z3

choose:
• α(1) = (0, 0, 1) ∈ ∆y is representation of y3

• β(1) = (0, 0, 1) ∈ ∆z is representation of z3

confirm: ∑
y

α
(1)
y y(i , t) =

∑
z

β
(1)
z z(i , t)

α(1) and β(1) satisfy agreement constraint

Fractional solution

Y
x

a

He

a

is

y1

x

b

He

b

is

y2

x

c

He

c

is

y3

Z a

He

b

is

z1

b

He

a

is

z2

c

He

c

is

z3

choose:
• α(2) = (0.5, 0.5, 0) ∈ ∆y is combination of y1 and y2

• β(2) = (0.5, 0.5, 0) ∈ ∆z is combination of z1 and z2

confirm: ∑
y

α
(2)
y y(i , t) =

∑
z

β
(2)
z z(i , t)

α(2) and β(2) satisfy agreement constraint, but not integral



Optimal solution

weights:

• the choice of f and g determines the optimal solution

• if (f , g) favors (α(2), β(2)), the optimal solution is fractional

example: f = [1 1 2] and g = [1 1 − 2]

• f · α(1) + g · β(1) = 0 vs f · α(2) + g · β(2) = 2

• α(2), β(2) is optimal, even though it is fractional

Algorithm run

[Animation]



Tightening (Sherali and Adams, 1994; Sontag et al., 2008)

modify:

• extend Y, Z to identify bigrams of part-of-speech tags

• y(i , t1, t2) = 1 ↔ y(i , t1) = 1 and y(i + 1, t2) = 1

• z(i , t1, t2) = 1 ↔ z(i , t1) = 1 and z(i + 1, t2) = 1

all bigram constraints: valid to add for all i , t1, t2 ∈ T∑
y

αyy(i , t1, t2) =
∑
z

βzz(i , t1, t2)

however this would make decoding expensive

single bigram constraint: cheaper to implement∑
y

αyy(1, a, b) =
∑
z

βzz(1, a, b)

the solution α(1), β(1) trivially passes this constraint, while
α(2), β(2) violates it

Dual decomposition with tightening

tightened decomposition includes an additional Lagrange multiplier

yu,v = arg max
y∈Y

f (y) +
∑
i ,t

u(i , t)y(i , t) + v(1, a, b)y(1, a, b)

zu,v = arg max
z∈Z

g(z)−
∑
i ,t

u(i , t)z(i , t)− v(1, a, b)z(1, a, b)

in general, this term can make the decoding problem more difficult

example:

• for small examples, these penalties are easy to compute

• for CFG parsing, need to include extra states that maintain
tag bigrams (still faster than full intersection)



Tightening step-by-step

[Animation]

6. Advanced examples

aim: demonstrate some different relaxation techniques

• higher-order non-projective dependency parsing

• syntactic machine translation



Higher-order non-projective dependency parsing

setup: given a model for higher-order non-projective dependency
parsing (sibling features)

problem: find non-projective dependency parse that maximizes the
score of this model

difficulty:

• model is NP-hard to decode

• complexity of the model comes from enforcing combinatorial
constraints

strategy: design a decomposition that separates combinatorial
constraints from direct implementation of the scoring function

Non-projective dependency parsing
structure:

• starts at the root symbol *

• each word has a exactly one parent word

• produces a tree structure (no cycles)

• dependencies can cross

example:

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8



Arc-Factored

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head =∗0,mod =saw2) +score(saw2, John1)

+score(saw2,movie4) +score(saw2, today5)

+score(movie4, a3) + ...

e.g. score(∗0, saw2) = log p(saw2|∗0) (generative model)

or score(∗0, saw2) = w · φ(saw2, ∗0) (CRF/perceptron model)

y∗ = arg max
y

f (y) ⇐ Minimum Spanning Tree Algorithm

Sibling models

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

f (y) = score(head = ∗0, prev = NULL,mod = saw2)

+score(saw2,NULL, John1)+score(saw2,NULL,movie4)

+score(saw2,movie4, today5) + ...

e.g. score(saw2,movie4, today5) = log p(today5|saw2,movie4)

or score(saw2,movie4, today5) = w · φ(saw2,movie4, today5)

y∗ = arg max
y

f (y) ⇐ NP-Hard



Thought experiment: individual decoding

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

score(saw2,NULL, John1) + score(saw2,NULL,movie4)
+score(saw2,movie4, today5)

score(saw2,NULL, John1) + score(saw2,NULL, that6)

score(saw2,NULL, a3) + score(saw2, a3,he7)

2n−1

possibilities

under sibling model, can solve for each word with Viterbi decoding.

Thought experiment continued

*0 John1 saw2 a3 movie4 today5 that6 he7 liked8

idea: do individual decoding for each head word using dynamic
programming

if we’re lucky, we’ll end up with a valid final tree

but we might violate some constraints



Dual decomposition structure

goal:
y∗ = arg max

y∈Y
f (y)

rewrite:

arg max
y∈ Y z∈ Z,

f (y) + g(z)

such that for all i , j
y(i , j) = z(i , j)

Algorithm step-by-step

[Animation]



Syntactic translation decoding

setup: assume a trained model for syntactic machine translation

problem: find best derivation that maximizes the score of this
model

difficulty:

• need to incorporate language model in decoding

• empirically, relaxation is often not tight, so dual
decomposition does not always converge

strategy:

• use a different relaxation to handle language model

• incrementally add constraints to find exact solution

Syntactic translation example

[Animation]



Summary

presented dual decomposition as a method for decoding in NLP

formal guarantees

• gives certificate or approximate solution

• can improve approximate solutions by tightening relaxation

efficient algorithms

• uses fast combinatorial algorithms

• can improve speed with lazy decoding

widely applicable

• demonstrated algorithms for a wide range of NLP tasks
(parsing, tagging, alignment, mt decoding)

References I

J. DeNero and K. Macherey. Model-Based Aligner Combination
Using Dual Decomposition. In Proc. ACL, 2011.

D. Klein and C.D. Manning. Factored A* Search for Models over
Sequences and Trees. In Proc IJCAI, volume 18, pages
1246–1251. Citeseer, 2003.

N. Komodakis, N. Paragios, and G. Tziritas. Mrf energy
minimization and beyond via dual decomposition. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2010. ISSN 0162-8828.

Terry Koo, Alexander M. Rush, Michael Collins, Tommi Jaakkola,
and David Sontag. Dual decomposition for parsing with
non-projective head automata. In EMNLP, 2010. URL
http://www.aclweb.org/anthology/D10-1125.

B.H. Korte and J. Vygen. Combinatorial Optimization: Theory and
Algorithms. Springer Verlag, 2008.

http://www.aclweb.org/anthology/D10-1125


References II
C. Lemaréchal. Lagrangian Relaxation. In Computational

Combinatorial Optimization, Optimal or Provably Near-Optimal
Solutions [based on a Spring School], pages 112–156, London,
UK, 2001. Springer-Verlag. ISBN 3-540-42877-1.

Angelia Nedić and Asuman Ozdaglar. Approximate primal
solutions and rate analysis for dual subgradient methods. SIAM
Journal on Optimization, 19(4):1757–1780, 2009.

Christopher Raphael. Coarse-to-fine dynamic programming. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23:
1379–1390, 2001.

A.M. Rush and M. Collins. Exact Decoding of Syntactic
Translation Models through Lagrangian Relaxation. In Proc.
ACL, 2011.

A.M. Rush, D. Sontag, M. Collins, and T. Jaakkola. On Dual
Decomposition and Linear Programming Relaxations for Natural
Language Processing. In Proc. EMNLP, 2010.

References III

Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations
and convex hull characterizations for mixed-integer zero–one
programming problems. Discrete Applied Mathematics, 52(1):83
– 106, 1994.

D.A. Smith and J. Eisner. Dependency Parsing by Belief
Propagation. In Proc. EMNLP, pages 145–156, 2008. URL
http://www.aclweb.org/anthology/D08-1016.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss.
Tightening LP relaxations for MAP using message passing. In
Proc. UAI, 2008.

http://www.aclweb.org/anthology/D08-1016

	References

