
ACL HLT 2011

49th Annual Meeting of the
Association for Computational Linguistics:

Human Language Technologies

Proceedings of System Demonstrations

21 June 2011
Portland, Oregon, USA

Production and Manufacturing by
Omnipress, Inc.
2600 Anderson Street
Madison, WI 53704 USA

c©2011 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-932432-90-9

ii

Introduction

Welcome to the proceedings of the system demonstration session. This volume contains the papers of
the system demonstrations presented at the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, held in Portland, Oregon, USA, on June 21, 2011.

The system demonstrations program offers the presentation of early research prototypes as well as
interesting mature systems. The system demonstration chair and the members of the program committee
received 46 submissions, 24 of which were selected for inclusion in the program after review by two
members of the program committee.

I would like to thank the members of the program committee for their excellent job in reviewing the
submissions and providing their support for the final decision.

iii

Chair

Sadao Kurohashi (Kyoto Univeristy, Japan)

Program Committee:

Srinivas Bangalore (AT&T Labs Research, USA)
Tilman Becker (DFKI, Germany)
Pushpak Bhattacharyya (IIT, India)
Francis Bond (Nanyang Technological University, Singapore)
Josef van Genabith (Dublin City University, Ireland)
Kristiina Jokinen (University of Helsinki, Finland)
Tatsuya Kawahara (Kyoto University, Japan)
Adam Kilgarriff (Lexical Computing Ltd., UK)
Gary Geunbae Lee (POSTECH, Korea)
Qun Liu (Chinese Academy of Sciences, China)
Roberto Navigli (University of Roma, Italy)
Hoifung Poon (University of Washington, USA)
Kenji Sagae (University of Southern California, USA)
Satoshi Sekine (New York University, USA)
Takenobu Tokunaga (Titech, Japan)
Kentaro Torisawa (NICT, Japan)
Takehito Utsuro (University of Tsukuba, Japan)
Yeyi Wang (Microsoft, USA)
Jason Williams (AT&T Labs Research, USA)
Dekai Wu (HKUST, Hong Kong)
Xiaoyan Zhu (Tsinghua University, China)
Udo Hahn (Jena University, Germany)

Additional Reviewer:

Daisuke Kawahara (Kyoto University, Japan)

v

Table of Contents

Hindi to Punjabi Machine Translation System
Vishal Goyal and Gurpreet Singh Lehal . 1

The ACL Anthology Searchbench
Ulrich Schäfer, Bernd Kiefer, Christian Spurk, Jörg Steffen and Rui Wang . 7

Exploiting Readymades in Linguistic Creativity: A System Demonstration of the Jigsaw Bard
Tony Veale and Yanfen Hao . 14

A Mobile Touchable Application for Online Topic Graph Extraction and Exploration of Web Content
Günter Neumann and Sven Schmeier . 20

EdIt: A Broad-Coverage Grammar Checker Using Pattern Grammar
Chung-chi Huang, Mei-hua Chen, Shih-ting Huang and Jason S. Chang . 26

MemeTube: A Sentiment-based Audiovisual System for Analyzing and Displaying Microblog Messages
Cheng-Te Li, Chien-Yuan Wang, Chien-Lin Tseng and Shou-De Lin . 32

An ERP-based Brain-Computer Interface for text entry using Rapid Serial Visual Presentation and
Language Modeling

Kenneth Hild, Umut Orhan, Deniz Erdogmus, Brian Roark, Barry Oken, Shalini Purwar, Hooman
Nezamfar and Melanie Fried-Oken . 38

Engkoo: Mining the Web for Language Learning
Matthew R. Scott, Xiaohua Liu, Ming Zhou and Microsoft Engkoo Team 44

Dr Sentiment Knows Everything!
Amitava Das and Sivaji Bandyopadhyay . 50

Blast: A Tool for Error Analysis of Machine Translation Output
Sara Stymne . 56

Prototyping virtual instructors from human-human corpora
Luciana Benotti and Alexandre Denis .62

An Interactive Machine Translation System with Online Learning
Daniel Ortiz-Martı́nez, Luis A. Leiva, Vicent Alabau, Ismael Garcı́a-Varea and Francisco Casacu-

berta . 68

Wikulu: An Extensible Architecture for Integrating Natural Language Processing Techniques with Wikis
Daniel Bär, Nicolai Erbs, Torsten Zesch and Iryna Gurevych . 74

A Speech-based Just-in-Time Retrieval System using Semantic Search
Andrei Popescu-Belis, Majid Yazdani, Alexandre Nanchen and Philip N. Garner 80

vii

MACAON An NLP Tool Suite for Processing Word Lattices
Alexis Nasr, Frederic Bechet, Jean-Francois Rey, Benoit Favre and Joseph Le Roux 86

Multimodal Menu-based Dialogue with Speech Cursor in DICO II+
Staffan Larsson, Alexander Berman and Jessica Villing . 92

Wikipedia Revision Toolkit: Efficiently Accessing Wikipedia’s Edit History
Oliver Ferschke, Torsten Zesch and Iryna Gurevych . 97

An Efficient Indexer for Large N-Gram Corpora
Hakan Ceylan and Rada Mihalcea . 103

SystemT: A Declarative Information Extraction System
Yunyao Li, Frederick Reiss and Laura Chiticariu . 109

SciSumm: A Multi-Document Summarization System for Scientific Articles
Nitin Agarwal, Ravi Shankar Reddy, Kiran GVR and Carolyn Penstein Rosé 115

Clairlib: A Toolkit for Natural Language Processing, Information Retrieval, and Network Analysis
Amjad Abu-Jbara and Dragomir Radev . 121

C-Feel-It: A Sentiment Analyzer for Micro-blogs
Aditya Joshi, Balamurali AR, Pushpak Bhattacharyya and Rajat Mohanty 127

IMASS: An Intelligent Microblog Analysis and Summarization System
Jui-Yu Weng, Cheng-Lun Yang, Bo-Nian Chen, Yen-Kai Wang and Shou-De Lin 133

An Interface for Rapid Natural Language Processing Development in UIMA
Balaji Soundrarajan, Thomas Ginter and Scott DuVall . 139

viii

ix

Conference Program

Tuesday, June 21, 2011

10:30–1:00 Hindi to Punjabi Machine Translation System
Vishal Goyal and Gurpreet Singh Lehal

10:30–1:00 The ACL Anthology Searchbench
Ulrich Schäfer, Bernd Kiefer, Christian Spurk, Jörg Steffen and Rui Wang

10:30–1:00 Exploiting Readymades in Linguistic Creativity: A System Demonstration of the
Jigsaw Bard
Tony Veale and Yanfen Hao

10:30–1:00 A Mobile Touchable Application for Online Topic Graph Extraction and Explo-
ration of Web Content
Günter Neumann and Sven Schmeier

10:30–1:00 EdIt: A Broad-Coverage Grammar Checker Using Pattern Grammar
Chung-chi Huang, Mei-hua Chen, Shih-ting Huang and Jason S. Chang

10:30–1:00 MemeTube: A Sentiment-based Audiovisual System for Analyzing and Displaying
Microblog Messages
Cheng-Te Li, Chien-Yuan Wang, Chien-Lin Tseng and Shou-De Lin

10:30–1:00 An ERP-based Brain-Computer Interface for text entry using Rapid Serial Visual
Presentation and Language Modeling
Kenneth Hild, Umut Orhan, Deniz Erdogmus, Brian Roark, Barry Oken, Shalini
Purwar, Hooman Nezamfar and Melanie Fried-Oken

10:30–1:00 Engkoo: Mining the Web for Language Learning
Matthew R. Scott, Xiaohua Liu, Ming Zhou and Microsoft Engkoo Team

10:30–1:00 Dr Sentiment Knows Everything!
Amitava Das and Sivaji Bandyopadhyay

10:30–1:00 Blast: A Tool for Error Analysis of Machine Translation Output
Sara Stymne

10:30–1:00 Prototyping virtual instructors from human-human corpora
Luciana Benotti and Alexandre Denis

10:30–1:00 An Interactive Machine Translation System with Online Learning
Daniel Ortiz-Martı́nez, Luis A. Leiva, Vicent Alabau, Ismael Garcı́a-Varea and
Francisco Casacuberta

x

Tuesday, June 21, 2011 (continued)

1:30–4:00 Wikulu: An Extensible Architecture for Integrating Natural Language Processing Tech-
niques with Wikis
Daniel Bär, Nicolai Erbs, Torsten Zesch and Iryna Gurevych

1:30–4:00 A Speech-based Just-in-Time Retrieval System using Semantic Search
Andrei Popescu-Belis, Majid Yazdani, Alexandre Nanchen and Philip N. Garner

1:30–4:00 MACAON An NLP Tool Suite for Processing Word Lattices
Alexis Nasr, Frederic Bechet, Jean-Francois Rey, Benoit Favre and Joseph Le Roux

1:30–4:00 Multimodal Menu-based Dialogue with Speech Cursor in DICO II+
Staffan Larsson, Alexander Berman and Jessica Villing

1:30–4:00 Wikipedia Revision Toolkit: Efficiently Accessing Wikipedia’s Edit History
Oliver Ferschke, Torsten Zesch and Iryna Gurevych

1:30–4:00 An Efficient Indexer for Large N-Gram Corpora
Hakan Ceylan and Rada Mihalcea

1:30–4:00 SystemT: A Declarative Information Extraction System
Yunyao Li, Frederick Reiss and Laura Chiticariu

1:30–4:00 SciSumm: A Multi-Document Summarization System for Scientific Articles
Nitin Agarwal, Ravi Shankar Reddy, Kiran GVR and Carolyn Penstein Rosé

1:30–4:00 Clairlib: A Toolkit for Natural Language Processing, Information Retrieval, and Network
Analysis
Amjad Abu-Jbara and Dragomir Radev

1:30–4:00 C-Feel-It: A Sentiment Analyzer for Micro-blogs
Aditya Joshi, Balamurali AR, Pushpak Bhattacharyya and Rajat Mohanty

1:30–4:00 IMASS: An Intelligent Microblog Analysis and Summarization System
Jui-Yu Weng, Cheng-Lun Yang, Bo-Nian Chen, Yen-Kai Wang and Shou-De Lin

1:30–4:00 An Interface for Rapid Natural Language Processing Development in UIMA
Balaji Soundrarajan, Thomas Ginter and Scott DuVall

xi

Tuesday, June 21, 2011 (continued)

xii

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 1–6,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

HINDI TO PUNJABI MACHINE TRANSLATION
SYSTEM

Vishal Goyal Gurpreet Singh Lehal

Department of Computer Science Department of Computer Science
Punjabi University, Patiala,India Punjabi University, Patiala,India
vishal.pup@gmail.com gslehal@gmail.com

Abstract

Hindi-Punjabi being closely related language
pair (Goyal V. and Lehal G.S., 2008) , Hybrid
Machine Translation approach has been used
for developing Hindi to Punjabi Machine
Translation System. Non-availability of lexical
resources, spelling variations in the source
language text, source text ambiguous words,
named entity recognition and collocations are
the major challenges faced while developing
this syetm. The key activities involved during
translation process are preprocessing,
translation engine and post processing. Lookup
algorithms, pattern matching algorithms etc
formed the basis for solving these issues. The
system accuracy has been evaluated using
intelligibility test, accuracy test and BLEU
score. The hybrid syatem is found to perform
better than the constituent systems.

Keywords: Machine Translation, Computational
Linguistics, Natural Language Processing, Hindi,
Punjabi. Translate Hindi to Punjabi, Closely
related languages.

1 Introduction

Machine Translation system is a software
designed that essentially takes a text in one
language (called the source language), and
translates it into another language (called the
target language). There are number of
approaches for MT like Direct based,
Transform based, Interlingua based, Statistical
etc. But the choice of approach depends upon
the available resources and the kind of
languages involved. In general, if the two
languages are structurally similar, in particular
as regards lexical correspondences,
morphology and word order, the case for
abstract syntactic analysis seems less
convincing. Since the present research work
deals with a pair of closely related language

i.e. Hindi-Punjabi , thus direct word-to-word
translation approach is the obvious choice. As
some rule based approach has also been used,
thus, Hybrid approach has been adopted for
developing the system. An exhaustive survey
has already been given for existing machine
translations systems developed so far
mentioning their accuracies and limitations.
(Goyal V. and Lehal G.S., 2009).

2 System Architecture

2.1 Pre Processing Phase
The preprocessing stage is a collection of
operations that are applied on input data to
make it processable by the translation engine.
In the first phase of Machine Translation
system, various activities incorporated include
text normalization, replacing collocations and
replacing proper nouns.
2.2 Text Normalization
The variety in the alphabet, different dialects
and influence of foreign languages has resulted
in spelling variations of the same word. Such
variations sometimes can be treated as errors in
writing. (Goyal V. and Lehal G.S., 2010).
2.3 Replacing Collocations
After passing the input text through text
normalization, the text passes through this
Collocation replacement sub phase of Pre-
processing phase. Collocation is two or more
consecutive words with a special behavior.
(Choueka :1988). For example, the collocation
उᱫर ᮧदशे (uttar pradēsh) if translated word to
word, will be translated as ਜਵਾਬ ਰਾਜ (javāb rāj)
but it must be translated as ਉ᷀ਤਰ ਪᴆਦੇਸ਼ (uttar
pradēsh). The accuracy of the results for
collocation extraction using t-test is not
accurate and includes number of such bigrams
and trigrams that are not actually collocations.
Thus, manually such entries were removed and
actual collocations were further extracted. The

1

P
o

st P
ro

cessin
g

T

ran
slatio

n
 E

n
g

in
e

P
re P

ro
cessin

g

1. Identifying Surnames
2. Identifying Titles
3. Hindi Morph Analyzer
4. Lexicon Lookup
5. Ambiguity Resolution
6. Handling Unkown Words

Text Normalization

Replacing Proper Nouns

Replacing Collocations

 Agreement

Tokenizer

Token Analyzer

Punjabi Text

correct corresponding Punjabi translation for
each extracted collocation is stored in the
collocation table of the database. The
collocation table of the database consists of
5000 such entries. In this sub phase, the
normalized input text is analyzed. Each
collocation in the database found in the input

text will be replaced with the Punjabi
translation of the corresponding collocation. It
is found that when tested on a corpus
containing about 1,00,000 words, only 0.001%
collocations were found and replaced during
the translation.

Hindi Text

Figure 1 : Overview of Hindi-Punjabi Machine Translation System

2.4 Replacing Proper Nouns
A great proposition of unseen words includes
proper nouns like personal, days of month,
days of week, country names, city names, bank
names, organization names, ocean names, river
names, university names etc. and if translated
word to word, their meaning is changed. If the
meaning is not affected, even though this step

fastens the translation process. Once these
words are recognized and stored into the
proper noun database, there is no need to
decide about their translation or transliteration
every time in the case of presence of such
words in input text for translation. This
gazetteer makes the translation accurate and
fast. This list is self growing during each

Collocations database

Proper Nouns database
Proper Noun

recognition Rules

Surnames database
Surnanes recognition

Rules

Titles database Titles recognition
Rules

Hindi Morphological
Rules

Hindi-Punjabi Root Words

Bigrams and Trigrams

Ambiguos Words
Transliteration Rules

Transliteration Mappings

Text Normalization Rules

Agreement Rules

2

translation. Thus, to process this sub phase, the
system requires a proper noun gazetteer that
has been complied offline. For this task, we
have developed an offline module to extract
proper nouns from the corpus based on some
rules. Also, Named Entity recognition module
has been developed based on the CRF
approach (Sharma R. and Goyal V., 2011b).

2.5 Tokenizer

Tokenizers (also known as lexical analyzers or
word segmenters) segment a stream of
characters into meaningful units called tokens.
The tokenizer takes the text generated by pre
processing phase as input. Individual words or
tokens are extracted and processed to generate
its equivalent in the target language. This
module, using space, a punctuation mark, as
delimiter, extracts tokens (word) one by one
from the text and gives it to translation engine
for analysis till the complete input text is read
and processed.

2.6 Translation Engine
The translation engine is the main component
of our Machine Translation system. It takes
token generated by the tokenizer as input and
outputs the translated token in the target
language. These translated tokens are
concatenated one after another along with the
delimiter. Modules included in this phase are
explained below one by one.

2.6.1 Identifying Titles and Surnames

Title may be defined as a formal appellation
attached to the name of a person or family by
virtue of office, rank, hereditary privilege,
noble birth, or attainment or used as a mark of
respect. Thus word next to title and word
previous to surname is usually a proper noun.
And sometimes, a word used as proper name
of a person has its own meaning in target
language. Similarly, Surname may be defined
as a name shared in common to identify the
members of a family, as distinguished from
each member's given name. It is also called
family name or last name. When either title or
surname is passed through the translation
engine, it is translated by the system. This
cause the system failure as these proper names
should be transliterated instead of translation.
For example consider the Hindi sentence

᮰ीमान हषᭅ जी हमारे यहाँ पधारे। (shrīmān harsh jī
hamārē yahāṃ padhārē). In this sentence, हषᭅ
(harsh) has the meaning “joy”. The equivalent
translation of हषᭅ (harsh) in target language is
ਖੁਸ਼ੀ (khushī). Similarly, consider the Hindi
sentence ᮧकाश ᳲसह हमारे यहाँ पधारे।. (prakāsh
siṃh hamārē yahāṃ padhārē). Here, ᮧकाश
(prakāsh) word is acting as proper noun and it
must be transliterated and not translated
because ᳲसह (siṃh) is surname and word
previous to it is proper noun.
Thus, a small module has been developed for
locating such proper nouns to consider them as
title or surname. There is one special character
‘॰’ in Devanagari script to mark the symbols
like डा॰, ᮧो॰. If this module found this symbol
to be title or surname, the word next and
previous to this token as the case may be for
title or surname respectively, will be
transliterated not translated. The title and
surname database consists of 14 and 654
entries respectively. These databases can be
extended at any time to allow new titles and
surnames to be added. This module was tested
on a large Hindi corpus and showed that about
2-5 % text of the input text depending upon its
domain is proper noun. Thus, this module
plays an important role in translation.

2.6.2 Hindi Morphological analyzer

This module finds the root word for the token
and its morphological features.Morphological
analyzer developed by IIT-H has been ported
for Windows platform for making it usable for
this system. (Goyal V. and Lehal G.S.,2008a)

2.6.3 Word-to-Word translation using
lexicon lookup

If token is not a title or a surname, it is looked
up in the HPDictionary database containing
Hindi to Punjabi direct word to word
translation. If it is found, it is used for
translation. If no entry is found in
HPDictionary database, it is sent to next sub
phase for processing. The HPDictionary
database consists of 54,127 entries.This
database can be extended at any time to allow
new entries in the dictionary to be added.

2.6.4 Resolving Ambiguity

3

Among number of approaches for
disambiguation, the most appropriate approach
to determine the correct meaning of a Hindi
word in a particular usage for our Machine
Translation system is to examine its context
using N-gram approach. After analyzing the
past experiences of various authors, we have
chosen the value of n to be 3 and 2 i.e. trigram
and bigram approaches respectively for our
system. Trigrams are further categorized into
three different types. First category of trigram
consists of context one word previous to and
one word next to the ambiguous word. Second
category of trigram consists of context of two
adjacent previous words to the ambiguous
word. Third category of the trigram consists of
context of two adjacent next words to the
ambiguous word. Bigrams are also categorized
into two categories. First category of the
bigrams consists of context of one previous
word to ambiguous word and second category
of the bigrams consists of one context word
next to ambiguous word. For this purpose, the
Hindi corpus consisting of about 2 million
words was collected from different sources
like online newspaper daily news, blogs, Prem
Chand stories, Yashwant jain stories, articles
etc. The most common list of ambiguous
words was found. We have found a list of 75
ambiguous words out of which the most
frequent are से sē and और aur. (Goyal V. and
Lehal G.S., 2011)

2.6.5 Handling Unknown Words

2.6.5.1 Word Inflectional Analysis and
generation
In linguistics, a suffix (also sometimes called a
postfix or ending) is an affix which is placed
after the stem of a word. Common examples
are case endings, which indicate the
grammatical case of nouns or adjectives, and
verb endings. Hindi is a (relatively) free word-
order and highly inflectional language.
Because of same origin, both languages have
very similar structure and grammar. The
difference is only in words and in
pronunciation e.g. in Hindi it is लड़का and in
Punjabi the word for boy is ਮੰੁਡਾ and even
sometimes that is also not there like घर (ghar)
and ਘਰ (ghar). The inflection forms of both
these words in Hindi and Punjabi are also
similar. In this activity, inflectional analysis
without using morphology has been performed

for all those tokens that are not processed by
morphological analysis module. Thus, for
performing inflectional analysis, rule based
approach has been followed. When the token is
passed to this sub phase for inflectional
analysis, If any pattern of the regular
expression (inflection rule) matches with this
token, that rule is applied on the token and its
equivalent translation in Punjabi is generated
based on the matched rule(s). There is also a
check on the generated word for its
correctness. We are using correct Punjabi
words database for testing the correctness of
the generated word.

2.6.5.2 Transliteration

This module is beneficial for handling out-of-
vocabulary words. For example the word
िवशाल (vishāl) is transliterated as ਿਵਸ਼ਾਲ
(vishāl) whereas translated as ਵੱਡਾ. There must
be some method in every Machine Translation
system for words like technical terms and
proper names of persons, places, objects etc.
that cannot be found in translation resources
such as Hindi-Punjabi bilingual dictionary,
surnames database, titles database etc and
transliteration is an obvious choice for such
words. (Goyal V. and Lehal G.S., 2009a).

2.7 Post-Processing

2.7.1 Agreement Corrections
In spite of the great similarity between Hindi
and Punjabi, there are still a number of
important agreement divergences in gender
and number. The output generated by the
translation engine phase becomes the input for
post-processing phase. This phase will correct
the agreement errors based on the rules
implemented in the form of regular
expressions. (Goyal V. and Lehal G.S., 2011)

3 Evaluation and Results
The evaluation document set consisted of
documents from various online newspapers
news, articles, blogs, biographies etc. This test
bed consisted of 35500 words and was
translated using our Machine Translation
system.

3.1 Test Document

4

For our Machine Translation system
evaluation, we have used benchmark sampling
method for selecting the set of sentences. Input
sentences are selected from randomly selected
news (sports, politics, world, regional,
entertainment, travel etc.), articles (published
by various writers, philosophers etc.), literature
(stories by Prem Chand, Yashwant jain etc.),
Official language for office letters (The
Language Officially used on the files in
Government offices) and blogs (Posted by
general public in forums etc.). Care has been
taken to ensure that sentences use a variety of
constructs. All possible constructs including
simple as well as complex ones are
incorporated in the set. The sentence set also
contains all types of sentences such as
declarative, interrogative, imperative and
exclamatory. Sentence length is not restricted
although care has been taken that single
sentences do not become too long. Following
table shows the test data set:

Table 1: Test data set for the evaluation of

Hindi to Punjabi Machine Translation
System

 Daily
News

Articles

Official
Language
Quotes

Blog

Literature

Total
Documents

100 50 01 50 20

Total
Sentences

10,000 3,500 8,595 3,300 10,045

Total
Words

93,400 21,674 36,431 15,650 95,580

3.2 Experiments
It is also important to choose appropriate
evaluators for our experiments. Thus,
depending upon the requirements and need of
the above mentioned tests, 50 People of
different professions were selected for
performing experiments. 20 Persons were from
villages that only knew Punjabi and did not
know Hindi and 30 persons were from
different professions having knowledge of both
Hindi and Punjabi. Average ratings for the
sentences of the individual translations were
then summed up (separately according to
intelligibility and accuracy) to get the average
scores. Percentage of accurate sentences and
intelligent sentences was also calculated
separately by counting the number of
sentences.

3.2.1 Intelligibility Evaluation

The evaluators do not have any clue about the
source language i.e. Hindi. They judge each
sentence (in target language i.e. Punjabi) on
the basis of its comprehensibility. The target
user is a layman who is interested only in the
comprehensibility of translations. Intelligibility
is effected by grammatical errors, mis-
translations, and un-translated words.

3.2.1.1 Results
The response by the evaluators were analysed
and following are the results:
• 70.3 % sentences got the score 3 i.e. they

were perfectly clear and intelligible.
• 25.1 % sentences got the score 2 i.e. they

were generally clear and intelligible.
• 3.5 % sentences got the score 1 i.e. they were

hard to understand.
• 1.1 % sentences got the score 0 i.e. they were

not understandable.
So we can say that about 95.40 % sentences
are intelligible. These sentences are those
which have score 2 or above. Thus, we can say
that the direct approach can translate Hindi text
to Punjabi Text with a consideably good
accuracy.

3.2.2 Accuracy Evaluation / Fidelity
Measure
The evaluators are provided with source text
along with translated text. A highly intelligible
output sentence need not be a correct
translation of the source sentence. It is
important to check whether the meaning of the
source language sentence is preserved in the
translation. This property is called accuracy.

3.2.2.1 Results
Initially Null Hypothesis is assumed i.e. the
system’s performance is NULL. The author
assumes that system is dumb and does not
produce any valuable output. By the
intelligibility of the analysis and Accuracy
analysis, it has been proved wrong.
The accuracy percentage for the system is
found out to be 87.60%
Further investigations reveal that out of
13.40%:

• 80.6 % sentences achieve a match
between 50 to 99%

• 17.2 % of remaining sentences were
marked with less than 50% match
against the correct sentences.

5

• Only 2.2 % sentences are those which
are found unfaithful.

A match of lower 50% does not mean that the
sentences are not usable. After some post
editing, they can fit properly in the translated
text. (Goyal, V., Lehal, G.S., 2009b)

3.2.2 BLEU Score:
As there is no Hindi –Parallel Corpus was
available, thus for testing the system
automatically, we generated Hindi-Parallel
Corpus of about 10K Sentences. The BLEU
score comes out to be 0.7801.

5 Conclusion
In this paper, a hybrid translation approach
for translating the text from Hindi to
Punjabi has been presented. The proposed
architecture has shown extremely good
results and if found to be appropriate for
MT systems between closely related
language pairs.

Copyright
The developed system has already been
copyrighted with The Registrar, Punjabi University,
Patiala with authors same as the authors of the
publication.

Acknowlegement
We are thankful to Dr. Amba Kulkarni, University
of Hyderabad for her support in providing technical
assistance for developing this system.

References
Bharati, Akshar, Chaitanya, Vineet, Kulkarni,
Amba P., Sangal, Rajeev. 1997. Anusaaraka:
Machine Translation in stages. Vivek, A Quarterly
in Artificial Intelligence, Vol. 10, No. 3. ,NCST,
Banglore. India, pp. 22-25.

Goyal V., Lehal G.S. 2008. Comparative Study of
Hindi and Punjabi Language Scripts, Napalese
Linguistics, Journal of the Linguistics Society of
Nepal, Volume 23, November Issue, pp 67-82.
Goyal V., Lehal, G. S. 2008a. Hindi Morphological
Analyzer and Generator. In Proc.: 1st International
Conference on Emerging Trends in Engineering
and Technology, Nagpur, G.H.Raisoni College of
Engineering, Nagpur, July16-19, 2008, pp. 1156-
1159, IEEE Computer Society Press, California,
USA.
Goyal V., Lehal G.S. 2009. Advances in Machine
Translation Systems, Language In India, Volume 9,
November Issue, pp. 138-150.
Goyal V., Lehal G.S. 2009a. A Machine
Transliteration System for Machine Translation
System: An Application on Hindi-Punjabi
Language Pair. Atti Della Fondazione Giorgio
Ronchi (Italy), Volume LXIV, No. 1, pp. 27-35.
Goyal V., Lehal G.S. 2009b. Evaluation of Hindi to
Punjabi Machine Translation System. International
Journal of Computer Science Issues, France, Vol. 4,
No. 1, pp. 36-39.
Goyal V., Lehal G.S. 2010. Automatic Spelling
Standardization for Hindi Text. In : 1st International
Conference on Computer & Communication
Technology, Moti Lal Nehru National Institute of
technology, Allhabad, Sepetember 17-19, 2010, pp.
764-767, IEEE Computer Society Press, California.
Goyal V., Lehal G.S. 2011. N-Grams Based Word
Sense Disambiguation: A Case Study of Hindi to
Punjabi Machine Translation System. International
Journal of Translation. (Accepted, In Print).
Goyal V., Lehal G.S. 2011a. Hindi to Punjabi
Machine Translation System. In Proc.: International
Conference for Information Systems for Indian
Languages, Department of Computer Science,
Punjabi University, Patiala, March 9-11, 2011, pp.
236-241, Springer CCIS 139, Germany.
Sharma R., Goyal V. 2011b. Named Entity
Recognition Systems for Hindi using CRF
Approach. In Proc.: International Conference for
Information Systems for Indian Languages,
Department of Computer Science, Punjabi
University, Patiala, March 9-11, 2011, pp. 31-35,
Springer CCIS 139, Germany.

6

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 7–13,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

The ACL Anthology Searchbench

Ulrich Schäfer Bernd Kiefer Christian Spurk Jörg Steffen Rui Wang
Language Technology Lab

German Research Center for Artificial Intelligence (DFKI)
D-66123 Saarbrücken, Germany

{ulrich.schaefer,kiefer,cspurk,steffen,wang.rui}@dfki.de
http://www.dfki.de/lt

Abstract

We describe a novel application for structured
search in scientific digital libraries. The ACL
Anthology Searchbench is meant to become a
publicly available research tool to query the
content of the ACL Anthology. The applica-
tion provides search in both its bibliographic
metadata and semantically analyzed full tex-
tual content. By combining these two features,
very efficient and focused queries are possi-
ble. At the same time, the application serves
as a showcase for the recent progress in nat-
ural language processing (NLP) research and
language technology. The system currently
indexes the textual content of 7,500 anthol-
ogy papers from 2002–2009 with predicate-
argument-like semantic structures. It also
provides useful search filters based on bib-
liographic metadata. It will be extended to
provide the full anthology content and en-
hanced functionality based on further NLP
techniques.

1 Introduction and Motivation

Scientists in all disciplines nowadays are faced with
a flood of new publications every day. In addi-
tion, more and more publications from the past be-
come digitally available and thus even increase the
amount. Finding relevant information and avoiding
duplication of work have become urgent issues to be
addressed by the scientific community.

The organization and preservation of scientific
knowledge in scientific publications, vulgo text doc-
uments, thwarts these efforts. From a viewpoint of

a computer scientist, scientific papers are just ‘un-
structured information’. At least in our own sci-
entific community, Computational Linguistics, it is
generally assumed that NLP could help to support
search in such document collections.

The ACL Anthology1 is a comprehensive elec-
tronic collection of scientific papers in our own field
(Bird et al., 2008). It is updated regularly with
new publications, but also older papers have been
scanned and are made available electronically.

We have implemented the ACL Anthology
Searchbench2 for two reasons: Our first aim is to
provide a more targeted search facility in this col-
lection than standard web search on the anthology
website. In this sense, the Searchbench is meant to
become a service to our own community.

Our second motivation is to use the developed
system as a showcase for the progress that has been
made over the last years in precision-oriented deep
linguistic parsing in terms of both efficiency and
coverage, specifically in the context of the DELPH-
IN community3. Our system also uses further NLP
techniques such as unsupervised term extraction,
named entity recognition and part-of-speech (PoS)
tagging.

By automatically precomputing normalized se-
mantic representations (predicate-argument struc-
ture) of each sentence in the anthology, the search
space is structured and allows to find equivalent or
related predicates even if they are expressed differ-

1http://www.aclweb.org/anthology
2http://aclasb.dfki.de
3http://www.delph-in.net – DELPH-IN stands for

DEep Linguistic Processing with HPSG INitiative.

7

ently, e.g. in passive constructions, using synonyms,
etc. By storing the semantic sentence structure along
with the original text in a structured full-text search
engine, it can be guaranteed that recall cannot fall
behind the baseline of a fulltext search.

In addition, the Searchbench also provides de-
tailed bibliographic metadata for filtering as well as
autosuggest texts for input fields computed from the
corpus – two further key features one can expect
from such systems today, nevertheless very impor-
tant for efficient search in digital libraries.

We describe the offline preprocessing and deep
parsing approach in Section 2. Section 3 concen-
trates on the generation of the semantic search in-
dex. In Section 4, we describe the search interface.
We conclude in Section 5 and present an outlook to
future extensions.

2 Parsing the ACL Anthology

The basis of the search index for the ACL Anthol-
ogy are its original PDF documents, currently 8,200
from the years 2002 through 2009. To overcome
quality problems in text extraction from PDF, we
use a commercial PDF extractor based on OCR tech-
niques. This approach guarantees uniform and high-
quality textual representations even from older pa-
pers in the anthology (before 2000) which mostly
were scanned from printed paper versions.

The general idea of the semantics-oriented ac-
cess to scholarly paper content is to parse each sen-
tence they contain with the open-source HPSG (Pol-
lard and Sag, 1994) grammar for English (ERG;
Flickinger (2002)) and then distill and index seman-
tically structured representations for search.

To make the deep parser robust, it is embedded
in a NLP workflow. The coverage (percentage of
full deeply parsed sentences) on the anthology cor-
pus could be increased from 65 % to now more
than 85 % through careful combination of several
robustness techniques; for example: (1) chart prun-
ing, directed search during parsing to increase per-
formance, and also coverage for longer sentences
(Cramer and Zhang, 2010); (2) chart mapping, a
novel method for integrating preprocessing informa-
tion in exactly the way the deep grammar expects
it (Adolphs et al., 2008); (3) new version of the
ERG with better handling of open word classes; (4)

more fine-grained named entity recognition, includ-
ing recognition of citation patterns; (5) new, better
suited parse ranking model (WeScience; Flickinger
et al. (2010)). Because of limited space, we will fo-
cus on (1) and (2) below. A more detailed descrip-
tion and further results are available in (Schäfer and
Kiefer, 2011).

Except for a small part of the named entity recog-
nition components (citations, some terminology)
and the parse ranking model, there are no further
adaptations to genre or domain of the text corpus.
This implies that the NLP workflow could be easily
and modularly adapted to other (scientific or non-
scientific) domains—mainly thanks to the generic
and comprehensive language modelling in the ERG.

The NLP preprocessing component workflow is
implemented using the Heart of Gold NLP mid-
dleware architecture (Schäfer, 2006). It starts
with sentence boundary detection (SBR) and regu-
lar expression-based tokenization using its built-in
component JTok, followed by the trigram-based PoS
tagger TnT (Brants, 2000) trained on the Penn Tree-
bank (Marcus et al., 1993) and the named entity rec-
ognizer SProUT (Drożdżyński et al., 2004).

2.1 Precise Preprocessing Integration with
Chart Mapping

Tagger output is combined with information from
the named entity recognizer, e.g. delivering hypo-
thetical information on citation expressions. The
combined result is delivered as input to the deep
parser PET (Callmeier, 2000) running the ERG.
Here, citations, for example, can be treated as either
persons, locations or appositions.

Concerning punctuation, the ERG can make use
of information on opening and closing quotation
marks. Such information is often not explicit in the
input text, e.g. when, as in our setup, gained through
OCR which does not distinguish between ‘ and ’ or “
and ”. However, a tokenizer can often guess (recon-
struct) leftness and rightness correctly. This infor-
mation, passed to the deep parser via chart mapping,
helps it to disambiguate.

2.2 Increased Processing Speed and Coverage
through Chart Pruning

In addition to a well-established discriminative max-
imum entropy model for post-analysis parse selec-

8

tion, we use an additional generative model as de-
scribed in Cramer and Zhang (2010) to restrict the
search space during parsing. This restriction in-
creases efficiency, but also coverage, because the
parse time was restricted to at most 60 CPU seconds
on a standard PC, and more sentences could now be
parsed within these bounds. A 4 GB limit for main
memory consumption was far beyond what was ever
needed. We saw a small but negligible decrease in
parsing accuracy, 5.4 % best parses were not found
due to the pruning of important chart edges.

Ninomiya et al. (2006) did a very thorough com-
parison of different performance optimization strate-
gies, and among those also a local pruning strategy
similar to the one used here. There is an important
difference between the systems, in that theirs works
on a reduced context-free backbone first and recon-
structs the results with the full grammar, while PET
uses the HPSG grammar directly, with subsumption
packing and partial unpacking to achieve a similar
effect as the packed chart of a context-free parser.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

sentences x 1000
mean parse time (CPU s)

sentence length −→

Figure 1: Distribution of sentence length and mean parse
times for mild pruning

In total, we parsed 1,537,801 sentences, of which
57,832 (3.8 %) could not be parsed because of lexi-
con errors. Most of them were caused by OCR ar-
tifacts resulting in unexpected punctuation character
combinations. These can be identified and will be
deleted in the future.

Figure 1 displays the average parse time of pro-
cessing with a mild chart pruning setting, together
with the mean quadratic error. In addition, it con-
tains the distribution of input sentences over sen-
tence length. Obviously, the vast majority of sen-

tences has a length of at most 60 words4. The parse
times only grow mildly due to the many optimiza-
tion techniques in the original system, and also the
new chart pruning method. The sentence length dis-
tribution has been integrated into Figure 1 to show
that the predominant part of our real-world corpus
can be processed using this information-rich method
with very low parse times (overall average parse
time < 2 s per sentence).

The large amount of short inputs is at first surpris-
ing, even more so that most of these inputs can not
be parsed. Most of these inputs are non-sentences
such as headings, enumerations, footnotes, table cell
content. There are several alternatives to deal with
such input, one to identify and handle them in a pre-
processing step, another to use a special root con-
dition in the deep analysis component that is able
to combine phrases with well-defined properties for
inputs where no spanning result could be found.

We employed the second method, which has the
advantage that it handles a larger range of phenom-
ena in a homogeneous way. Figure 2 shows the
change in percentage of unparsed and timed out in-
puts for the mild pruning method with and without
the root condition combining fragments.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

strict
strict timeout

strict+fragments
strict+fragments timeout

sentence length −→

Figure 2: Unparsed and timed out sentences with and
without fragment combination

Figure 2 shows that this changes the curve for un-
parsed sentences towards more expected character-
istics and removes the uncommonly high percent-
age of short sentences for which no parse can be
computed. Together with the parses for fragmented

4It has to be pointed out that extremely long sentences also
may be non-sentences resulting from PDF extraction errors,
missing punctuation etc. No manual correction took place.

9

Figure 3: Multiple semantic tuples may be generated for a sentence

input, we get a recall (sentences with at least one
parse) over the whole corpus of 85.9 % (1,321,336
sentences), without a significant change for any of
the other measures, and with potential for further im-
provement.

3 Semantic Tuple Extraction with DMRS

In contrast to shallow parsers, the ERG not only
handles detailed syntactic analyses of phrases, com-
pounds, coordination, negation and other linguistic
phenomena that are important for extracting seman-
tic relations, but also generates a formal semantic
representation of the meaning of the input sentence
in the Minimal Recursion Semantics (MRS) repre-
sentation format (Copestake et al., 2005). It consists
of elementary predications for each word and larger
constituents, connected via argument positions and
variables, from which predicate-argument structure
can be extracted.

MRS representations resulting from deep parsing
are still relatively close to linguistic structures and
contain more detailed information than a user would
like to query and search for. Therefore, an additional
extraction and abstraction step is performed before
storing semantic structures in the search index.

Firstly, MRS is converted to DMRS (Copes-
take, 2009), a dependency-style version of MRS
that eases extraction of predicate-argument struc-
ture using the implementation in LKB (Copestake,
2002). The representation format we devised for the
search index we call semantic tuples, in fact quintu-
ples <subject, predicate, first object, second object,
adjuncts>; example in Figure 3. The basic extrac-
tion algorithm consists of the following three steps:
(1) calculate the closure for each elementary pred-
ication based on the EQ (variable equivalence) re-
lation, and group the predicates and entities in each
closure respectively; (2) extract the relations of the
groups, which results in a graph as a whole; (3) re-

cursively traverse the graph, form one semantic tu-
ple for each predicate, and fill in the corresponding
information under its scope, i.e. subject, object, etc.

In the example shown in Figure 3, entity groups
like ‘our systems’, ‘the baseline’, and ‘good perfor-
mance on the SRL task’, as well as predicate groups
‘beating’ and ‘achieved’ are formed at the first step.
In the second step, the graph structure is extracted,
i.e., the relation between the groups. Finally, two
semantic tuples are filled in with both the predicates
and the corresponding information. Notice that the
modifier(s) of the entity belong to the same entity
group, but the modifier(s) of the predicate will be
put into the Adjuncts slot. Similarly, the coordina-
tion of the entities will be put into one entity group,
while the coordination of predicates will form mul-
tiple semantic tuples.

Since we are extracting predicate-argument struc-
ture, syntactic variations such as passive construc-
tions and relative clauses will be all ‘normalized’
into the same form. Consequently, ‘the book which
I read’, ‘I read the book’, and ‘the book was read
by me’ will form the exact same semantic tuple <I,
read, the book, N/A, N/A>. The resulting tuple
structures along with their associated text are stored
in an Apache Solr/Lucene5 server which receives
queries from the Searchbench user interface.

4 Searchbench User Interface

The Searchbench user interface (UI) is a web appli-
cation running in every modern, JavaScript-enabled
web browser. As can be seen in Figure 4, the UI
is divided into three parts: (1) a sidebar on the left
(Filters View), where different filters can be set that
constrain the list of found documents; (2) a list of
found documents matching the currently set filters
in the upper right part of the UI (Results View); (3)

5http://lucene.apache.org/solr

10

Figure 4: Searchbench user interface with different filters set and currently looking at the debug menu for a sentence.

the Document View in the lower right part of the UI
with different views of the current document.

A focus in the design of the UI has been to al-
low the user to very quickly browse the papers of the
ACL Anthology and then to find small sets of rele-
vant documents based on metadata and content. This
is mainly achieved by these techniques: (i) changes
in the collection of filters automatically update the
Results View; (ii) metadata and searchable content
from both the Results View and the Document View
can easily be used with a single click as new filters;
(iii) filters can easily be removed with a single click;
(iv) manually entering filter items is assisted by sen-
sible autosuggestions computed from the corpus; (v)
accidental filter changes can easily be corrected by
going back in the browser history.

The following kinds of filters are supported:
Statements (filter by semantic statements, i.e., the
actual content of sentences, see Section 4.1), Key-
words (filter by simple keywords with a full-text
search), Topics (filter by topics of the articles that
were extracted with an extended approach of the un-
supervised term extractor of Frantzi et al. (1998)),
Publication (filter by publication title/event), Au-

thors (filter by author names), Year (filter by pub-
lication year), Affiliations (filter by affiliation or-
ganizations), Affiliation Sites (filter by affiliation
cities and countries)6. Found papers always match
all currently set filters. For each filter type multi-
ple different filter items can be set; one could search
for papers written jointly by people from different
research institutes on a certain topic, for example.
Matches of the statements filter and the keywords
filter are highlighted in document snippets for each
paper in the Results View and in the currently se-
lected paper of the Document View.

Besides a header displaying the metadata of the
currently selected paper (including the automatically
extracted topics on the right), the Document View
provides three subviews of the selected paper: (1)
the Document Content View is a raw list of the sen-
tences of the paper and provides different kinds of
interaction with these sentences; (2) the PDF View
shows the original PDF version of the paper; (3) the
Citations View provides citation information includ-

6Affiliations have been added using the ACL Anthology
Network data (Radev et al., 2009).

11

ing link to the ACL Anthology Network (Radev et
al., 2009).

Figure 4 shows the search result for a query com-
bining a statement (‘obtain improvements’), a topic
‘dependency parsing’ and the publication year 2008.
As can be seen in the Results View, six papers
match these filters; sentences with semantically sim-
ilar predicates and passive voice are found, too.

4.1 Semantic Search

The main feature which distinguishes the ACL An-
thology Searchbench from other search applications
for scientific papers is the semantic search in paper
content. This enables the search for (semantic) state-
ments in the paper content as opposed to searching
for keywords in the plain text. Our use of the term
“statement” is loosely along the lines of the same
term used in logic. Very simple sentences often
bear a single statement only, while more complex
sentences (especially when having multiple clauses)
contain multiple statements. Each of the semantic
tuples extracted from the papers of the ACL Anthol-
ogy (cf. Section 3) corresponds to a statement.

The Statements filter is responsible for the seman-
tic search. Statements used in filters may be under-
specified, e.g., one may search for statements with a
certain semantic subject but with arbitrary semantic
predicates and objects. There are two ways in which
a new statement filter can be set: (1) entering a state-
ment manually; (2) clicking a sentence in the Doc-
ument Content View and choosing the statements of
this sentence that shall be set as new statement fil-
ters (cf. Figure 5), i.e. it is possible to formulate and
refine queries ‘by example’.

Figure 5: Dialog for choosing statements to be used as
new filters (for sentence “Our systems achieved good per-
formance on the SRL task, easily beating the baseline.”).

Throughout the user interface, no distinction is
made between the different kinds of semantic ob-

jects and adjuncts so as to make it easy also for
non-linguists to use the search and to be more ro-
bust against bad analyses of the parser. Therefore,
the different semantic parts of a statement are high-
lighted in three different colors only, depending on
whether a part is the semantic subject, the semantic
predicate or anything else (object/adjunct).

In order to disengage even further from the con-
crete wording and make the semantic search even
more ‘meaning-based’, we additionally search for
synonyms of the semantic predicates in statement
filters. These synonyms have been computed as an
intersection of the most frequent verbs (semantic
predicates) in the anthology corpus with WordNet
synsets (Fellbaum, 1998), the main reason being re-
duction of the number of meanings irrelevant for the
domain. This relatively simple approach could of
course be improved, e.g. by active learning from
user clicks in search results etc.

5 Summary and Outlook

We have described the ACL Anthology Search-
bench, a novel search application for scientific dig-
ital libraries. The system is fully implemented and
indexes 7,500 papers of the 8,200 parsed ones. For
the other 700, bibliographic metadata was missing.
These and the remaining 10,000 papers are currently
being processed and will be added to the search in-
dex. The goal of the Searchbench is both to serve
as a showcase for benefits and improvement of NLP
for text search and at the same time provide a use-
ful tool for researchers in Computational Linguis-
tics. We believe that the tool by now already sup-
ports targeted search in a large collection of digital
research papers better than standard web search en-
gines. An evaluation comparing Searchbench query
results with web search is in progress.

Optionally, the Searchbench runs in a linguistic
debug mode providing NLP output a typical user
would not need. These analyses are accessible from
a context menu on each sentence (cf. Figure 4). Both
a tabular view of the semantic tuples of a sentence
(cf. Figure 3) and different kinds of information re-
lated to the parsing of the sentence (including the
MRS and a parse tree) can be displayed.

Future work, for which we are urgently seek-
ing funding, could include integration of further

12

NLP-based features such as coreference resolution
or question answering, as well as citation classifi-
cation and graphical navigation along the ideas in
Schäfer and Kasterka (2010).

Acknowledgments

We are indebted to Peter Adolphs, Bart Cramer, Dan
Flickinger, Stephan Oepen, Yi Zhang for their sup-
port with ERG and PET extensions such as chart
mapping and chart pruning. Melanie Reiplinger,
Benjamin Weitz and Leonie Grön helped with pre-
processing. We also thank the anonymous review-
ers for their encouraging comments. The work de-
scribed in this paper has been carried out in the
context of the project TAKE (Technologies for Ad-
vanced Knowledge Extraction), funded under con-
tract 01IW08003 by the German Federal Ministry
of Education and Research, and in the context of the
world-wide DELPH-IN consortium.

References
Peter Adolphs, Stephan Oepen, Ulrich Callmeier,

Berthold Crysmann, Daniel Flickinger, and Bernd
Kiefer. 2008. Some fine points of hybrid natural lan-
guage parsing. In Proceedings of LREC-2008, pages
1380–1387, Marrakesh, Morocco.

Steven Bird, Robert Dale, Bonnie Dorr, Bryan Gibson,
Mark Joseph, Min-Yen Kan, Dongwon Lee, Brett
Powley, Dragomir Radev, and Yee Fan Tan. 2008. The
ACL anthology reference corpus: A reference dataset
for bibliographic research. In Proceedings of LREC-
2008, pages 1755–1759, Marrakesh, Morocco.

Torsten Brants. 2000. TnT – a statistical part-of-speech
tagger. In Proc. of ANLP, pages 224–231, Seattle, WA.

Ulrich Callmeier. 2000. PET – A platform for experi-
mentation with efficient HPSG processing techniques.
Natural Language Engineering, 6(1):99–108.

Ann Copestake, Dan Flickinger, Ivan A. Sag, and Carl
Pollard. 2005. Minimal recursion semantics: an in-
troduction. Research on Language and Computation,
3(2–3):281–332.

Ann Copestake. 2002. Implementing Typed Feature
Structure Grammars. CSLI publications, Stanford.

Ann Copestake. 2009. Slacker semantics: why superfi-
ciality, dependency and avoidance of commitment can
be the right way to go. In Proc. of EACL, pages 1–9.

Bart Cramer and Yi Zhang. 2010. Constraining robust
constructions for broad-coverage parsing with preci-
sion grammars. In Proceedings of COLING-2010,
pages 223–231, Beijing, China.

Witold Drożdżyński, Hans-Ulrich Krieger, Jakub Pisko-
rski, Ulrich Schäfer, and Feiyu Xu. 2004. Shallow
processing with unification and typed feature struc-
tures – foundations and applications. Künstliche In-
telligenz, 2004(1):17–23.

Christiane Fellbaum, editor. 1998. WordNet, An Elec-
tronic Lexical Database. MIT Press.

Dan Flickinger, Stephan Oepen, and Gisle Ytrestøl.
2010. WikiWoods: Syntacto-semantic annotation for
English Wikipedia. In Proceedings of LREC-2010,
pages 1665–1671.

Dan Flickinger. 2002. On building a more efficient
grammar by exploiting types. In Dan Flickinger,
Stephan Oepen, Hans Uszkoreit, and Jun’ichi Tsujii,
editors, Collaborative Language Engineering. A Case
Study in Efficient Grammar-based Processing, pages
1–17. CSLI Publications, Stanford, CA.

Katerina T. Frantzi, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 1998. The C-value/NC-value method of automatic
recognition for multi-word terms. In Proceedings of
ECDL, pages 585–604.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English. The Penn Treebank. Computational
Linguistics, 19:313–330.

Takashi Ninomiya, Yoshimasa Tsuruoka, Yusuke Miyao,
Kenjiro Taura, and Jun’ichi Tsujii. 2006. Fast and
scalable HPSG parsing. Traitement automatique des
langues (TAL), 46(2).

Carl Pollard and Ivan A. Sag. 1994. Head-Driven Phrase
Structure Grammar. Studies in Contemporary Lin-
guistics. University of Chicago Press, Chicago.

Dragomir R. Radev, Pradeep Muthukrishnan, and Va-
hed Qazvinian. 2009. The ACL anthology network
corpus. In Proceedings of the ACL-2009 Workshop
on Natural Language Processing and Information Re-
trieval for Digital Libraries, Singapore.

Ulrich Schäfer and Uwe Kasterka. 2010. Scientific
authoring support: A tool to navigate in typed cita-
tion graphs. In Proceedings of the NAACL-HLT 2010
Workshop on Computational Linguistics and Writing,
pages 7–14, Los Angeles, CA.

Ulrich Schäfer and Bernd Kiefer. 2011. Advances in
deep parsing of scholarly paper content. In Raffaella
Bernardi, Sally Chambers, Björn Gottfried, Frédérique
Segond, and Ilya Zaihrayeu, editors, Advanced Lan-
guage Technologies for Digital Libraries, LNCS Hot
Topics Series. Springer. to appear.

Ulrich Schäfer. 2006. Middleware for creating and
combining multi-dimensional NLP markup. In Pro-
ceedings of the EACL-2006 Workshop on Multi-
dimensional Markup in Natural Language Processing,
pages 81–84, Trento, Italy.

13

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 14–19,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

Exploiting Readymades in Linguistic Creativity:

A System Demonstration of the Jigsaw Bard

Tony Veale Yanfen Hao
School of Computer Science and Informatics, School of Computer Science and Informatics,

University College Dublin, University College Dublin,
Belfield, Dublin D4, Ireland. Belfield, Dublin D4, Ireland.

Tony.Veale@UCD.ie Yanfen.Hao@UCD.ie

Demonstration System can be viewed at: http://www.educatedinsolence.com/jigsaw

Abstract

Large lexical resources, such as corpora
and databases of Web ngrams, are a rich
source of pre-fabricated phrases that can be
reused in many different contexts. How-
ever, one must be careful in how these re-
sources are used, and noted writers such as
George Orwell have argued that the use of
canned phrases encourages sloppy thinking
and results in poor communication. None-
theless, while Orwell prized home-made
phrases over the readymade variety, there
is a vibrant movement in modern art which
shifts artistic creation from the production
of novel artifacts to the clever reuse of
readymades or objets trouvés. We describe
here a system that makes creative reuse of
the linguistic readymades in the Google
ngrams. Our system, the Jigsaw Bard, thus
owes more to Marcel Duchamp than to
George Orwell. We demonstrate how tex-
tual readymades can be identified and har-
vested on a large scale, and used to drive a
modest form of linguistic creativity.

1 Introduction

In a much-quoted essay from 1946 entitled Politics
and the English Language, the writer and thinker
George Orwell outlines his prescription for halting
a perceived decline in the English language. He
argues that language and thought form a tight

feedback cycle that can be either virtuous or vi-
cious. Lazy language can thus promote lazy think-
ing, and vice versa. Orwell pours scorn on two
particular forms of lazy language: the expedient
use of overly familiar metaphors merely because
they come quickly to mind, even though they have
lost their power to evoke vivid images,; and the use
of readymade turns of phrase as substitutes for in-
dividually crafted expressions. While a good writer
bends words to his meaning, Orwell worries that a
lazy writer bends his meaning to convenient words.

Orwell is especially scornful about readymade
phrases which, when over-used, “are tacked to-
gether like the sections of a prefabricated hen-
house.” A writer who operates by “mechanically
repeating the familiar phrases” and “gumming to-
gether long strips of words which have already
been set in order by someone else” has, he argues,
“gone some distance toward turning himself into a
machine.” Given his derogatory mechanistic view
of the use of readymade phrases, Orwell would not
be surprised to learn that computers are highly pro-
ficient in the large-scale use of familiar phrases,
whether acquired from large text corpora or from
the Google ngrams (see Brants and Franz, 2006).

Though argued with passion, there are serious
holes in Orwell’s logic. If one should “never use a
metaphor, simile or other figure of speech which
you are used to seeing in print”, how then are fa-
miliar metaphors ever to become dead metaphors
and thereby enrich the language with new terms
and new senses? And if one cannot use familiar
readymade phrases, how can one make playful –
and creative – allusions to the writings of others, or

14

mischievously subvert the conventional wisdom of
platitudes and clichés? Orwell’s use of the term
readymade is entirely negative, yet the term is al-
together more respectable in the world of modern
art, thanks to its use by artists such as Marcel
Duchamp. For many artists, a readymade object is
not a substitute, but a starting point, for creativity.

Also called an objet trouvé or found object, a
readymade emerges from an artist’s encounter with
an object whose aesthetic merits are overlooked in
its banal, everyday contexts of use; when this ob-
ject is moved to an explicitly artistic context, such
as an art gallery, viewers are better able to appreci-
ate these merits. The artist’s insight is to recognize
the transformational power of this non-obvious
context switch. Perhaps the most famous (and no-
torious) readymade in the world of art is Marcel
Duchamp’s Fountain, a humble urinal that be-
comes an elegantly curved piece of sculpture when
viewed with the right mindset. Duchamp referred
to his objets trouvés as “assisted readymades” be-
cause they allow an artist to remake the act of
creation as one of pure insight and inspired recog-
nition rather than one of manual craftsmanship (see
Taylor, 2009). In computational terms, the
Duchampian notion of a readymade allows crea-
tivity to be modeled not as a construction problem
but as a decision problem. A computational
Duchamp need not explore an abstract conceptual
space of potential ideas, as in Boden (1994). How-
ever, a Duchampian agent must instead be exposed
to the multitude of potentially inspiring real-world
stimuli that a human artist encounters everyday.

Readymades represent a serendipitous form of
creativity that is poorly served by exploratory
models of creativity, such as that of Boden (1994),
and better served by the investment models such as
the buy-low-sell-high theory of Sternberg and Lu-
bart (1995). In this view, creators and artists find
unexpected or untapped value in unfashionable
objects or ideas that already exist, and quickly
move their gaze elsewhere once the public at large
come to recognize this value. Duchampian creators
invest in everyday objects, just as Duchamp found
artistic merit in urinals, bottles and combs. From a
linguistic perspective, these everyday objects are
commonplace words and phrases which, when
wrenched from their conventional contexts of use,
are free to take on enhanced meanings and provide
additional returns to the investor. The realm in

which a maker of linguistic readymades operates is
not the real world, and not an abstract conceptual
space, but the realm of texts: large corpora become
rich hunting grounds for investors in linguistic ob-
jets trouvés.

This proposal is demonstrated in computa-
tional form in the following sections. We show
how a rich vocabulary of cultural stereotypes can
be acquired from the Web, and how this vocabu-
lary facilitates the implementation of a decision
procedure for recognizing potential readymades in
large corpora – in this case, the Google database of
Web ngrams (Brants and Franz, 2006). This deci-
sion procedure provides a robust basis for a simile-
generation system called The Jigsaw Bard. The
cognitive / linguistic intuitions that underpin the
Bard’s concept of textual readymades are put to
the empirical test in section 5. While readymades
remain a contentious notion in the public’s appre-
ciation of artistic creativity – despite Duchamp’s
Fountain being considered one of the most influ-
ential artworks of the 20th century – we shall show
that the notion of a linguistic readymade has sig-
nificant practical merit in the realms of text gen-
eration and computational creativity.

2 Linguistic Readymades

Readymades are the result of artistic appropria-
tion, in which an object with cultural resonance –
an image, a phrase, a quote, a name, a thing – is re-
used in a new context with a new meaning. As a
fertile source of cultural reference points, language
is an equally fertile medium for appropriation.
Thus, in the constant swirl of language and culture,
movie quotes suggest song lyrics, which in turn
suggest movie titles, which suggest book titles, or
restaurant names, or the names of racehorses, and
so on, and on. The 1996 movie The Usual Suspects
takes its name from a memorable scene in 1942’s
Casablanca, as does the Woody Allen play and
movie Play it Again Sam. The 2010 art documen-
tary Exit Through the Gift Shop, by graffiti artist
Banksy, takes its name from a banal sign some-
times seen in museums and galleries: the sign,
suggestive as it is of creeping commercialism,
makes the perfect readymade for a film that la-
ments the mediocrity of commercialized art.

Appropriations can also be combined to pro-
duce novel mashups; consider, for instance, the use
of tweets from rapper Kanye West as alternate

15

captions for cartoon images from the New Yorker
magazine (see hashtag #KanyeNew-YorkerTweets).
Hashtags can themselves be linguistic readymades.
When free-speech advocates use the hashtag
#IAMSpartacus to show solidarity with users
whose tweets have incurred the wrath of the law,
they are appropriating an emotional line from the
1960 film Spartacus. Linguistic readymades, then,
are well-formed text fragments that are often
highly quotable because they carry some figurative
content which can be reused in different contexts.

A quote like “round up the usual suspects” or
“I am Spartacus” requires a great deal of cultural
knowledge to appreciate. Since literal semantics
only provides a small part of their meaning, a
computer’s ability to recognize linguistic ready-
mades is only as good as the cultural knowledge at
its disposal. We thus explore here a more modest
form of readymade – phrases that can be used as
evocative image builders in similes – as in:

a wet haddock
snow in January
a robot fish
a bullet-ridden corpse

Each phrase can be found in the Google 1T data-
base of Web ngrams – snippets of Web text (of one
to five words) that occur on the web with a fre-
quency of 40 or higher (Brants and Franz, 2006).
Each is likely a literal description of a real object
or event – even “robot fish”, which describes an
autonomous marine vehicle whose movements
mimic real fish. But each exhibits figurative po-
tential as well, providing a memorable description
of physical or emotional coldness. Whether or not
each was ever used in a figurative sense before is
not the point: once this potential is recognized,
each phrase becomes a reusable linguistic ready-
made for the construction of a vivid figurative
comparison, as in “as cold as a robot fish”. We
now consider the building blocks from which these
comparisons can be ready-made..

3 A Vocabulary of Cultural Stereotypes

How does a computer acquire the knowledge that
fish, snow, January, bullets and corpses are cultural
signifiers of coldness? Much the same way that
humans acquire this knowledge: by attending to
the way these signifiers are used by others, espe-

cially when they are used in cultural clichés like
proverbial similes (e.g., “as cold as a fish”).

In fact, folk similes are an important vector in
the transmission of cultural knowledge: they point
to, and exploit, the shared cultural touchstones that
speakers and listeners alike can use to construct
and intuit meanings. Taylor (1954) catalogued
thousands of proverbial comparisons and similes
from California, identifying just as many building
blocks in the construction of new phrases and figu-
rative meanings. Only the most common similes
can be found in dictionaries, as shown by Norrick
(1986), while Moon (2008) demonstrates that
large-scale corpus analysis is needed to identify
folk similes with a breadth approaching that of
Taylor’s study. However, Veale and Hao (2007)
show that the World-Wide Web is the ultimate re-
source for harvesting similes.

Veale and Hao use the Google API to find many
instances of the pattern “as ADJ as a|an *” on the
web, where ADJ is an adjectival property and * is
the Google wildcard. WordNet (Fellbaum, 1998) is
used to provide a set of over 2,000 different values
for ADJ, and the text snippets returned by Google
are parsed to extract the basic simile bindings.
Once the bindings are annotated to remove noise,
as well as frequent uses of irony, this Web harvest
produces over 12,000 cultural bindings between a
noun (such as fish, or robot) and its most stereo-
typical properties (such as cold, wet, stiff, logical,
heartless, etc.). Stereotypical properties are ac-
quired for approx. 4,000 common English nouns.
This is a set of building blocks on a larger scale
than even that of Taylor, allowing us to build on
Veale and Hao (2007) to identify readymades in
their hundreds of thousands in the Google ngrams.

However, to identify readymades as resonant
variations on cultural stereotypes, we need a cer-
tain fluidity in our treatment of adjectival proper-
ties. The phrase “wet haddock” is a readymade for
coldness because “wet” accentuates the “cold” that
we associate with “haddock” (via the web simile
“as cold as a haddock”). In the words of Hofstad-
ter (1995), we need to build a SlipNet of properties
whose structure captures the propensity of proper-
ties to mutually and coherently reinforce each
other, so that phrases which subtly accentuate an
unstated property can be recognized. In the vein of
Veale and Hao (2007), we use the Google API to
harvest the elements of this SlipNet.

16

We hypothesize that the construction “as ADJ1
and ADJ2 as” shows ADJ1 and ADJ2 to be mutu-
ally reinforcing properties, since they can be seen
to work together as a single complex property in a
single comparison. Thus, using the full comple-
ment of adjectival properties used by Veale and
Hao (2007), we harvest all instances of the patterns
“as ADJ and * as” and “as * and ADJ as” from
Google, noting the combinations that are found and
their frequencies. These frequencies provide link
weights for the Hofstadter-style SlipNet that is
then constructed. In all, over 180,000 links are
harvested, connecting over 2,500 adjectival prop-
erties to one other. We put the intuitions behind
this SlipNet to the empirical test in section five.

4 Harvesting Readymades from Corpora

In the course of an average day, a creative writer is
exposed to a constant barrage of linguistic stimuli,
any small portion of which can strike a chord as a
potential readymade. In this casual inspiration
phase, the observant writer recognizes that a cer-
tain combination of words may produce, in another
context, a meaning that is more than the sum of its
parts. Later, when an apposite phrase is needed to
strike a particular note, this combination may be
retrieved from memory (or from a trusty note-
book), if it has been recorded and suitably indexed.

Ironically, Orwell (1946) suggests that lazy
writers “shirk” their responsibility to be “scrupu-
lous” in their use of language by “simply throwing
[their] mind open and letting the ready-made
phrases come crowding in”. For Orwell, words just
get in the way, and should be kept at arm’s length
until the writer has first allowed a clear meaning to
crystallize. This is dubious advice, as one expects a
creative writer to keep an open mind when consid-
ering all the possibilities that present themselves.
Yet Orwell’s proscription suggests how a computer
should go about the task of harvesting readymades
from corpora: by throwing its mind open to the
possibility that a given ngram may one day have a
second life as a creative readymade in another
context, the computer allows the phrases that
match some simple image-building criteria to come
crowding in, so they can be stored in a database.

Given a rich vocabulary of cultural stereo-
types and their properties, computers are capable
of indexing and recalling a considerably larger

body of resonant combinations than the average
human. The necessary barrage of linguistic stimuli
can be provided by the Google 1T database of Web
ngrams (Brants and Franz, 2006). Trawling these
ngrams, a modestly creative computer can recog-
nize well-formed combinations of cultural ele-
ments that might serve as a vivid vehicle of
description in a future comparison. For every
phrase P in the ngrams, where P combines stereo-
type nouns and/or adjectival modifiers, the com-
puter simply poses the following question: is there
an unstated property A such that the simile “as A
as P” is a meaningful and memorable comparison?
The property A can be simple, as in “as dark as a
chocolate espresso”, or complex, as in “as dark
and sophisticated as a chocolate martini”. In either
case, the phrase P is tucked away, and indexed un-
der the property A until such time as the computer
needs to produce a vivid evocation of A.

The following patterns are used to identify
potential readymades in the Web ngrams:

(1) NounS1 NounS2
where both nouns denote stereotypes that
share an unstated property AdjA. The prop-
erty AdjA serves to index this combination.
Example: “as cold as a robot fish”.

(2) NounS1 NounS2
where both nouns denote stereotypes with
salient properties AdjA1 and AdjA2 respec-
tively, such that AdjA1 and AdjA2 are mutu-
ally reinforcing. The combination is indexed
on AdjA1+AdjA2. Example: “as dark and
sophisticated as a chocolate martini”.

(3) AdjA NounS
where NounS denotes a cultural stereotype,
and the adjective AdjA denotes a property
that mutually reinforces an unstated but sali-
ent property AdjSA of the stereotype. Exam-
ple: “as cold as a wet haddock”. The
combination is indexed on AdjSA.

More complex structures for P are also possible, as
in the phrases “a lake of tears” (a melancholy way
to accentuate the property “wet”) and “a statue in a
library” (for “silent” and “quiet”). In this current
description, we focus on 2-gram phrases only.

17

Figure 1. Screenshot of The Jigsaw Bard, retrieving
linguistic readymades for the input property “cold”. See
http://www.educatedinsolence.com/jigsaw

Using these patterns, our application – the Jigsaw
Bard (see Figure 1) – pre-builds a vast collection
of figurative similes well in advance of the time it
is asked to use or suggest any of them. Each phrase
P is syntactically well-formed, and because P oc-
curs relatively frequently on the Web, it is likely to
be semantically well-formed as well. Just as
Duchamp side-stepped the need to physically
originate anything, but instead appropriated pre-
fabricated artifacts, the Bard likewise side-steps
the need for natural-language generation. Each
phrase it proposes has the ring of linguistic
authenticity; because this authenticity is rooted in
another, more literal context, the Bard also exhibits
its own Duchamp-like (if Duchamp-lite) creativity.
We now consider the scale of the Bard’s genera-
tivity, and the quality of its insights.

5 Empirical Evaluation

The vastness of the web, captured in the large-
scale sample that is the Google ngrams, means the
Jigsaw Bard finds considerable grist for its mill in
the phrases that match (1)…(3). Thus, the most
restrictive pattern, pattern (1), harvests approx.
20,000 phrases from the Google 2-grams, for al-
most a thousand simple properties (indexing an
average of 29 phrases under each property, such as
“swan song” for “beautiful”). Pattern (2) – which
allows a blend of stereotypes to be indexed under a
complex property – harvests approx. 170,000
phrases from the 2-grams, for approx. 70,000 com-
plex properties (indexing an average of 12 phrases

under each, such as “hospital bed” for “comfort-
able and safe”). Pattern (3) – which pairs a stereo-
type noun with an adjective that draws out a salient
property of the stereotype – is similarly productive:
it harvests approx. 150,000 readymade 2-grams for
over 2,000 simple properties (indexing an average
of 125 phrases per property, as in “youthful knight”
for “heroic” and “zealous convert” for “devout”).

The Jigsaw Bard is best understood as a crea-
tive thesaurus: for any given property (or blend of
properties) selected by the user, the Bard presents
a range of apt similes constructed from linguistic
readymades. The numbers above show that, recall-
wise, the Bard has sufficient coverage to work
robustly as a thesaurus. Quality-wise, users must
make their own determinations as to which similes
are most suited to their descriptive purposes, yet it
is important that suggestions provided by the Bard
are sensible and well-motivated. As such, we must
be empirically satisfied about two key intuitions:
first, that salient properties are indeed acquired
from the Web for our vocabulary of stereotypes
(this point relates to the aptness of the similes sug-
gested by the Bard); and second, that the adjectives
connected by the SlipNet really do mutually rein-
force each other (this point relates to the coherence
of complex properties, and to the ability of ready-
mades to accentuate unstated properties).

Both intuitions can be tested using Whissell’s
(1989) dictionary of affect, a psycholinguistic re-
source used for sentiment analysis that assigns a
pleasantness score of between 1.0 (least pleasant)
and 3.0 (most pleasant) to over 8,000 common-
place words. We should thus be able to predict the
pleasantness of a stereotype noun (like fish) using a
weighted average of the pleasantness of its salient
properties (like cold, slippery). We should also be
able to predict the pleasantness of an adjective us-
ing a weighted average of the pleasantness of its
adjacent adjectives in the SlipNet. (In each case,
weights are provided by relevant web frequencies.)

We can use a two-tailed Pearson test (p <
0.05) to compare the predictions made in each case
to the actual pleasantness scores provided by
Whissell’s dictionary, and thereby assess the qual-
ity of the knowledge used to make the predictions.
In the first case, predictions of the pleasantness of
stereotype nouns based on the pleasantness of their
salient properties (i.e., predicting the pleasantness
of Y from the Xs in “as X as Y”) have a positive

18

correlation of 0.5 with Whissell; conversely, ironic
properties yield a negative correlation of –0.2. In
the second, predictions of the pleasantness of ad-
jectives based on their relations in the SlipNet (i.e.,
predicting the pleasantness of X from the Ys in “as
X and Y as”) have a positive correlation of 0.7.
Though pleasantness is just one dimension of lexi-
cal affect, it is one that requires a broad knowledge
of a word, its usage and its denotations to accu-
rately estimate. In this respect, the Bard is well
served by a large stock of stereotypes and a coher-
ent network of informative properties.

6 Conclusions

Fishlov (1992) has argued that poetic similes rep-
resent a conscious deviation from the norms of
non-poetic comparison. His analysis shows that
poetic similes are longer and more elaborate, and
are more likely to be figurative and to flirt with
incongruity. Creative similes do not necessarily
use words that are longer, or rarer, or fancier, but
use many of the same cultural building blocks as
non-creative similes. Armed with a rich vocabulary
of building blocks, the Jigsaw Bard harvests a
great many readymade phrases from the Google
ngrams – from the evocative “chocolate martini” to
the seemingly incongruous “robot fish” – that can
be used to evoke an wide range of properties.

This generativity makes the Bard scalable and
robust. However, any creativity we may attribute
to it comes not from the phrases themselves – they
are readymades, after all – but from the recognition
of the subtle and often complex properties they
evoke. The Bard exploits a sweet-spot in our un-
derstanding of linguistic creativity, and so, as pre-
sented here, is merely a starting point for our
continued exploitation of linguistic readymades,
rather than an end in itself. By harvesting more
complex syntactic structures, and using more so-
phisticated techniques for analyzing the figurative
potential of these phrases, the Bard and its ilk may
gradually approach the levels of poeticity dis-
cussed by Fishlov. For now, it is sufficient that
even simple techniques serve as the basis of a ro-
bust and practical thesaurus application.

7 Hardware Requirements

The Jigsaw Bard is designed to be a lightweight
application that compiles its comprehensive data-

base of readymades in advance. It’s run-time de-
mands are low, it has no special hardware
requirements, and runs in a standard Web browser.

Acknowledgments
This work was funded in part by Science Founda-
tion Ireland (SFI), via the Centre for Next Genera-
tion Localization (CNGL).

References
Margaret Boden, 1994. Creativity: A Framework for

Research, Behavioural and Brain Sciences 17(3),
558-568.

Thorsten Brants. and Alex Franz. 2006. Web 1T 5-gram
Version 1. Linguistic Data Consortium.

Christiane Fellbaum. (ed.) 2008. WordNet: An Elec-
tronic Lexical Database. MIT Press, Cambridge.

David Fishlov. 1992. Poetic and Non-Poetic Simile:
Structure, Semantics, Rhetoric. Poetics Today, 14(1).

Douglas R Hofstadter. 1995. Fluid Concepts and Crea-
tive Analogies: Computer Models of the Fundamen-
tal Mechanisms of Thought. Basic Books, NY.

Rosamund Moon. 2008. Conventionalized as-similes in
English: A problem case. International Journal of
Corpus Linguistics 13(1), 3-37.

Neal Norrick,. 1986. Stock Similes. Journal of Literary
Semantics XV(1), 39-52.

George Orwell. 1946. Politics And The English Lan-
guage. Horizon 13(76), 252-265.

Robert J Sternberg. and T. Ivan Lubart, 1995. Defying
the crowd: Cultivating creativity in a culture of con-
formity. Free Press, New York.

Archer Taylor. 1954. Proverbial Comparisons and
Similes from California. Folklore Studies 3. Ber-
keley: University of California Press.

Michael R. Taylor. (2009). Marcel Duchamp: Étant
donnés (Philadelphia Museum of Art). Yale Univer-
sity Press.

Tony Veale and Yanfen Hao. 2007. Making Lexical
Ontologies Functional and Context-Sensitive. In
Proceedings of the 46th Annual Meeting of the Asso-
ciation of Computational Linguistics.

Cynthia Whissell. 1989. The dictionary of affect in lan-
guage. In R. Plutchnik & H. Kellerman (eds.) Emo-
tion: Theory and research. New York: Harcourt
Brace, 113-131.

19

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 20–25,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

A Mobile Touchable Application for Online Topic Graph Extraction and
Exploration of Web Content

Günter Neumann and Sven Schmeier
Language Technology Lab, DFKI GmbH

Stuhlsatzenhausweg 3, D-66123 Saarbrücken
{neumann|schmeier}@dfki.de

Abstract

We present a mobile touchable application for
online topic graph extraction and exploration
of web content. The system has been imple-
mented for operation on an iPad. The topic
graph is constructed from N web snippets
which are determined by a standard search en-
gine. We consider the extraction of a topic
graph as a specific empirical collocation ex-
traction task where collocations are extracted
between chunks. Our measure of association
strength is based on the pointwise mutual in-
formation between chunk pairs which explic-
itly takes their distance into account. An ini-
tial user evaluation shows that this system is
especially helpful for finding new interesting
information on topics about which the user has
only a vague idea or even no idea at all.

1 Introduction

Today’s Web search is still dominated by a docu-
ment perspective: a user enters one or more key-
words that represent the information of interest and
receives a ranked list of documents. This technology
has been shown to be very successful when used on
an ordinary computer, because it very often delivers
concrete documents or web pages that contain the
information the user is interested in. The following
aspects are important in this context: 1) Users basi-
cally have to know what they are looking for. 2) The
documents serve as answers to user queries. 3) Each
document in the ranked list is considered indepen-
dently.

If the user only has a vague idea of the informa-
tion in question or just wants to explore the infor-

mation space, the current search engine paradigm
does not provide enough assistance for these kind
of searches. The user has to read through the docu-
ments and then eventually reformulate the query in
order to find new information. This can be a tedious
task especially on mobile devices. Seen in this con-
text, current search engines seem to be best suited
for “one-shot search” and do not support content-
oriented interaction.

In order to overcome this restricted document per-
spective, and to provide a mobile device searches to
“find out about something”, we want to help users
with the web content exploration process in two
ways:

1. We consider a user query as a specification of
a topic that the user wants to know and learn
more about. Hence, the search result is basi-
cally a graphical structure of the topic and as-
sociated topics that are found.

2. The user can interactively explore this topic
graph using a simple and intuitive touchable
user interface in order to either learn more
about the content of a topic or to interactively
expand a topic with newly computed related
topics.

In the first step, the topic graph is computed on
the fly from the a set of web snippets that has been
collected by a standard search engine using the ini-
tial user query. Rather than considering each snip-
pet in isolation, all snippets are collected into one
document from which the topic graph is computed.
We consider each topic as an entity, and the edges

20

between topics are considered as a kind of (hidden)
relationship between the connected topics. The con-
tent of a topic are the set of snippets it has been ex-
tracted from, and the documents retrievable via the
snippets’ web links.

A topic graph is then displayed on a mobile de-
vice (in our case an iPad) as a touch-sensitive graph.
By just touching on a node, the user can either in-
spect the content of a topic (i.e, the snippets or web
pages) or activate the expansion of the graph through
an on the fly computation of new related topics for
the selected node.

In a second step, we provide additional back-
ground knowledge on the topic which consists of ex-
plicit relationships that are generated from an online
Encyclopedia (in our case Wikipedia). The relevant
background relation graph is also represented as a
touchable graph in the same way as a topic graph.
The major difference is that the edges are actually
labeled with the specific relation that exists between
the nodes.

In this way the user can explore in an uniform way
both new information nuggets and validated back-
ground information nuggets interactively. Fig. 1
summarizes the main components and the informa-
tion flow.

Figure 1: Blueprint of the proposed system.

2 Touchable User Interface: Examples

The following screenshots show some results for the
search query “Justin Bieber” running on the cur-

rent iPad demo–app. At the bottom of the iPad
screen, the user can select whether to perform text
exploration from the Web (via button labeled “i–
GNSSMM”) or via Wikipedia (touching button “i–
MILREX”). The Figures 2, 3, 4, 5 show results for
the “i–GNSSMM” mode, and Fig. 6 for the “i-
MILREX” mode. General settings of the iPad demo-
app can easily be changed. Current settings allow
e.g., language selection (so far, English and German
are supported) or selection of the maximum number
of snippets to be retrieved for each query. The other
parameters mainly affect the display structure of the
topic graph.

Figure 2: The topic graph computed from the snippets for
the query “Justin Bieber”. The user can double touch on
a node to display the associated snippets and web pages.
Since a topic graph can be very large, not all nodes are
displayed. Nodes, which can be expanded are marked by
the number of hidden immediate nodes. A single touch
on such a node expands it, as shown in Fig. 3. A single
touch on a node that cannot be expanded adds its label to
the initial user query and triggers a new search with that
expanded query.

21

Figure 3: The topic graph from Fig. 2 has been expanded
by a single touch on the node labeled “selena gomez”.
Double touching on that node triggers the display of as-
sociated web snippets (Fig. 4) and the web pages (Fig.
5).

3 Topic Graph Extraction

We consider the extraction of a topic graph as a spe-
cific empirical collocation extraction task. How-
ever, instead of extracting collations between words,
which is still the dominating approach in collocation
extraction research, e.g., (Baroni and Evert, 2008),
we are extracting collocations between chunks, i.e.,
word sequences. Furthermore, our measure of asso-
ciation strength takes into account the distance be-
tween chunks and combines it with the PMI (point-
wise mutual information) approach (Turney, 2001).

The core idea is to compute a set of chunk–
pair–distance elements for the N first web snip-
pets returned by a search engine for the topic Q,
and to compute the topic graph from these ele-
ments.1 In general for two chunks, a single chunk–
pair–distance element stores the distance between

1For the remainder of the paper N=1000. We are using Bing
(http://www.bing.com/) for Web search.

Figure 4: The snippets that are associated with the node
label “selena gomez” of the topic graph from Fig. 3.In or-
der to go back to the topic graph, the user simply touches
the button labeled i-GNSSMM on the left upper corner of
the iPad screen.

the chunks by counting the number of chunks in–
between them. We distinguish elements which have
the same words in the same order, but have different
distances. For example, (Peter, Mary, 3) is different
from (Peter, Mary, 5) and (Mary, Peter, 3).

We begin by creating a document S from the
N -first web snippets so that each line of S con-
tains a complete snippet. Each textline of S is
then tagged with Part–of–Speech using the SVM-
Tagger (Giménez and Màrquez, 2004) and chun-
ked in the next step. The chunker recognizes two
types of word chains. Each chain consists of longest
matching sequences of words with the same PoS
class, namely noun chains or verb chains, where
an element of a noun chain belongs to one of
the extended noun tags2, and elements of a verb

2Concerning the English PoS tags, “word/PoS” expressions
that match the following regular expression are considered as
extended noun tag: “/(N(N|P))|/VB(N|G)|/IN|/DT”. The En-

22

Figure 5: The web page associated with the first snippet
of Fig. 4. A single touch on that snippet triggers a call
to the iPad browser in order to display the corresponding
web page. The left upper corner button labeled “Snip-
pets” has to be touched in order to go back to the snippets
page.

chain only contains verb tags. We finally ap-
ply a kind of “phrasal head test” on each iden-
tified chunk to guarantee that the right–most ele-
ment only belongs to a proper noun or verb tag.
For example, the chunk “a/DT british/NNP for-
mula/NNP one/NN racing/VBG driver/NN from/IN
scotland/NNP” would be accepted as proper NP
chunk, where “compelling/VBG power/NN of/IN”
is not.

Performing this sort of shallow chunking is based
on the assumptions: 1) noun groups can represent
the arguments of a relation, a verb group the relation
itself, and 2) web snippet chunking needs highly ro-
bust NL technologies. In general, chunking crucially
depends on the quality of the embedded PoS–tagger.
However, it is known that PoS–tagging performance
of even the best taggers decreases substantially when

glish Verbs are those whose PoS tag start with VB. We are us-
ing the tag sets from the Penn treebank (English) and the Negra
treebank (German).

Figure 6: If mode “i–MILREX” is chosen then text ex-
ploration is performed based on relations computed from
the info–boxes extracted from Wikipedia. The central
node corresponds to the query. The outer nodes repre-
sent the arguments and the inner nodes the predicate of a
info–box relation. The center of the graph corresponds to
the search query.

applied on web pages (Giesbrecht and Evert, 2009).
Web snippets are even harder to process because
they are not necessary contiguous pieces of texts,
and usually are not syntactically well-formed para-
graphs due to some intentionally introduced breaks
(e.g., denoted by . . . betweens text fragments). On
the other hand, we want to benefit from PoS tag-
ging during chunk recognition in order to be able to
identify, on the fly, a shallow phrase structure in web
snippets with minimal efforts.

The chunk–pair–distance model is computed
from the list of chunks. This is done by traversing
the chunks from left to right. For each chunk ci, a
set is computed by considering all remaining chunks
and their distance to ci, i.e., (ci, ci+1, disti(i+1)),
(ci, ci+2, disti(i+2)), etc. We do this for each chunk
list computed for each web snippet. The distance
distij of two chunks ci and cj is computed directly
from the chunk list, i.e., we do not count the position

23

of ignored words lying between two chunks.
The motivation for using chunk–pair–distance

statistics is the assumption that the strength of hid-
den relationships between chunks can be covered by
means of their collocation degree and the frequency
of their relative positions in sentences extracted from
web snippets; cf. (Figueroa and Neumann, 2006)
who demonstrated the effectiveness of this hypothe-
sis for web–based question answering.

Finally, we compute the frequencies of each
chunk, each chunk pair, and each chunk pair dis-
tance. The set of all these frequencies establishes
the chunk–pair–distance model CPDM . It is used
for constructing the topic graph in the final step. For-
mally, a topic graph TG = (V,E, A) consists of a
set V of nodes, a set E of edges, and a set A of node
actions. Each node v ∈ V represents a chunk and
is labeled with the corresponding PoS–tagged word
group. Node actions are used to trigger additional
processing, e.g., displaying the snippets, expanding
the graph etc.

The nodes and edges are computed from the
chunk–pair–distance elements. Since, the number
of these elements is quite large (up to several
thousands), the elements are ranked according to
a weighting scheme which takes into account the
frequency information of the chunks and their collo-
cations. More precisely, the weight of a chunk–pair–
distance element cpd = (ci, cj , Dij), with Di,j =
{(freq1, dist1), (freq2, dist2), ..., (freqn, distn)},
is computed based on PMI as follows:

PMI(cpd) = log2((p(ci, cj)/(p(ci) ∗ p(cj)))

= log2(p(ci, cj))− log2(p(ci) ∗ p(cj))

where relative frequency is used for approximating
the probabilities p(ci) and p(cj). For log2(p(ci, cj))
we took the (unsigned) polynomials of the corre-
sponding Taylor series3 using (freqk, distk) in the
k-th Taylor polynomial and adding them up:

PMI(cpd) = (
n∑

k=1

(xk)
k

k
)− log2(p(ci) ∗ p(cj))

, where xk =
freqk∑n

k=1 freqk

3In fact we used the polynomials of the Taylor series for
ln(1 + x). Note also that k is actually restricted by the number
of chunks in a snippet.

The visualized topic graph TG is then computed
from a subset CPD′

M ⊂ CPDM using the m high-
est ranked cpd for fixed ci. In other words, we re-
strict the complexity of a TG by restricting the num-
ber of edges connected to a node.

4 Wikipedia’s Infoboxes

In order to provide query specific background
knowledge we make use of Wikipedia’s infoboxes.
These infoboxes contain facts and important rela-
tionships related to articles. We also tested DB-
pedia as a background source (Bizer et al., 2009).
However, it turned out that currently it contains
too much and redundant information. For exam-
ple, the Wikipedia infobox for Justin Bieber contains
eleven basic relations whereas DBpedia has fifty re-
lations containing lots of redundancies. In our cur-
rent prototype, we followed a straightforward ap-
proach for extracting infobox relations: We down-
loaded a snapshot of the whole English Wikipedia
database (images excluded), extracted the infoboxes
for all articles if available and built a Lucene Index
running on our server. We ended up with 1.124.076
infoboxes representing more than 2 million differ-
ent searchable titles. The average access time is
about 0.5 seconds. Currently, we only support ex-
act matches between the user’s query and an infobox
title in order to avoid ambiguities. We plan to ex-
tend our user interface so that the user may choose
different options. Furthermore we need to find tech-
niques to cope with undesired or redundant informa-
tion (see above). This extension is not only needed
for partial matches but also when opening the sys-
tem to other knowledgesources like DBpedia, new-
sticker, stock information and more.

5 Evaluation

For an initial evaluation we had 20 testers: 7 came
from our lab and 13 from non–computer science re-
lated fields. 15 persons had never used an iPad be-
fore. After a brief introduction to our system (and
the iPad), the testers were asked to perform three
different searches (using Google, i–GNSSMM and
i–MILREX) by choosing the queries from a set of
ten themes. The queries covered definition ques-
tions like EEUU and NLF, questions about persons
like Justin Bieber, David Beckham, Pete Best, Clark

24

Kent, and Wendy Carlos , and general themes like
Brisbane, Balancity, and Adidas. The task was
not only to get answers on questions like “Who is
. . . ” or “What is . . . ” but also to acquire knowledge
about background facts, news, rumors (gossip) and
more interesting facts that come into mind during
the search. Half of the testers were asked to first
use Google and then our system in order to compare
the results and the usage on the mobile device. We
hoped to get feedback concerning the usability of
our approach compared to the well known internet
search paradigm. The second half of the participants
used only our system. Here our research focus was
to get information on user satisfaction of the search
results. After each task, both testers had to rate sev-
eral statements on a Likert scale and a general ques-
tionnaire had to be filled out after completing the
entire test. Table 1 and 2 show the overall result.

Table 1: Google

#Question v.good good avg. poor
results first sight 55% 40% 15% -
query answered 71% 29% - -
interesting facts 33% 33% 33% -
suprising facts 33% - - 66%

overall feeling 33% 50% 17% 4%

Table 2: i-GNSSMM
#Question v.good good avg. poor

results first sight 43% 38% 20% -
query answered 65% 20% 15% -
interesting facts 62% 24% 10% 4%
suprising facts 66% 15% 13% 6%

overall feeling 54% 28% 14% 4%

The results show that people in general prefer
the result representation and accuracy in the Google
style. Especially for the general themes the presen-
tation of web snippets is more convenient and more
easy to understand. However when it comes to in-
teresting and suprising facts users enjoyed exploring
the results using the topic graph. The overall feeling
was in favor of our system which might also be due
to the fact that it is new and somewhat more playful.

The replies to the final questions: How success-

ful were you from your point of view? What did you
like most/least? What could be improved? were in-
formative and contained positive feedback. Users
felt they had been successful using the system. They
liked the paradigm of the explorative search on the
iPad and preferred touching the graph instead of re-
formulating their queries. The presentation of back-
ground facts in i–MILREX was highly appreciated.
However some users complained that the topic graph
became confusing after expanding more than three
nodes. As a result, in future versions of our system,
we will automatically collapse nodes with higher
distances from the node in focus. Although all of our
test persons make use of standard search engines,
most of them can imagine to using our system at
least in combination with a search engine even on
their own personal computers.

6 Acknowledgments

The presented work was partially supported by
grants from the German Federal Ministry of Eco-
nomics and Technology (BMWi) to the DFKI The-
seus projects (FKZ: 01MQ07016) TechWatch–Ordo
and Alexandria4Media.

References
Marco Baroni and Stefan Evert. 2008. Statistical meth-

ods for corpus exploitation. In A. Lüdeling and
M. Kytö (eds.), Corpus Linguistics. An International
Handbook, Mouton de Gruyter, Berlin.

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Soren
Auer, Christian Becker, Richard Cyganiak, Sebastian
Hellmann. 2009. DBpedia - A crystallization point for
the Web of Data. Web Semantics: Science, Services
and Agents on the World Wide Web 7 (3): 154165.

Alejandro Figueroa and Günter Neumann. 2006. Lan-
guage Independent Answer Prediction from the Web.
In proceedings of the 5th FinTAL, Finland.

Eugenie Giesbrecht and Stefan Evert. 2009. Part-of-
speech tagging - a solved task? An evaluation of PoS
taggers for the Web as corpus. In proceedings of the
5th Web as Corpus Workshop, San Sebastian, Spain.

Jesús Giménez and Lluı́s Màrquez. 2004. SVMTool: A
general PoS tagger generator based on Support Vector
Machines. In proceedings of LREC’04, Lisbon, Por-
tugal.

Peter Turney. 2001. Mining the web for synonyms: PMI-
IR versus LSA on TOEFL. In proceedings of the 12th
ECML, Freiburg, Germany.

25

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 26–31,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

EdIt: A Broad-Coverage Grammar Checker Using Pattern Grammar

Chung-Chi Huang Mei-Hua Chen Shih-Ting Huang Jason S. Chang

Institute of Information Systems and Department of Computer Science,
Applications, National Tsing Hua University, National Tsing Hua University,

HsinChu, Taiwan, R.O.C. 300 HsinChu, Taiwan, R.O.C. 300
{u901571,chen.meihua,koromiko1104,Jason.jschang}@gmail.com{u901571,chen.meihua,koromiko1104,Jason.jschang}@gmail.com

Abstract

We introduce a new method for learning to
detect grammatical errors in learner’s writ-
ing and provide suggestions. The method
involves parsing a reference corpus and
inferring grammar patterns in the form of a
sequence of content words, function words,
and parts-of-speech (e.g., “play ~ role in
Ving” and “look forward to Ving”). At run-
time, the given passage submitted by the
learner is matched using an extended
Levenshtein algorithm against the set of
pattern rules in order to detect errors and
provide suggestions. We present a proto-
type implementation of the proposed
method, EdIt, that can handle a broad range
of errors. Promising results are illustrated
with three common types of errors in non-
native writing.

1 Introduction

Recently, an increasing number of research has
targeted language learners’ need in editorial assis-
tance including detecting and correcting grammar
and usage errors in texts written in a second lan-
guage. For example, Microsoft Research has de-
veloped the ESL Assistant, which provides such a
service to ESL and EFL learners.

Much of the research in this area depends on
hand-crafted rules and focuses on certain error
types. Very little research provides a general

framework for detecting and correcting all types of
errors. However, in the sentences of ESL writing,
there may be more than one errors and one error
may affect the performance of handling other er-
rors. Erroneous sentences could be more efficiently
identified and corrected if a grammar checker han-
dles all errors at once, using a set of pattern rules
that reflect the predominant usage of the English
language.

Consider the sentences, “He play an important
roles to close this deals.” and “He looks forward to
hear you.” The first sentence contains inaccurate
word forms (i.e., play, roles, and deals), and rare
usage (i.e., “role to close”), while the second sen-
tence use the incorrect verb form of “hear”. Good
responses to these writing errors might be (a) Use
“played” instead of “play.” (b) Use “role” instead
of “roles”, (c) Use “in closing” instead of “to
close” (d) Use “to hearing” instead of “to hear”,
and (e) insert “from” between “hear” and “you.”
These suggestions can be offered by learning the
patterns rules related to “play ~ role” and “look
forward” based on analysis of ngrams and collo-
cations in a very large-scale reference corpus. With
corpus statistics, we could learn the needed phra-
seological tendency in the form of pattern rules
such as “play ~ role in V-ing) and “look forward
to V-ing.” The use of such pattern rules is in line
with the recent theory of Pattern Grammar put
forward by Hunston and Francis (2000).

We present a system, EdIt, that automatically
learns to provide suggestions for rare/wrong usages
in non-native writing. Example EdIt responses to a

26

text are shown in Figure 1. EdIt has retrieved the
related pattern grammar of some ngram and collo-
cation sequences given the input (e.g., “play ~ role
in V-ing1”, and “look forward to V-ing”). EdIt
learns these patterns during pattern extraction
process by syntactically analyzing a collection of
well-formed, published texts.

At run-time, EdIt first processes the input pas-
sages in the article (e.g., “He play an important
roles to close ”) submitted by the L2 learner. And
EdIt tag the passage with part of speech informa-
tion, and compares the tagged sentence against the
pattern rules anchored at certain collocations (e.g.,
“play ~ role” and “look forward”). Finally, EdIt
finds the minimum-edit-cost patterns matching the
passages using an extended Levenshtein’s algo-
rithm (Levenshtein, 1966). The system then high-
lights the edits and displays the pattern rules as
suggestions for correction. In our prototype, EdIt
returns the preferred word form and preposition
usages to the user directly (see Figure 1); alterna-
tively, the actual surface words (e.g., “closing” and
“deal”) could be provided.

Input:

Related pattern rules
play ~ role in Noun
play ~ role in V-ing
he plays DET
he played DET
look forward to V-ing
hear from PRON ...

Suggestion:
He played an important role in closing this deal. He looks
forward to hearing from you.

He play an important roles to close this
deals. He looks forward to hear you.

Figure 1. Example responses to the non-native writing.

2 Related Work

Grammar checking has been an area of active re-
search. Many methods, rule-oriented or data-
driven, have been proposed to tackle the problem

of detecting and correcting incorrect grammatical
and usage errors in learner texts. It is at times no
easy to distinguish these errors. But Fraser and
Hodson (1978) shows the distinction between these
two kinds of errors.

For some specific error types (e.g., article and
preposition error), a number of interesting rule-
based systems have been proposed. For example,
Uria et al. (2009) and Lee et al. (2009) leverage
heuristic rules for detecting Basque determiner and
Korean particle errors, respectively. Gamon et al.
(2009) bases some of the modules in ESL Assistant
on rules derived from manually inspecting learner
data. Our pattern rules, however, are automatically
derived from readily available well-formed data,
but nevertheless very helpful for correcting errors
in non-native writing.

More recently, statistical approaches to develop-
ing grammar checkers have prevailed. Among un-
supervised checkers, Chodorow and Leacock
(2000) exploits negative evidence from edited tex-
tual corpora achieving high precision but low re-
call, while Tsao and Wible (2009) uses general
corpus only. Additionally, Hermet et al. (2008) and
Gamon and Leacock (2010) both use Web as a
corpus to detect errors in non-native writing. On
the other hand, supervised models, typically treat-
ing error detection/correction as a classification
problem, may train on well-formed texts as in the
methods by De Felice and Pulman (2008) and Te-
treault et al. (2010), or with additional learner texts
as in the method proposed by Brockett et al.
(2006). Sun et al. (2007) describes a method for
constructing a supervised detection system trained
on raw well-formed and learner texts without error
annotation.

Recent work has been done on incorporating
word class information into grammar checkers. For
example, Chodorow and Leacock (2000) exploit
bigrams and trigrams of function words and part-
of-speech (PoS) tags, while Sun et al. (2007) use
labeled sequential patterns of function, time ex-
pression, and part-of-speech tags. In an approach
similar to our work, Tsao and Wible (2009) use a
combined ngrams of words forms, lemmas, and
part-of-speech tags for research into constructional
phenomena. The main differences are that we an-
chored each pattern rule in lexical collocation so
as to avoid deriving rules that is may have two

1 In the pattern rules, we translate the part-of-speech tag to labels that are commonly used in learner dictionaries. For
instance, we use V-ing for the tag VBG denoting the progressive verb form, and Pron and Pron$ denotes a pronoun
and a possessive pronoun respectively.

27

consecutive part-of-speech tags (e.g, “V Pron$
socks off”). The pattern rules we have derived are
more specific and can be effectively used in detect-
ing and correcting errors.

In contrast to the previous research, we intro-
duce a broad-coverage grammar checker that ac-
commodates edits such as substitution, insertion
and deletion, as well as replacing word forms or
prepositions using pattern rules automatically de-
rived from very large-scale corpora of well-formed
texts.

3 The EdIt System

Using supervised training on a learner corpus is not
very feasible due to the limited availability of
large-scale annotated non-native writing. Existing
systems trained on learner data tend to offer high
precision but low recall. Broad coverage grammar
checkers may be developed using readily available
large-scale corpora. To detect and correct errors in
non-native writing, a promising approach is to
automatically extract lexico-syntactical pattern
rules that are expected to distinguish correct and in
correct sentences.

3.1 Problem Statement
We focus on correcting grammatical and usage
errors by exploiting pattern rules of specific collo-
cation (elastic or rigid such as “play ~ rule” or
“look forward”). For simplification, we assume
that there is no spelling errors. EdIt provides sug-
gestions to common writing errors2 of the follow-
ing correlated with essay scores3.
(1) wrong word form

(A) singular determiner preceding plural noun
(B) wrong verb form: concerning modal verbs (e.g.,
“would said”), subject-verb agreement, auxiliary
(e.g., “should have tell the truth”), gerund and in-
finitive usage (e.g., “look forward to see you” and
“in an attempt to helping you”)

(2) wrong preposition (or infinitive-to)
(A) wrong preposition (e.g., “to depends of it”)
(B) wrong preposition and verb form (e.g., “to play
an important role to close this deal”)

(3) transitivity errors
(A) transitive verb (e.g., “to discuss about the mat-
ter” and “to affect to his decision”)
(B) intransitive verb (e.g., “to listens the music”)

The system is designed to find pattern rules related
to the errors and return suggestionst. We now for-
mally state the problem that we are addressing.

Problem Statement: We are given a reference
corpus C and a non-native passage T. Our goal is
to detect grammatical and usage errors in T and
provide suggestions for correction. For this, we
extract a set of pattern rules, u1,…, um from C
such that the rules reflect the predominant usage
and are likely to distinguish most errors in non-
native writing.

In the rest of this section, we describe our solu-
tion to this problem. First, we define a strategy for
identifying predominant phraseology of frequent
ngrams and collocations in Section 3.2. Afer that,
we show how EdIt proposes grammar correc-
tionsedits to non-native writing at run-time in Sec-
tion 3.3.

3.2 Deriving Pattern Rules
We attempt to derive patterns (e.g., “play ~ role in
V-ing”) from C expected to represent the immedi-
ate context of collocations (e.g., “play ~ role” or
“look forward”). Our derivation process consists of
the following four-stage:

Stage 1. Lemmatizing, POS Tagging and Phrase
chunking. In the first stage, we lemmatize and tag
sentences in C. Lemmatization and POS tagging
both help to produce more general pattern rules
from ngrams or collocations. The based phrases are
used to extract collocations.

Stage 2. Ngrams and Collocations. In the second
stage of the training process, we calculate ngrams
and collocations in C, and pass the frequent
ngrams and collocations to Stage 4.

We employ a number of steps to acquire statisti-
cally significant collocations--determining the pair
of head words in adjacent base phrases, calculating
their pair-wise mutual information values, and fil-
tering out candidates with low MI values.

Stage 3. onstructing Inverted Files. In the third
stage in the training procedure, we build up in-
verted files for the lemmas in C for quick access in
Stage 4. For each word lemma we store surface
words, POS tags, pointers to sentences with base
phrases marked.

2 See (Nicholls, 1999) for common errors.

3 See (Leacock and Chodorow, 2003) and (Burstein et al., 2004) for correlation.

28

procedure GrammarChecking(T,PatternGrammarBank)
(1) Suggestions=“”//candidate suggestions
(2) sentences=sentenceSplitting(T)

for each sentence in sentences
(3) userProposedUsages=extractUsage(sentence)

for each userUsage in userProposedUsages
(4) patGram=findPatternGrammar(userUsage.lexemes,

PatternGrammarBank)
(5) minEditedCost=SystemMax; minEditedSug=“”

for each pattern in patGram
(6) cost=extendedLevenshtein(userUsage,pattern)

if cost<minEditedCost
(7) minEditedCost=cost; minEditedSug=pattern

if minEditedCost>0
(8) append (userUsage,minEditedSug) to Suggestions
(9) Return Suggestions

Figure 2. Grammar suggestion/correction at run-time

Stage 4. Deriving pattern rules. In the fourth and
final stage, we use the method described in a pre-
vious work (Chen et al., 2011) and use the inverted
files to find all sentences containing a give word
and collocation. Words surrounding a collocation
are identified and generalized based on their corre-
sponding POS tags. These sentences are then trans-
formed into a set of n-gram of words and POS
tags, which are subsequently counted and ranked to
produce pattern rules with high frequencies.

3.3 Run-Time Error Correction
Once the patterns rules are derived from a corpus
of well-formed texts, EdIt utilizes them to check
grammaticality and provide suggestions for a given
text via the procedure in Figure 2.

In Step (1) of the procedure, we initiate a set
Suggestions to collect grammar suggestions to the
user text T according to the bank of pattern gram-
mar PatternGrammarBank. Since EdIt system fo-
cuses on grammar checking at sentence level, T is
heuristically split (Step (2)).

For each sentence, we extract ngram and POS
tag sequences userUsage in T. For the example of
“He play an important roles. He looks forword to
hear you”, we extract ngram such as he V DET,
play an JJ NNS, play ~ roles to V, this NNS, look
forward to VB, and hear Pron.

For each userUsage, we first access the pattern
rules related to the word and collocation within
(e.g., play-role patterns for “play ~ role to close”)
Step (4). And then we compare userUsage against
these rules (from Step (5) to (7)). We use the ex-
tended Levenshtein’s algorithm shown in Figure 3
to compare userUsage and pattern rules.

Figure 3. Algorithm for identifying errors

If only partial matches are found for userUsage,
that could mean we have found a potential errors.
We use minEditedCost and minEditedSug to con-
train the patterns rules found for error suggestions
(Step (5)). In the following, we describe how to
find minimal-distance edits.

In Step (1) of the algorithm in Figure 3 we allo-
cate and initialize costArray to gather the dynamic
programming based cost to transform userUsage
into a specific contextual rule pattern. Afterwards,
the algorithm defines the cost of performing substi-
tution (Step (2)), deletion (Step (3)) and insertion
(Step (4)) at i-indexed userUsage and j-indexed
pattern. If the entries userUsage[i] and pattern[j]
are equal literally (e.g., “VB” and “VB”) or gram-
matically (e.g., “DT” and “Pron$”), no edit is
needed, hence, no cost (Step (2a)). On the other
hand, since learners tend to select wrong word
form and preposition, we set a lower cost for sub-
stitution among different word forms of the same
lemma or lemmas with the same POS tag (e.g.,
replacing V with V-ing or replacing to with in”. In
addition to the conventional deletion and insertion
(Step (3b) and (4b) respectively), we look ahead to
the elements userUsage[i+1] and pattern[j+1] con-
sidering the fact that “with or without preposition”
and “transitive or intransitive verb” often puzzles
EFL learners (Step (3a) and (4a)). Only a small
edit cost is counted if the next elements in use-
rUsage and Pattern are “equal”. In Step (6) the
extended Levenshtein’s algorithm returns the
minimum edit cost of revising userUsage using
pattern.

Once we obtain the costs to transform the use-
rUsage into a similar, frequent pattern rules, we
propose the minimum-cost rules as suggestions for

procedure extendedLevenshtein(userUsage,pattern)
(1) allocate and initialize costArray

for i in range(len(userUsage))
for j in range(len(pattern))

if equal(userUsage[i],pattern[j]) //substitution
(2a) substiCost=costArray[i-1,j-1]+0

elseif sameWordGroup(userUsage[i],pattern[j])
(2b) substiCost=costArray[i-1,j-1]+0.5
(2c) else substiCost=costArray[i-1,j-1]+1

if equal(userUsage[i+1],pattern[j+1]) //deletion
(3a) delCost=costArray[i-1,j]+smallCost
(3b) else delCost=costArray[i-1,j]+1

if equal(userUsage[i+1],pattern[j+1]) //insertion
(4a) insCost=costArray[i,j-1]+smallCost
(4b) else insCost=costArray[i,j-1]+1
(5) costArray[i,j]=min(substiCost,delCost,insCost)
(6) Return costArray[len(userUsage),len(pattern)]

29

correction (e.g., “play ~ role in V-ing” for revising
“play ~ role to V”) (Step (8) in Figure 2), if its
minimum edit cost is greater than zero. Otherwise,
the usage is considered valid. Finally, the Sugges-
tions accumulated for T are returned to users (Step
(9)). Example input and editorial suggestions re-
turned to the user are shown in Figure 1. Note that
pattern rules involved flexible collocations are de-
signed to take care of long distance dependencies
that might be always possible to cover with limited
ngram (for n less than 6). In addition, the long pat-
ter rules can be useful even when it is not clear
whether there is an error when looking at a very
narrow context. For example, “hear” can be either
be transitive or intransitive depending on context.
In the context of “look forward to” and person
noun object, it is should be intransitive and require
the preposition “from” as suggested in the results
provided by EdIt (see Figure 1).

In existing grammar checkers, there are typically
many modules examining different types of errors
and different module may have different priority
and conflict with one another. Let us note that this
general framework for error detection and correc-
tion is an original contribution of our work. In ad-
dition, we incorporate probabilities conditioned on
word positions in order to weigh edit costs. For
example, the conditional probability of V to imme-
diately follow “look forward to” is virtually 0,
while the probability of V-ing to do so is approxi-
mates 0.3. Those probabilistic values are used to
weigh different edits.

4 Experimental Results

In this section, we first present the experimental
setting in EdIt (Section 4.1). Since our goal is to
provide to learners a means to efficient broad-
coverage grammar checking, EdIt is web-based
and the acquisition of the pattern grammar in use is
offline. Then, we illustrate three common types of
errors, scores correlated, EdIt 4 capable of handling.

4.1 Experimental Setting
We used British National Corpus (BNC) as our
underlying general corpus C. It is a 100 million
British English word collection from a wide range
of sources. We exploited GENIA tagger to obtain
the lemmas, PoS tags and shallow parsing results
of C’s sentences, which were all used in construct-

ing inverted files and used as examples for GRASP
to infer lexicalized pattern grammar.

Inspired by (Chen et al., 2011) indicating EFL
learners tend to choose incorrect prepositions and
following word forms following a VN collocation,
and (Gamon and Leacock, 2010) showing fixed-
length and fixed-window lexical items are the best
evidence for correction, we equipped EdIt with
pattern grammar rules consisting of fixed-length
(from one- to five-gram) lexical sequences or VN
collocations and their fixed-window usages (e.g.,
“IN(in) VBG” after “play ~ role”, for window 2).

4.2 Results
We examined three types of errors and the mixture
of them for our correction system (see Table 1). In
this table, results of ESL Assistant are shown for
comparison, and grammatical suggestions are un-
derscored. As suggested, lexical and PoS informa-
tion in learner texts is useful for a grammar
checker, pattern grammar EdIt uses is easily acces-
sible and effective in both grammaticality and us-
age check, and a weighted extension to Leven-
shtein’s algorithm in EdIt accommodates substitu-
tion, deletion and insertion edits to learners’ fre-
quent mistakes in writing.

5 Future Work and Summary

Many avenues exist for future research and im-
provement. For example, we could augment pat-
tern grammar with lexemes’ PoS information in
that the contexts of a word of different PoS tags
vary. Take discuss for instance. The present tense
verb discuss is often followed by determiners and
nouns while the passive is by the preposition in as
in “… is discussed in Chapter one.” Additionally,
an interesting direction to explore is enriching pat-
tern grammar with semantic role labels (Chen et
al., 2011) for simple semantic check.

In summary, we have introduced a method for
correcting errors in learner text based on its lexical
and PoS evidence. We have implemented the
method and shown that the pattern grammar and
extended Levenshtein algorithm in this method are
promising in grammar checking. Concerning EdIt’s
broad coverage over different error types, simplic-
ity in design, and short response time, we plan to
evaluate it more fully: with or without conditional
probability using majority voting or not.

4 At http://140.114.214.80/theSite/EdIt_demo2/

30

Erroneous sentence EdIt suggestion ESL Assistant suggestion

Incorrect word formIncorrect word formIncorrect word form
… a sunny days … a sunny N a sunny day

every days, I … every N every day

I would said to … would V would say

he play a … he V-ed none

… should have tell the truth should have V-en should have to tell

… look forward to see you look forward to V-ing none

… in an attempt to seeing you an attempt to V none

… be able to solved this problem able to V none

Incorrect prepositionIncorrect prepositionIncorrect preposition
he plays an important role to close … play ~ role in none

he has a vital effect at her. have ~ effect on effect on her

it has an effect on reducing … have ~ effect of V-ing none

… depend of the scholarship depend on depend on

Confusion between intransitive and transitive verbConfusion between intransitive and transitive verbConfusion between intransitive and transitive verb
he listens the music. missing “to” after “listens” missing “to” after “listens”

it affects to his decision. unnecessary “to” unnecessary “to”

I understand about the situation. unnecessary “about” unnecessary “about”

we would like to discuss about this matter. unnecessary “about” unnecessary “about”

MixedMixedMixed
she play an important roles to close this deals. she V-ed; an Adj N;

play ~ role in V-ing; this N
play an important role;
close this deal

I look forward to hear you. look forward to V-ing;
missing “from” after “hear”

none

Table 1. Three common score-related error types and their examples with suggestions from EdIt and ESL Assistant.

References
C. Brockett, W. Dolan, and M. Gamon. 2006. Correcting ESL

errors using phrasal SMT techniques. In Proceedings of the
ACL.

J. Burstein, M. Chodorow, and C. Leacock. 2004. Automated
essay evaluation: the criterion online writing service. AI
Magazine, 25(3):27-36.

M. H. Chen, C. C. Huang, S. T. Huang, H. C. Liou, and J. S.
Chang. 2011. A cross-lingual pattern retrieval framework.
In Proceedings of the CICLing.

M. Chodorow and C. Leacock. 2000. An unsupervised method
for detecting grammatical errors. In Proceedings of the
NAACL, pages 140-147.

R. De Felice and S. Pulman. 2008. A classifer-based approach
to preposition and determiner error correction in L2 Eng-
lish. In COLING.

I. S. Fraser and L. M. Hodson. 1978. Twenty-one kicks at the
grammar horse. English Journal.

M. Gamon, C. Leacock, C. Brockett, W. B. Bolan, J. F. Gao,
D. Belenko, and A. Klementiev. Using statistical tech-
niques and web search to correct ESL errors. CALICO,
26(3): 491-511.

M. Gamon and C. Leacock. 2010. Search right and thou shalt
find … using web queries for learner error detection. In
Proceedings of the NAACL.

M. Hermet, A. Desilets, S. Szpakowicz. 2008. Using the web
as a linguistic resource to automatically correct lexico-
syntatic errors. In LREC, pages 874-878.

S. Hunston and G. Francis. 2000. Pattern grammar: a corpus-
driven approach to the lexical grammar of English.

C. M. Lee, S. J. Eom, and M. Dickinson. 2009. Toward ana-
lyzing Korean learner particles. In CALICO.

V. I. Levenshtein. 1966. Binary codes capable of correcting
deletions, insertions and reversals. Soviet Physics Doklady,
10:707-710.

C. Leacock and M. Chodorow. 2003. Automated grammatical
error detection.

D. Nicholls. 1999. The Cambridge Learner Corpus – error
coding and analysis for writing dictionaries and other
books for English Learners.

G. H. Sun, X. H. Liu, G. Cong, M. Zhou, Z. Y. Xiong, J. Lee,
and C. Y. Lin. 2007. Detecting erroneous sentences using
automatically mined sequential patterns. In ACL.

J. Tetreault, J. Foster, and M. Chodorow. 2010. Using parse
features for prepositions selection and error detection. In
Proceedings of the ACL, pages 353-358.

N. L. Tsao and D. Wible. 2009. A method for unsupervised
broad-coverage lexical error detection and correction. In
NAACL Workshop, pages 51-54.

31

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 32–37,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

MemeTube: A Sentiment-based Audiovisual System
for Analyzing and Displaying Microblog Messages

Cheng-Te Li1 Chien-Yuan Wang2 Chien-Lin Tseng2 Shou-De Lin1,2
1 Graduate Institute of Networking and Multimedia

2 Department of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan

{d98944005, sdlin}@csie.ntu.edu.tw {gagedark, moonspirit.wcy}@gmail.com

Abstract

Micro-blogging services provide platforms
for users to share their feelings and ideas
on the move. In this paper, we present a
search-based demonstration system, called
MemeTube, to summarize the sentiments
of microblog messages in an audiovisual
manner. MemeTube provides three main
functions: (1) recognizing the sentiments of
messages (2) generating music melody au-
tomatically based on detected sentiments,
and (3) produce an animation of real-time
piano playing for audiovisual display. Our
MemeTube system can be accessed via:
http://mslab.csie.ntu.edu.tw/memetube/ .

1 Introduction

Micro-blogging services such as Twitter1, Plurk2,
and Jaiku3, are platforms that allow users to share
immediate but short messages with friends. Gener-
ally, the micro-blogging services possess some
signature properties that differentiate them from
conventional weblogs and forum. First, microblogs
deal with almost real-time messaging, including
instant information, expression of feelings, and
immediate ideas. It also provides a source of crowd
intelligence that can be used to investigate com-
mon feelings or potential trends about certain news
or concepts. However, this real-time property can
lead to the production of an enormous number of
messages that recipients must digest. Second, mi-
cro-blogging is time-traceable. The temporal in-
formation is crucial because contextual posts that
appear close together are, to some extent, correlat-
ed. Third, the style of micro-blogging posts tends
to be conversation-based with a sequence of re-

1 http://www.twitter.com
2 http://www.plurk.com
3 http://www.jaiku.com/

sponses. This phenomenon indicates that the posts
and their responses are highly correlated in many
respects. Fourth, micro-blogging is friendship-
influenced. Posts from a particular user can also be
viewed by his/her friends and might have an im-
pact on them (e.g. the empathy effect) implicitly or
explicitly. Therefore, posts from friends in the
same period may be correlated sentiment-wise as
well as content-wise.

We leverage the above properties to develop an
automatic and intuitive Web application, Me-
meTube, to analyze and display the sentiments be-
hind messages in microblogs. Our system can be
regarded as a sentiment-driven, music-based sum-
marization framework as well as a novel audiovis-
ual presentation of art. MemeTube is designed as a
search-based tool. The system flow is as shown in
Figure 1. Given a query (either a keyword or a user
id), the system first extracts a series of relevant
posts and replies based on keyword matching.
Then sentiment analysis is applied to determine the
sentiment of the posts. Next a piece of music is
composed to reflect the detected sentiments. Final-
ly, the messages and music are fed into the anima-
tion generation model, which displays a piano
keyboard that plays automatically.

Figure 1: The system flow of our MemeTube.

The contributions of this work can be viewed
from three different perspectives.
 From system perspective of view, we demo a

novel Web-based system, MemeTube, as a kind
of search-based sentiment presentation, musi-

32

calization, and visualization tool for microblog
messages. It can serve as a real-time sentiment
detector or an interactive microblog audio-
visual presentation system.

 Technically, we integrate a language-model-
based classifier approach with a Markov-
transition model to exploit three kinds of in-
formation (i.e., contextual, response, and
friendship information) for sentiment recogni-
tion. We also integrate the sentiment-detection
system with a real-time rule-based harmonic
music and animation generator to display
streams of messages in an audiovisual format.

 Conceptually, our system demonstrates that,
instead of simply using textual tags to express
sentiments, it is possible to exploit audio (i.e.,
music) and visual (i.e., animation) cues to pre-
sent microblog users’ feelings and experiences.
In this respect, the system can also serve as a
Web-based art piece that uses NLP-
technologies to concretize and portray senti-
ments.

2 Related Works

Related works can be divided into two parts: sen-
timent classification in microblogs, and sentiment-
based audiovisual presentation for social media.
For the first part, most of related literatures focus
on exploiting different classification methods to
separate positive and negative sentiments by a va-
riety of textual and linguistics features, as shown in
Table 1. Their accuracy ranges from 60%~85%
depending on different setups. The major differ-
ence between our work and existing approaches is
that our model considers three kinds of additional
information (i.e., contextual, response and friend-
ship information) for sentiment recognition.

In recent years, a number of studies have inves-
tigated integrating emotions and music in certain
media applications. For example, Ishizuka and
Onisawa (2006) generated variations of theme mu-
sic to fit the impressions of story scenes represent-
ed by textual content or pictures. Kaminskas (2009)
aligned music with user-selected points of interests
for recommendation. Li and Shan (2007) produced
painting slideshows with musical accompaniment.
Hua et al. (2004) proposed a Photo2Video system
that allows users to specify incident music that ex-
presses their feelings about the photos. To the best
of our knowledge, MemeTube is the first attempt
to exploit AI techniques to create harmonic audio-

visual experiences and interactive emotion-based
summarization for microblogs.

Table 1: Summary of related works that
detect sentiments in microblogs.

3 Sentiment Analysis of Microblog Posts

First, we develop a classification model as our
basic sentiment recognition mechanism. Given a
training corpus of posts and responses annotated
with sentiment labels, we train an n-gram language
model for each sentiment. Then, we use such mod-
el to calculate the probability that a post expresses
the sentiment s associated with that model:
ሻݏ|݌ሺݎܲ

ൌ ⋯,ଵݓሺݎܲ ⋯,௜ିሺ௡ିଵሻݓ௜หݓ൫ݎሻෑܲݏ|௠ݓ, ,௜ିଵݓ, ,൯ݏ

௠

௜ୀଵ

where w is the sequence of words in the post. We
also use the common Laplace smoothing method.

For each post p and each sentiment sS, our
classifier calculates the probability that such post
expresses the sentiment ܲݎሺ݌|ݏሻ using Bayes rule:

ሻ݌|ݏሺݎܲ ൌ ሻݏ|݌ሺݎሻܲݏሺݎܲ
 ሻ is estimated directly by counting, whileݏሺݎܲ

-ሻ can be derived by using the learned lanݏ|݌ሺݎܲ

 Features Methods

Pak and Paroubek

2010

statistic counting of

adjectives
Naive Bayes

Chen et al. 2008 POS tags, emoticons SVM

Lewin and Pribu-

la 2009
smileys, keywords

Maximum Entropy,

SVM

Riley 2009

n-grams, smileys,

hashtags, replies,

URLs, usernames,

emoticons

Naive Bayes,

Prasad 2010 n-grams Naïve Bayes

Go et al. 2009

usernames, sequential

patterns of keywords,

POS tags, n-grams

Naive Bayes, Max-

imum Entropy,

SVM

Li et al. 2009

several dictionaries

about different kinds of

keywords

Keyword Matching

Barbosa and Feng

2010

retweets, hashtag, re-

plies, URLs, emoticons,

upper cases

SVM

Sun et al. 2010
keyword counting and

Chinese dictionaries
Naive Bayes, SVM

Davidov et al.

2010

n-grams, word patterns,

punctuation information
k-Nearest Neighbor

Bermingham and

Smeaton 2010
n-grams and POS tags

Binary Classifica-

tion

33

guage models. This allow us to produce a distribu-
tion of sentiments for a given post p, denoted as ܵ௣.

However, the major challenge in the microblog
sentiment detection task is that the length of each
post is limited (i.e., posts on Twitter are limited to
140 characters). Consequently, there might not be
enough information for a sentiment detection sys-
tem to exploit. To solve this problem, we propose
to utilize the three types of information mentioned
earlier. We discuss each type in detail below.

3.1 Response Factor

We believe the sentiment of a post is highly corre-
lated with (but not necessary similar to) that of re-
sponses to the post. For example, an angry post
usually triggers angry responses, but a sad post
usually solicits supportive responses. We propose
to learn the correlation patterns of sentiments from
the data and use them to improve the recognition.

To achieve such goal, from the data, we learn
the probability ܲሺܵ݁݊ݐ݊݁݉݅ݐ௣௢௦௧|ܵ݁݊ݐ݊݁݉݅ݐ௥௘௦௣௢௡௦௘ሻ,
which represents the conditional probability of a
post given responses. Then we use such probability
to construct a transition matrix ܯ௥ , where ܯ௥೔ೕ

=ܲሺܵ݁݊ݐ݊݁݉݅ݐ௣௢௦௧ ൌ ௥௘௦௣௢௡௦௘ݐ݊݁݉݅ݐ݊݁ܵ	|	݆ ൌ ݅ሻ.
With ܯ௥, we can generate the adjusted sentiment dis-

tribution of the post ܵ′௣ as:

ܵ′௣ ൌ α ൈ
∑ ௥ܹ೔ܵ௥೔ܯ௥
௞
௜ୀଵ

݇
൅ ሺ1 െ αሻܵ௣	,

where ܵ௣ denotes the original sentiment distribu-
tion of the post, and ܵ௥೔ is the sentiment distribu-
tion of the ݅௧௛ response determined by the
abovementioned language model approach. In ad-
dition, ௥ܹ೔ ൌ 1 ሺݐ௥௘௦௣௢௡௦௘೔ െ ⁄௣௢௦௧ሻݐ represents the
weight of the response since it is preferable to as-
sign higher weights to closer responses. There is
also a global parameter  that determines how
much the system should trust the information de-
rived from the responses to the post. If there is no
response to a post, we simply assign ܵ′௣ ൌ ܵ௣.

3.2 Context Factor

It is assumed that the sentiment of a microblog
post is correlated with the author’s previous posts
(i.e., the ‘context’ of the post). We also assume
that, for each person, there is a sentiment transition
matrix ܯ௖ that represents how his/her sentiments
change over time. The ሺ݅, ݆ሻ௧௛ element in ܯ௖ repre-
sents the conditional probability from the senti-
ment of the previous post to that of the current post:
ܲሺܵ݁݊ݐ݊݁݉݅ݐሺ ௧ܲሻ ൌ ሺݐ݊݁݉݅ݐ݊݁ܵ	|	݆ ௧ܲିଵሻ ൌ ݅ሻ.

The diagonal elements stand for the consistency
of the emotion state of a person. Conceivably, a
capricious person’s diagnostic ܯ௖೔೔ values will be
lower than those of a calm person. The matrix ܯ௖
can be learned directly from the annotated data.

Let ܵ௧ represent the detected sentiment distribu-
tion of an existing post at time t. We want to adjust
ܵ௧ based on the previous posts from ݐ െ ݐ to ݐ ,
where ݐ is a given temporal threshold. The sys-
tem first extracts a set of posts from the same au-
thor posted from time ݐ െ ݐ to ݐ and determines
their sentiment distributions ሼܵ௧భ, ܵ௧మ, … , ܵ௧ೖሽ ,
where ݐ െ ݐ ൏ ,ଵݐ ,ଶݐ … , ௞ݐ ൏ ݐ using the same
classifier. Then, the system utilizes the following
update equation to obtain an adjusted sentiment
distribution ܵ′௧:

ܵ′௧ ൌ α ൈ
∑ ௧ܹ౟ܵ௧౟ܯ௖
௞
௜ୀଵ

݇
൅ ሺ1 െ αሻܵ௧	,

where ௧ܹ೔ ൌ 1/ሺݐ െ ௜ሻ. The parameters ௧ܹ೔, ݇, ݐ
are defined similar to the previous case. If there is
no post in the defined interval, the system will
leave ܵ௧ unchanged.

3.3 Friendship Factor

We also assume that the friends’ emotions are cor-
related with each other. This is because friends
affect each other, and they are more likely to be in
the same circumstances, and thus enjoy/suffer sim-
ilarly. Our hypothesis is that the sentiment of a
post and the sentiments of the author’s friends’
recent posts might be correlated. Therefore, we can
treat the friends’ recent posts in the same way as
the recent posts of the author, and learn the transi-
tion matrixܯ௙ , where ܯ௙೔ೕ ൌ ܲሺܵ݁݊ݎ݁ݏݑݐ݊݁݉݅ݐሺ ௧ܲሻ ൌ

ሺ݀݊݁݅ݎ݂	ݏ′ݎ݁ݏݑݐ݊݁݉݅ݐ݊݁ܵ	|	݆ ௧ܲିଵሻ ൌ ݅ሻ, and apply the tech-
nique proposed in the previous section to improve
the recognition accuracy.

However, it is not necessarily true that all
friends have similar emotional patterns. One’s sen-
timent transition matrix ܯ௖ might be very different
from that of the other, so we need to be careful
when using such information to adjust our recogni-
tion outcomes. We propose to only consider posts
from friends with similar emotional patterns.

To achieve our goal, we first learn every user’s
contextual sentiment transition matrix ܯ௖ from the
data. In ܯ௖, each row represents a distribution that
sums to one; therefore, we can compare two ma-
trixes ܯ௖భ and ܯ௖మ by averaging the symmetric
KL-divergence of each row. That is,

34

ଶሻܯ,ଵܯሺݕݐ݅ݎ݈ܽ݅݉݅ܵ
ൌ ௜ୀଵ݁݃ܽݎ݁ݒܣ

௡ ,ଵܯሺݓ݋൫ܴܮܭ ݅ሻ, ,ଶܯሺݓ݋ܴ ݅ሻ൯.
Two persons are considered as having similar

emotion pattern if their contextual sentiment transi-
tion matrixes are similar. After a set of similar
friends are identified, their recent posts (i.e., from
ݐ െ ݐ to ݐ) are treated in the same way as the
posts by the author, and we use the method pro-
posed previously to fine-tune the recogni-
tion outcomes.

4 Music Generation

For each microblog post retrieved according to the
query, we can derive its sentiment distribution (as
a vector of probabilities) by using the above meth-
od. Next, the system transforms every sentiment
distribution into an affective vector comprised of a
valence value and an arousal value. The valence
value represents the positive-to-negative sentiment,
while the arousal value represents the intense-to-
silent level.

We exploit the mapping from each type of sen-
timent to a two-dimensional affective vector based
on the two-dimensional emotion model of Russell
(1980). Using the model we extract the affective
score vectors of the six emotions (see Table 2)
used in our experiments. The mapping enables us
to transform a sentiment distribution ܵ௣ into an
affective score vector by weighted sum approach.
For example, given a distribution of (Anger=20%,
Surprise=20%,Disgust=10%, Fear=10%, Joy=10%,
Sadness=30%), the two-dimensional affective vec-
tor can be computed as 0.2*(-0.25, 1) + 0.2*(0.5,
0.75) + 0.1*(-0.75, -0.5) + 0.1*(-0.75, 0.5) +
0.1*(1, 0.25) + 0.3*(-1, -0.25). Finally, the affec-
tive vector of each post will be summed to repre-
sent the sentiment of the given query in terms of
the valence and arousal values.

Table 2: Affective score vector for each sentiment label.

Sentiment Label Affective Score Vector

Anger (-0.25, 1)
Surprise (0.5, 0.75)
Disgust (-0.75, -0.5)

Fear (-0.75, 0.5)
Joy (1, 0.25)

Sadness (-1, -0.25)

Next the system transforms the affective vector
into music elements through chord set selection
(based on the valence value) and rhythm determi-

nation (based on the arousal value). For chord set
selection, we design nine basic chord sets as {A,
Am, Bm, C, D, Dm, Em, F, G}, where each chord
set consists of some basic notes. The chord sets are
used to compose twenty chord sequences. Half of
the chord sequences are used for weakly positive to
strongly positive sentiments and the other half are
used for weakly negative to strongly negative sen-
timents. The valence value is therefore divided into
twenty levels, and gradually shifts from strongly
positive to strongly negative. The chord sets ensure
that the resulting auditory presentation is in har-
mony (Hewitt 2008). For rhythm determination,
we divide the arousal values into five levels to de-
cide the tempo/speed of the music. Higher arousal
values generate music with a faster tempo while
lower ones lead to slow and easy-listening music.

Figure 2: A snapshot of the proposed MemeTube.

Figure 3: The animation with automatic piano playing.

5 Animation Generation

In this final stage, our system produces real-time
animation for visualization. The streams of mes-
sages are designed to flow as if they were playing a
piece of a piano melody. We associate each mes-
sage with a note in the generated music. When a
post message flows from right to left and touches a
piano key, the key itself blinks once and the corre-
sponding tone of the key is produced. The message
flow and the chord/rhythm have to be synchro-
nized so that it looks as if the messages themselves
are playing the piano. The system also allows users
to highlight the body of a message by moving the

35

cursor over the flowing message. A snapshot is
shown in Figure 2 and the sequential snapshots of
the animation are shown in Figure 3.

6 Evaluations on Sentiment Detection

We collect the posts and responses from every ef-
fective user, users with more than 10 messages, of
Plurk from January 31st to May 23rd, 2009. In order
to create the diversity for the music generation sys-
tem, we decide to use six different sentiments, as
shown in Table 2, rather than using only three sen-
timent types, positive, negative and neutral, as
most of the systems in Table 1 have used. The sen-
timent of each sentence is labeled automatically
using the emoticons. This is similar to what many
people have proposed for evaluation (Davidov et al.
2010; Sun et al. 2010; Bifet and Frank 2010; Go et
al. 2009; Pak and Paroubek 2010; Chen et al.
2010). We use data from January 31st to April 30th
as training set, May 1st to 23rd as testing data. For
the purpose of observing the result of using the
three factors, we filter the users without friends,
the posts without responses, and the posts without
previous post in 24 hour in testing data. We also
manually label the sentiments on the testing data
(totally 1200 posts, 200 posts for each sentiment).

We use three metrics to evaluate our model: ac-
curacy, Root-Mean-Square Error for valence (de-
noted by RMSE(V)) and RMSE for arousal
(denoted by RMSE(A)). The RMSE values are
generated by comparing the affective vector of the
predicted sentiment distribution with the affective
vector of the answer. Our basic model reaches
33.8% in accuracy, 0.78 in the RMSE(V) and 0.64
in RMSE(A). Note that RMSE0.5 means that
there is roughly one quarter (25%) error in the va-
lence/arousal values as they range from [-1,1].

Note that the main reason the accuracy is not ex-
tremely high is that we are dealing with 6 classes.
When we combine angry, disgust, fear, and sad-
ness into one negative sense and the rest as posi-
tive senses, our system reaches 78.7% in accuracy,
which is competitive to the state-of-the-art algo-
rithms as shown in the related work section. How-
ever, doing such generalization will lose the
flexibility of producing more fruitful and diverse
pieces of music. Therefore we choose more fine-
grained classes for our experiment.

Figure 3 shows the results of exploiting the re-
sponse, context, and friendship. Note RMSE0.5
means that there is roughly one quarter (25%) error

in the valence/arousal values as they range from [-
1,1]. The results show that considering all three
additional factors can achieve the best results and
decent improvement over the basic LM model.

Table 3: The results after adding addition info
(note that for RMSE, the lower value the better)

 LM Response Context Friend Combine

Accuracy 33.8% 34.7% 34.8% 35.1% 36.5%

RMSE(V) 0.784 0.683 0.684 0.703 0.679

RMSE(A) 0.640 0.522 0.516 0.538 0.514

7 System Demo

We create video clips of five different queries for
demonstration, which is downloadable from:
http://mslab.csie.ntu.edu.tw/memetube/demo/. This
demo page contains the resulting clips of four
keyword queries (including football, volcano,
Monday, big bang) and a user id query mstcgeek.
Here we briefly describe each case. (1) The video
for query term, football, was recorded on February
7th 2011, results in a relatively positive and ex-
tremely intense atmosphere. It is reasonable be-
cause the NFL Super Bowl was played on
February 6th, 2011. The valence value is not as
high as the arousal value because some fans might
not be very happy to see their favorite team losing
the game. (2) The query, volcano, was also record-
ed on February 7th 2011. The resulting video ex-
presses negative valence and neutral arousal. After
checking the posts, we have learned that it is be-
cause the Japanese volcano Mount Asama has con-
tinued to erupt. Some users are worried and
discussed about the potential follow-up disasters.
(3) The query Monday was performed on February
6th 2011, which is a Sunday night. The negative
valence reflects the “blue Monday” phenomenon,
which leads to some heavy, less smooth melody. (4)
The term big bang turns out to be very positive on
both valence and arousal, mainly because, besides
its relatively neutral meaning in physics, this term
also refers to a famous comic show that some peo-
ple in Plurk love to watch. We also use one user id
as query: the user-id mstcgeek is the official ac-
count of Microsoft Taiwan. This user often uses
cheery texts to share some videos about their prod-
ucts or provide some discounts of their product,
which leads to relatively hyped music.

36

8 Conclusion

Microblog, as a daily journey and social network-
ing service, generally captures the dynamics of the
change of feelings over time of the authors and
their friends. In MemeTube, the affective vector is
generated by aggregating the sentiment distribution
of each post; thus, it represents the majority’s opin-
ion (or sentiment) about a topic. In this sense, our
system can be regarded as providing users with an
audiovisual experience to learn collective opinion
of a particular topic. It also shows how NLP tech-
niques can be integrated with knowledge about
music and visualization to create a piece of inter-
esting network art work. Note that MemeTube can
be regarded as a flexible framework as well since
each component can be further refined inde-
pendently. Therefore, our future works are three-
fold: For sentiment analysis, we will consider more
sophisticated ways to improve the baseline accura-
cy and to aggregate individual posts into a collec-
tive consensus. For music generation, we plan to
add more instruments and exploit learning ap-
proaches to improve the selection of chords. For
visualization, we plan to add more interactions be-
tween music, sentiments, and users.

Acknowledgements

This work was supported by National Science Council, Na-
tional Taiwan University and Intel Corporation under Grants
NSC99-2911-I-002-001, 99R70600, and 10R80800.

References

Barbosa, L., and Feng, J. 2010. Robust Sentiment Detec-
tion on Twitter from Biased and Noisy Data. In Pro-
ceedings of International Conference on Computational
Linguistics (COLING’10), 36–44.

Bermingham, A., and Smeaton, A. F. 2010. Classifying
Sentiment in Microblogs: is Brevity an Advantage? In
Proceedings of ACM International Conference on In-
formation and Knowledge Management (CIKM’10),
1183–1186.

Chen, M. Y.; Lin, H. N.; Shih, C. A.; Hsu, Y. C.; Hsu, P.
Y.; and Hewitt, M. 2008. Music Theory for Computer
Musicians. Delmar.

Hsieh, S. K. 2010. Classifying Mood in Plurks. In Proceed-
ings of Conference on Computational Linguistics and
Speech Processing (ROCLING 2010), 172–183.

Davidov, D.; Tsur, O.; and Rappoport, A. 2010. Enhanced
Sentiment Learning Using Twitter Hashtags and Smi-
leys. In Proceedings of International Conference on
Computational Linguistics (COLING’10), 241–249.

Go, A.; Bhayani, R.; and Huang, L. 2009. Twitter Senti-
ment Classification using Distant Supervision. Technical
Report, Stanford University.

Hua, X. S.; Lu, L.; and Zhang, H. J. 2004. Photo2Video -
A System for Automatically Converting Photographic
Series into Video. In Proceedings of ACM International
Conference on Multimedia (MM’04), 708–715.

Ishizuka, K., and Onisawa, T. 2006. Generation of Varia-
tions on Theme Music Based on Impressions of Story
Scenes. In Proceedings of ACM International Confer-
ence on Game Research and Development, 129–136.

Kaminskas, M. 2009. Matching Information Content with
Music. In Proceedings of ACM International Confer-
ence on Recommendation System (RecSys’09), 405–
408.

Lewin, J. S., and Pribula, A. 2009. Extracting Emotion
from Twitter. Technical Report, Stanford University.

Li, C. T., and Shan, M. K. 2007. Emotion-based Impres-
sionism Slideshow with Automatic Music Accompani-
ment. In Proceedings of ACM International Conference
on Multimedia (MM’07), 839–842.

Li, S.; Zheng, L.; Ren, X.; and Cheng, X. 2009. Emotion
Mining Research on Micro-blog. In Proceedings of
IEEE Symposium on Web Society, 71–75.

Pak, A., and Paroubek, P. 2010. Twitter Based System:
Using Twitter for Disambiguating Sentiment Ambigu-
ous Adjectives. In Proceedings of International Work-
shop on Semantic Evaluation, (ACL’10), 436–439.

Pak, A., and Paroubek, P. 2010. Twitter as a Corpus for
Sentiment Analysis and Opinion Mining. In Proceedings
of International Conference on Language Resources and
Evaluation (LREC’10), 1320–1326.

Prasad, S. 2010. Micro-blogging Sentiment Analysis Using
Bayesian Classification Methods. Technical Report,
Stanford University.

Riley, C. 2009. Emotional Classification of Twitter Mes-
sages. Technical Report, UC Berkeley.

Russell, J. A. 1980. Circumplex Model of Affect. Journal
of Personality and Social Psychology, 39(6):1161–1178.

Strapparava, C., and Valitutti, A. 2004. Wordnet-affect: an
Affective extension of wordnet. In Proceedings of Inter-
national Conference on Language Resources and Evalu-
ation, 1083–1086.

Sun, Y. T.; Chen, C. L.; Liu, C. C.; Liu, C. L.; and Soo, V.
W. 2010. Sentiment Classification of Short Chinese
Sentences. In Proceedings of Conference on Computa-
tional Linguistics and Speech Processing
(ROCLING’10), 184–198.

Yang, C.; Lin, K. H. Y.; and Chen, H. H. 2007. Emotion
Classification Using Web Blog Corpora. In Proceedings
of IEEE/WIC/ACM International Conference on Web
Intelligence (WI’07), 275–278.

37

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 38–43,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

An ERP-based Brain-Computer Interface for text entry
using Rapid Serial Visual Presentation and Language Modeling

K.E. Hild◦, U. Orhan†, D. Erdogmus†, B. Roark◦, B. Oken◦, S. Purwar†, H. Nezamfar†, M. Fried-Oken◦
◦Oregon Health and Science University †Cognitive Systems Lab, Northeastern University

{hildk,roarkb,oken,friedm}@ohsu.edu {orhan,erdogmus,purwar,nezamfar}@ece.neu.edu

Abstract
Event related potentials (ERP) corresponding
to stimuli in electroencephalography (EEG)
can be used to detect the intent of a per-
son for brain computer interfaces (BCI). This
paradigm is widely used to build letter-by-
letter text input systems using BCI. Neverthe-
less using a BCI-typewriter depending only on
EEG responses will not be sufficiently accu-
rate for single-trial operation in general, and
existing systems utilize many-trial schemes to
achieve accuracy at the cost of speed. Hence
incorporation of a language model based prior
or additional evidence is vital to improve accu-
racy and speed. In this demonstration we will
present a BCI system for typing that integrates
a stochastic language model with ERP classifi-
cation to achieve speedups, via the rapid serial
visual presentation (RSVP) paradigm.

1 Introduction
There exist a considerable number of people with se-
vere motor and speech disabilities. Brain computer
interfaces (BCI) are a potential technology to create
a novel communication environment for this popula-
tion, especially persons with completely paralyzed
voluntary muscles (Wolpaw, 2007; Pfurtscheller et
al., 2000). One possible application of BCI is typ-
ing systems; specifically, those BCI systems that
use electroencephalography (EEG) have been in-
creasingly studied in the recent decades to enable
the selection of letters for expressive language gen-
eration (Wolpaw, 2007; Pfurtscheller et al., 2000;
Treder and Blankertz, 2010). However, the use of
noninvasive techniques for letter-by-letter systems
lacks efficiency due to low signal to noise ratio and
variability of background brain activity. Therefore
current BCI-spellers suffer from low symbol rates
and researchers have turned to various hierarchi-
cal symbol trees to achieve system speedups (Serby
et al., 2005; Wolpaw et al., 2002; Treder and
Blankertz, 2010). Slow throughput greatly dimin-
ishes the practical usability of such systems. In-
corporation of a language model, which predicts
the next letter using the previous letters, into the

decision-making process can greatly affect the per-
formance of these systems by improving the accu-
racy and speed.

As opposed to the matrix layout of the popu-
lar P300-Speller (Wolpaw, 2007), shown in Fig-
ure 1, or the hexagonal two-level hierarchy of the
Berlin BCI (Treder and Blankertz, 2010), we uti-
lize another well-established paradigm: rapid se-
rial visual presentation (RSVP), shown in Figure
2. This paradigm relies on presenting one stimu-
lus at a time at the focal point of the screen. The
sequence of stimuli are presented at relatively high
speeds, each subsequent stimulus replacing the pre-
vious one, while the subject tries to perform men-
tal target matching between the intended symbol and
the presented stimuli. EEG responses corresponding
to the visual stimuli are classified using regularized
discriminant analysis (RDA) applied to stimulus-
locked temporal features from multiple channels.

The RSVP interface is of particular utility for the
most impaired users, including those suffering from
locked-in syndrome (LIS). Locked-in syndrome can
result from traumatic brain injury, such as a brain-
stem stroke1, or from neurodegenerative diseases
such as amyotrophic lateral sclerosis (ALS or Lou
Gehrig’s disease). The condition is characterized by
near total paralysis, though the individuals are cog-
nitively intact. While vision is retained, the motor
control impairments extend to eye movements. Of-
ten the only reliable movement that can be made by

1Brain stem stroke was the cause of LIS for Jean-Dominique
Bauby, who dictated his memoir The Diving Bell and the But-
terfly via eyeblinks (Bauby, 1997).

M

G

A FEC

_9765

3 4Y 1Z

XWUTS

RQON

H

B

LKI

V

8

P

J

2

D

Figure 1: Spelling grid such as that used for the P300
speller (Farwell and Donchin, 1988). ‘ ’ denotes space.

38

Figure 2: RSVP scanning interface.

an individual is a particular muscle twitch or single
eye blink, if that. Such users have lost the voluntary
motor control sufficient for such an interface. Rely-
ing on extensive visual scanning or complex gestu-
ral feedback from the user renders a typing interface
difficult or impossible to use for the most impaired
users. Simpler interactions via brain-computer in-
terfaces (BCI) hold much promise for effective text
communication for these most impaired users. Yet
these simple interfaces have yet to take full advan-
tage of language models to ease or speed typing.
In this demonstration, we will present a language-
model enabled interface that is appropriate for the
most impaired users.

In addition, the RSVP paradigm provides some
useful interface flexibility relative to the grid-based
paradigm. First, it allows for auditory rather than
visual scanning, for use by the visually impaired
or when visual access is inconvenient, such as in
face-to-face communication. Auditory scanning is
less straightforward when using a grid. Second,
multi-character substrings can be scanned in RSVP,
whereas the kind of dynamic re-organization of a
grid that would be required to support this can be
very confusing. Finally, language model integration
with RSVP is relatively straightforward, as we shall
demonstrate. See Roark et al. (2010) for methods
integrating language modeling into grid scanning.

2 RSVP based BCI and ERP Classification
RSVP is an experimental psychophysics technique
in which visual stimulus sequences are displayed
on a screen over time on a fixed focal area and
in rapid succession. The Matrix-P300-Speller used
by Wadsworth and Graz groups (especially g.tec,
Austria) opts for a spatially distributed presentation
of possible symbols, highlighting them in different
orders and combinations to elicit P300 responses.
Berlin BCI’s recent variation utilizes a 2-layer tree
structure where the subject chooses among six units
(symbols or sets of these) where the options are laid
out on the screen while the subject focuses on a cen-
tral focal area that uses an RSVP-like paradigm to
elicit P300 responses. Full screen awareness is re-

quired. In contrast, our approach is to distribute
the stimuli temporally and present one symbol at a
time using RSVP and seek a binary response to find
the desired letter, as shown in Figure 2. The latter
method has the advantage of not requiring the user
to look at different areas of the screen, which can be
an important factor for those with LIS.

Our RSVP paradigm utilizes stimulus sequences
consisting of the 26 letters in the English alphabet
plus symbols for space and backspace, presented in
a randomly ordered sequence. When the user sees
the target symbol, the brain generates an evoked re-
sponse potential (ERP) in the EEG; the most promi-
nent component of this ERP is the P300 wave, which
is a positive deflection in the scalp voltage primar-
ily in frontal areas and that generally occurs with a
latency of approximately 300 ms. This natural nov-
elty response of the brain, occurring when the user
detects a rare, sought-after target, allows us to make
binary decisions about the user’s intent.

The intent detection problem becomes a signal
classification problem when the EEG signals are
windowed in a stimulus-time-locked manner start-
ing at stimulus onset and extending for a sufficient
duration – in this case 500ms. Consider Figure
3, which shows the trial-averaged temporal signals
from various EEG channels corresponding to tar-
get and non-target (distractor) symbols. This graph
shows a clear effect between 300 and 500 ms for the
target symbols that is not present for the distractor
symbols (the latter of which clearly shows a com-
ponent having a periodicity of 400 ms, which is ex-
pected in this case since a new image was presented
every 400 ms). Figure 4, on the other hand, shows
the magnitude of the trial and distractor responses at
channel Cz on a single-trial basis, rather than aver-
aged over all trials. The signals acquired from each
EEG channel are incorporated and classified to de-
termine the class label: ERP or non-ERP.

Our system functions as follows. First, each chan-
nel is band-pass filtered. Second, each channel is
temporally-windowed. Third, a linear dimension
reduction (using principal components analysis) is
learned using training data and is subsequently ap-
plied to the EEG data when the system is being
used. Fourth, the data vectors obtained for each
channel and a given stimulus are concatenated to
create the data matrix corresponding to the speci-
fied stimulus. Fifth, Regularized Discriminant Anal-
ysis (RDA) (Friedman, 1989), which estimates con-
ditional probability densities for each class using

39

Figure 3: Trial-averaged EEG data corresponding to the target
response (top) and distractor response (bottom) for a 1 second
window.

Kernel Density Estimation (KDE), is used to deter-
mine a purely EEG-based classification discriminant
score for each stimulus. Sixth, the conditional prob-
ability of each letter given the typed history is ob-
tained from the language model. Seventh, Bayesian
fusion (which assumes the EEG-based information
and the language model information are statistically
independent given the class label) is used to combine
the RDA discriminant score and the language model
score to generate an overall score, from which we
infer whether or not a given stimulus represents an
intended (target) letter.

RDA is a modified quadratic discriminant anal-
ysis (QDA) model. Assuming each class has a
multivariate normal distribution and assuming clas-
sification is made according to the comparison of
posterior distributions of the classes, the optimal
Bayes classifier resides within the QDA model fam-
ily. QDA depends on the inverse of the class co-
variance matrices, which are to be estimated from
training data. Hence, for small sample sizes and
high-dimensional data, singularities of these matri-
ces are problematic. RDA applies regularization and
shrinkage procedures to the class covariance matrix

Figure 4: Single-trial EEG data at channel Cz corresponding
to the target response (top) and distractor response (bottom) for
a 1 second window.

estimates in an attempt to minimize problems asso-
ciated with singularities. The shrinkage procedure
makes the class covariances closer to the overall data
covariance, and therefore to each other, thus mak-
ing the quadratic boundary more similar to a linear
boundary. Shrinkage is applied as

Σ̂c(λ) = (1− λ)Σ̂c + λΣ̂, (1)

where λ is the shrinkage parameter, Σ̂c is the class
covariance matrix estimated for class c ∈ {0, 1},
c = 0 corresponds to the non-target class, c = 1 cor-
responds to the target class, and Σ̂ is the weighted
average of class covariance matrices. Regularization
is administered as

Σ̂c(λ, γ) = (1− γ)Σ̂c(λ) +
γ

d
tr[Σ̂c(λ)]I, (2)

where γ is the regularization parameter, tr[·] is the
trace function, and d is the dimension of the data
vector.

After carrying out the regularization and shrink-
age on the estimated covariance matrices, the
Bayesian classification rule (Duda et al., 2001) is
applied by comparing the log-likelihood ratio (using

40

Figure 5: Timing of stimulus sequence presentation

the posterior probability distributions) with a confi-
dence threshold. The confidence threshold can be
chosen so that the system incorporates the relative
risks or costs of making an error for each class. The
corresponding log-likelihood ratio is given by

δRDA(x) = log
fN (x; µ̂1, Σ̂1(λ, γ))π̂1

fN (x; µ̂0, Σ̂0(λ, γ))π̂0

, (3)

where µc and π̂c are the estimates of the class means
and priors, respectively, x is the data vector to be
classified, and fN (x; µ,Σ) is the pdf of a multivari-
ate normal distribution.

The set of visual stimuli (letters plus two ex-
tra symbols, in our case) can be shown multiple
times to achieve a higher classification accuracy for
the EEG-based classifier. The information obtained
from showing the visual stimuli multiple times can
easily be combined by assuming the trials are sta-
tistically independent, as is commonly assumed in
EEG-based spellers2. Figure 5 presents a diagram of
the timing of the presentation of stimuli. We define
a sequence to be a randomly-ordered set of all the
letters (and the space and backspace symbols). The
letters are randomly ordered for each sequence be-
cause the magnitude of the ERP, hence the quality of
the EEG-based classification, is commonly thought
to depend on how surprised the user is to find the
intended letter. Our system also has a user-defined
parameter by which we are able to limit the max-
imum number of sequences shown to the user be-
fore our system makes a decision on the (single) in-
tended letter. Thus we are able to operate in single-
trial or multi-trial mode. We use the term epoch to
denote all the sequences that are used by our sys-
tem to make a decision on a single, intended let-

2The typical number of repetitions of visual stimuli is on the
order of 8 or 16, although g.tec claims one subject is able to
achieve reliable operation with 2 trials (verbal communication).

ter. As can be seen in the timing diagram shown
in Figure 5, epoch k contains between 1 and Mk

sequences. This figure shows the onset of each se-
quence, each fixation image (which is shown at the
beginning of each sequence), and each letter using
narrow pulses. After each sequence is shown, the
cumulative (overall) score for all letters is computed.
The cumulative scores are non-negative and sum to
one (summing over the 28 symbols). If the num-
ber of sequences shown is less than the user-defined
limit and if the maximum cumulative score is less
than 0.9, then another randomly-ordered sequence is
shown to the user. Likewise, if either the maximum
number of sequences has already been shown or if
the maximum cumulative score equals or exceeds
0.9, then the associated symbol (for all symbols ex-
cept the backspace) is added to the end of the list
of previously-detected symbols, the user is able to
take a break of indefinite length, and then the system
continues with the next epoch. If the symbol hav-
ing the maximum cumulative score is the backspace
symbol, then the last item in the list of previously-
detected symbols is removed and, like before, the
user can take a break and then the system continues
with the next epoch.

3 Language Modeling

Language modeling is important for many text pro-
cessing applications, e.g., speech recognition or ma-
chine translation, as well as for the kind of typ-
ing application being investigated here (Roark et al.,
2010). Typically, the prefix string (what has al-
ready been typed) is used to predict the next sym-
bol(s) to be typed. The next letters to be typed be-
come highly predictable in certain contexts, partic-
ularly word-internally. In applications where text
generation/typing speed is very slow, the impact
of language modeling can become much more sig-
nificant. BCI-spellers, including the RSVP Key-
board paradigm presented here, can be extremely
low-speed, letter-by-letter writing systems, and thus
can greatly benefit from the incorporation of proba-
bilistic letter predictions from an accurate language
model.

For the current study, all language models were
estimated from a one million sentence (210M char-
acter) sample of the NY Times portion of the English
Gigaword corpus. Models were character n-grams,
estimated via relative frequency estimation. Corpus
normalization and smoothing methods were as de-
scribed in Roark et al. (2010). Most importantly for

41

Figure 6: Block diagram of system architecture.

this work, the corpus was case normalized, and we
used Witten-Bell smoothing for regularization.

4 System Architecture
Figure 6 shows a block diagram of our system. We
use a Quad-core, 2.53 GHz laptop, with system code
written in Labview, Matlab, and C. We also use
the Psychophysics Toolbox3 to preload the images
into the video card and to display the images at
precisely-defined temporal intervals. The type UB
g.USBamp EEG-signal amplifier, which is manufac-
tured by g.tec (Austria), has 24 bits of precision and
has 16 channels. We use a Butterworth bandpass fil-
ter of 0.5 to 60 Hz, a 60 Hz notch filter, a sampling
rate of 256 Hz, and we buffer the EEG data until we
have 8 samples of 16-channel EEG data, at which
point the data are transmitted to the laptop. We
use either g.BUTTERfly or g.LADYbird active elec-
trodes, a g.GAMMA cap, and the g.GAMMAsys ac-
tive electrode system.

The output of the amplifier is fed to the laptop via
a USB connection with a delay that is both highly
variable and unknown a priori. Consequently, we
are unable to rely on the laptop system clock in or-
der to synchronize the EEG data and the onset of
the visual stimuli. Instead, synchronization between
the EEG data and the visual stimuli is provided by
sending a parallel port trigger, via an express card-
to-parallel port adaptor, to one of the digital inputs
of the amplifier, which is then digitized along with
the EEG data. The parallel port to g.tec cable was
custom-built by Cortech Solutions, Inc. (Wilming-
ton, North Carolina, USA). The parallel port trigger
is sent immediately after the laptop monitor sends
the vertical retrace signal. The mean and the stan-

3http://psychtoolbox.org/wikka.php?wakka=HomePage

dard deviation of the delay needed to trigger the par-
allel port has been measured to be on the order of
tens of microseconds, which should be sufficiently
small for our purposes.

5 Results
Here we report data collected from 2 subjects, one
of whom is a LIS subject with very limited experi-
ence using our BCI system, and the other a healthy
subject with extensive experience using our BCI sys-
tem. The symbol duration was set to 400 ms, the
duty cycle was set to 50%, and the maximum num-
ber of sequences per trial was set to 6. Before test-
ing, the classifier of our system was trained on data
obtained as each subject viewed 50 symbols with 3
sequences per epoch (the classifier was trained once
for the LIS subject and once for the healthy sub-
ject). The healthy subject was specifically instructed
to neither move nor blink their eyes, to the extent
possible, while the symbols are being flashed on the
screen in front of them. Instead, they were to wait
until the rest period, which occurs after each epoch,
to move or to blink. The subjects were free to pro-
duce whatever text they wished. The only require-
ment given to them concerning the chosen text was
that they must not, at any point in the experiment,
change what they are planning to type and they must
correct all mistakes using the backspace symbol.

Figure 7 shows the results for the non-expert,
LIS subject. A total of 10 symbols were correctly
typed by this subject, who had chosen to spell,
“THE STEELERS ARE GOING TO ...”. Notice
that the number of sequences shown exceeds the
maximum value of 6 for 3 of the symbols. This
occurs when the specified letter is mistyped one or
more times. For example, for each mistyped non-
backspace symbol, a backspace is required to delete

42

T H E _ S T E E L E
0

5

10

15

20

25

30

35

40

45

N
o

.
o

f
se

q
u

en
ce

s
to

 r
ea

ch
 c

o
n

fi
d

en
ce

 t
h

re
sh

o
ld

Mean = 144/10 = 14.4 (seq/desired symbol)
Mean = 5.1 (seq/symbol)

Figure 7: Number of sequences to reach the confidence thresh-
old for the non-expert, LIS subject.

T H E _ L A K E R S _ A R E _ I N _ F I
0

5

10

15

20

25

30

35

40

45

N
o

.
o

f
se

q
u

en
ce

s
to

 r
ea

ch
 c

o
n

fi
d

en
ce

 t
h

re
sh

o
ld

Mean = 28/20 = 1.4 (seq/desired symbol)
Mean = 1.4 (seq/symbol)

Figure 8: Number of sequences to reach the confidence thresh-
old for the expert, healthy subject.

the incorrect symbol. Likewise, if a backspace sym-
bol is detected although it was not the symbol that
the subject wished to type, then the correct symbol
must be retyped. As shown in the figure, the mean
number of sequences for each correctly-typed sym-
bol is 14.4 and the mean number of sequences per
symbol is 5.1 (the latter of which has a maximum
value of 6 in this case).

Figure 8 shows the result for the expert, healthy
subject. A total of 20 symbols were cor-
rectly typed by this subject, who had chosen to
spell, “THE LAKERS ARE IN FIRST PLACE”.
The mean number of sequences for each correctly-
typed symbol for this subject is 1.4 and the mean
number of sequences per symbol is also 1.4. Notice
that in 15 out of 20 epochs the classifier was able to
detect the intended symbol on the first epoch, which
corresponds to a single-trial presentation of the sym-
bols, and no mistakes were made for any of the 20
symbols.

There are two obvious explanations as to why the
healthy subject performed better than the LIS sub-
ject. First, it is possible that the healthy subject was
using a non-neural signal, perhaps an electromyo-
graphic (EMG) signal stemming from an unintended

muscle movement occurring synchronously with the
target onset. Second, it is also possible that the LIS
subject needs more training in order to learn how
to control the system. We believe the second ex-
planation is correct and are currently taking steps
to make sure the LIS subject has additional time to
train on our system in hopes of resolving this ques-
tion quickly.

Acknowledgments
This work is supported by NSF under grants
ECCS0929576, ECCS0934506, IIS0934509,
IIS0914808, BCS1027724 and by NIH under grant
1R01DC009834-01. The opinions presented here
are those of the authors and do not necessarily
reflect the opinions of the funding agencies.

References
J.-D. Bauby. 1997. The Diving Bell and the Butterfly.

Knopf, New York.
R.O. Duda, P.E. Hart, and D.G. Stork. 2001. Pattern

classification. Citeseer.
L.A. Farwell and E. Donchin. 1988. Talking off the

top of your head: toward a mental prosthesis utiliz-
ing event-related brain potentials. Electroenceph Clin.
Neurophysiol., 70:510–523.

J.H. Friedman. 1989. Regularized discriminant analy-
sis. Journal of the American statistical association,
84(405):165–175.

G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam,
H. Ramoser, A. Schlogl, B. Obermaier, and M. Pre-
genzer. 2000. Current trends in Graz brain-computer
interface (BCI) research. IEEE Transactions on Reha-
bilitation Engineering, 8(2):216–219.

B. Roark, J. de Villiers, C. Gibbons, and M. Fried-Oken.
2010. Scanning methods and language modeling for
binary switch typing. In Proceedings of the NAACL
HLT 2010 Workshop on Speech and Language Pro-
cessing for Assistive Technologies, pages 28–36.

H. Serby, E. Yom-Tov, and G.F. Inbar. 2005. An im-
proved P300-based brain-computer interface. Neural
Systems and Rehabilitation Engineering, IEEE Trans-
actions on, 13(1):89–98.

M.S. Treder and B. Blankertz. 2010. (C) overt atten-
tion and visual speller design in an ERP-based brain-
computer interface. Behavioral and Brain Functions,
6(1):28.

J.R. Wolpaw, N. Birbaumer, D.J. McFarland,
G. Pfurtscheller, and T.M. Vaughan. 2002. Brain-
computer interfaces for communication and control.
Clinical neurophysiology, 113(6):767–791.

J.R. Wolpaw. 2007. Brain–computer interfaces as new
brain output pathways. The Journal of Physiology,
579(3):613.

43

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 44–49,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

Engkoo: Mining the Web for Language Learning

Matthew R. Scott, Xiaohua Liu, Ming Zhou, Microsoft Engkoo Team
Microsoft Research Asia

No. 5, Dan Ling Street, Haidian District, Beijing, 100080, China
{mrscott, xiaoliu, mingzhou, engkoo}@microsoft.com

Abstract

This paper presents Engkoo 1, a system for
exploring and learning language. It is built
primarily by mining translation knowledge
from billions of web pages - using the Inter-
net to catch language in motion. Currently
Engkoo is built for Chinese users who are
learning English; however the technology it-
self is language independent and can be ex-
tended in the future. At a system level, En-
gkoo is an application platform that supports a
multitude of NLP technologies such as cross
language retrieval, alignment, sentence clas-
sification, and statistical machine translation.
The data set that supports this system is pri-
marily built from mining a massive set of
bilingual terms and sentences from across the
web. Specifically, web pages that contain
both Chinese and English are discovered and
analyzed for parallelism, extracted and for-
mulated into clear term definitions and sam-
ple sentences. This approach allows us to
build perhaps the world’s largest lexicon link-
ing both Chinese and English together - at the
same time covering the most up-to-date terms
as captured by the net.

1 Introduction

Learning and using a foreign language is a signif-
icant challenge for most people. Existing tools,
though helpful, have several limitations. Firstly,
they often depend on static contents compiled by
experts, and therefore cannot cover fresh words or
new usages of existing words. Secondly, their search

1http://www.engkoo.com.

functions are often limited, making it hard for users
to effectively find information they are interested in.
Lastly, existing tools tend to focus exclusively on
dictionary, machine translation or language learning,
losing out on synergy that can reduce inefficiencies
in the user experience.

This paper presents Engkoo, a system for explor-
ing and learning language. Different from exist-
ing tools, it discovers fresh and authentic transla-
tion knowledge from billions of web pages - using
the Internet to catch language in motion, and offer-
ing novel search functions that allow users efficient
access to massive knowledge resources. Addition-
ally, the system unifies the scenarios of dictionary,
machine translation, and language learning into a
seamless and more productive user experience. En-
gkoo derives its data from a process that continu-
ously culls bilingual term/sentence pairs from the
web, filters noise and conducts a series of NLP pro-
cesses including POS tagging, dependency parsing
and classification. Meanwhile, statistical knowledge
such as collocations is extracted. Next, the mined
bilingual pairs, together with the extracted linguistic
knowledge, are indexed. Finally, it exposes a set of
web services through which users can: 1) look up
the definition of a word/phrase; 2) retrieve example
sentences using keywords, POS tags or collocations;
and 3) get the translation of a word/phrase/sentence.

While Engkoo is currently built for Chinese users
who are learning English, the technology itself is
language independent and can be extended to sup-
port other language pairs in the future.

We have deployed Engkoo online to Chinese in-
ternet users and gathered log data that suggests its

44

utility. From the logs we can see on average 62.0%
of daily users are return users and 71.0% are active
users (make at least 1 query); active users make 8
queries per day on average. The service receives
more than one million page views per day.

This paper is organized as follows. In the next
section, we briefly introduce related work. In Sec-
tion 3, we describe our system. Finally, Section 4
concludes and presents future work.

2 Related Work

Online Dictionary Lookup Services. Online dic-
tionary lookup services can be divided into two cat-
egories. The first mainly relies on the dictionar-
ies edited by experts, e.g., Oxford dictionaries 2

and Longman contemporary English dictionary 3.
Examples of these kinds of services include iCiba
4 and Lingoes 5. The second depends mainly on
mined bilingual term/sentence pairs, e.g., Youdao 6.
In contrast to those services, our system has a higher
recall and fresher results, unique search functions
(e.g., fuzzy POS-based search, classifier filtering),
and an integrated language learning experience (e.g.,
translation with interactive word alignment, and
photorealistic lip-synced video tutors).
Bilingual Corpus Mining and Postprocessing. Shi
et al. (2006) uses document object model (DOM)
tree mapping to extract bilingual sentence pairs
from aligned bilingual web pages. Jiang et al.
(2009b) exploits collective patterns to extract bilin-
gual term/sentence pairs from one web page. Liu et
al. (2010) proposes training a SVM-based classi-
fier with multiple linguistic features to evaluate the
quality of mined corpora. Some methods are pro-
posed to detect/correct errors in English (Liu et al.,
2010; Sun et al., 2007). Following this line of work,
Engkoo implements its mining pipeline with a focus
on robustness and speed, and is designed to work on
a very large volume of web pages.

3 System Description

In this section, we first present the architecture fol-
lowed by a discussion of the basic components; we

2http://oxforddictionaries.com
3http://www.ldoceonline.com/
4http://dict.en.iciba.com/
5http://www.lingoes.cn/
6http://dict.youdao.com

Figure 1: System architecture of Engkoo.

then demonstrate the main scenarios.

3.1 System Overview

Figure 1 presents the architecture of Engkoo. It
can be seen that the components of Engkoo are or-
ganized into four layers. The first layer consists
of the crawler and the raw web page storage. The
crawler periodically downloads two kinds of web
pages, which are put into the storage. The first kind
of web pages are parallel web pages (describe the
same contents but with different languages, often
from bilingual sites, e.g., government sites), and the
second are those containing bilingual contents. A
list of seed URLs are maintained and updated after
each round of the mining process.

The second layer consists of the extractor, the
filter, the classifiers and the readability evaluator,
which are applied sequentially. The extractor scans
the raw web page storage and identifies bilingual

45

web page pairs using URL patterns. For example,
two web pages are parallel if their URLs are in
the form of “· · · /zh/· · · ” and “· · · /en/· · · ”, respec-
tively. Following the method of Shi et al. (2006)
the extractor then extracts bilingual term/sentence
pairs from parallel web pages. Meanwhile, it
identifies web pages with bilingual contents, and
mines bilingual term/sentence pairs from them us-
ing the method proposed by Jiang et al. (2009b).
The filter removes repeated pairs, and uses the
method introduced by Liu et al. (2010) to sin-
gle out low quality pairs, which are further pro-
cessed by a noisy-channel based sub-model that at-
tempts to correct common spelling and grammar er-
rors. If the quality is still unacceptable after cor-
rection, they will be dropped. The classifiers, i.e.,
oral/non-oral, technical/non-technical, title/non-title
classifiers, are applied to each term/sentence pair.
The readability evaluator assigns a score to each
term/sentence pair according to Formula 1 7.

206.835−1.015× #words

#sentences
−84.6×#syllables

#words
(1)

Two points are worth noting here. Firstly, a list
of top sites from which a good number of high
quality pairs are obtained, is figured out; these are
used as seeds by the crawler. Secondly, bilingual
term/sentence pairs extracted from traditional dic-
tionaries are fed into this layer as well, but with the
quality checking process ignored.

The third layer consists of a series of NLP com-
ponents, which conduct POS tagging, dependency
parsing, and word alignment, respectively. It also
includes components that learn translation informa-
tion and collocations from the parsed term/sentence
pairs. Based on the learned statistical informa-
tion, two phrase-based statistical machine transla-
tion (SMT) systems are trained, which can then
translate sentences from one language to the other
and vice versa. Finally, the mined bilingual
term/sentence pairs, together with their parsed in-
formation, are stored and indexed with a multi-level
indexing engine, a core component of this layer. The
indexer is called multi-level since it uses not only
keywords but also POS tags and dependency triples
(e.g., “TobjvwatchvTV”, which means “TV” is the

7http://www.editcentral.com/gwt1/EditCentral.html

object of “watch”) as lookup entries.
The fourth layer consists of a set of services that

expose the mined term/sentence pairs and the lin-
guistic knowledge based on the built index. On top
of these services, we construct a web application,
supporting a wide range of functions, such as search-
ing bilingual terms/sentences, translation and so on.

3.2 Main Components

Now we present the basic components of Engkoo,
namely: 1) the crawler, 2) the extractor, 3) the filter,
4) the classifiers, 5) the SMT systems, and 6) the in-
dexer.
Crawler. The crawler scans the Internet to get par-
allel and bilingual web pages. It employs a set of
heuristic rules related to URLs and contents to filter
unwanted pages. It uses a list of potential URLs to
guide its crawling. That is, it uses these URLs as
seeds, and then conducts a deep-first crawling with
a maximum allowable depth of 5. While crawling,
it maintains a cache of the URLs of the pages it has
recently downloaded. It processes a URL if and only
if it is not in the cache. In this way, the crawler tries
to avoid repeatedly downloading the same web page.
By now, about 2 billion pages have been scanned and
about 0.1 parallel/bilingual pages have been down-
loaded.
Extractor. A bilingual term/sentence extractor is
implemented following Shi et al. (2006) and Jiang
et al. (2009b). It works in two modes, mining from
parallel web pages and from bilingual web pages.
Parallel web pages are identified recursively in the
following way. Given a pair of parallel web pages,
the URLs in two pages are extracted respectively,
and are further aligned according to their positions
in DOM trees, so that more parallel pages can be ob-
tained. The method proposed by Jiang et al. (2007)
is implemented as well to mine the definition of a
given term using search engines. By now, we have
obtained about 1,050 million bilingual term pairs
and 100 million bilingual sentence pairs.
Filter. The filter takes three steps to drop low qual-
ity pairs. Firstly, it checks each pair if it contains
any malicious word, say, a noisy symbol. Secondly,
it adopts the method of Liu et al. (2010) to estimate
the quality of mined pairs. Finally, following the
work related to English as a second language (ESL)
errors detection/correction (Liu et al., 2010; Sun et

46

al., 2007), it implements a text normalization com-
ponent based on the noisy-channel model to correct
common spelling and grammar errors. That is, given
a sentence s

′
possibly with noise, find the sentence

s∗ = argmaxs p(s)p(s
′ |s), where p(s) and p(s

′ |s)
are called the language model and the translation
model, respectively. In Engkoo, the language model
is a 5-gram language model trained on news articles
using SRILM (Stolcke, 2002), while the translation
model is based on a manually compiled translation
table. We have got about 20 million bilingual term
pairs and 15 million bilingual sentence pairs after
filtering noise.
Classifiers. All classifiers adopt SVM as mod-
els, and bag of words, bi-grams as well as sen-
tence length as features. For each classifier, about
10,000 sentence pairs are manually annotated for
training/development/testing. Experimental results
show that on average these classifiers can achieve an
accuracy of more than 90.0%.
SMT Systems. Our SMT systems are phrase-based,
trained on the web mined bilingual sentence pairs
using the GIZA++ (Och and Ney, 2000) alignment
package, with a collaborative decoder similar to Li
et al. (2009). The Chinese-to-English/English-
to-Chinese SMT system achieves a case-insensitive
BLUE score of 29.6% / 47.1% on the NIST 2008
evaluation data set.
Indexer. At the heart of the indexer is the inverted
lists, each of which contains an entry pointing to
an ordered list of the related term/sentence pairs.
Compared with its alternatives, the indexer has two
unique features: 1) it contains various kinds of en-
tries, including common keywords, POS taggers,
dependency triples, collocations, readability scores
and class labels; and 2) the term/sentence pairs re-
lated to the entry are ranked according to their qual-
ities computed by the filter.

3.3 Using the System

Definition Lookup. Looking up a word or phrase on
Engkoo is a core scenario. The traditional dictionary
interface is extended with a blending of web-mined
and ranked term definitions, sample sentences, syn-
onyms, collocations, and phonetically similar terms.
The result page user experience includes an intu-
itive comparable tabs interface described in Jiang et
al. (2009a) that effectively exposes differences be-

tween similar terms. The search experience is aug-
mented with a fuzzy auto completion experience,
which besides traditional prefix matching is also ro-
bust against errors and allows for alternative inputs.
All of these contain inline micro translations to help
users narrow in on their intended search. Errors are
resolved by a blend of edit-distance and phonetic
search algorithms tuned for Chinese user behavior
patterns identified by user study. Alternative input
accepted includes Pinyin (Romanization of Chinese
characters) which returns transliteration, as well as
multiple wild card operators.

Take for example the query “tweet,” illustrated in
Figure 2(a). The definitions for the term derived
from traditional dictionary sources are included in
the main definition area and refer to the noise of a
small bird. Augmenting the definition area are “Web
translations,” which include the contemporary use of
the word standing for micro-blogging. Web-mined
bilingual sample sentences are also presented and
ranked by popularity metrics; this demonstrates the
modern usage of the term.
Search of Example Sentences. Engkoo exposes a
novel search and interactive exploration interface for
the ever-growing web-mined bilingual sample sen-
tences in its database. Emphasis is placed on sample
sentences in Engkoo because of their crucial role in
language learning. Engkoo offers new methods for
the self-exploration of language based on the applied
linguistic theories of “learning as discovery” and
Data-Driven Learning (DDL) introduced by Johns
(1991). One can search for sentences as they would
in traditional search engines or concordancers. Ex-
tensions include allowing for mixed input of English
and Chinese, and POS wild cards enabled by multi-
level indexing. Further, sentences can be filtered
based on classifiers such as oral, written, and techni-
cal styles, source, and language difficulty. Addition-
ally sample sentences for terms can be filtered by
their inflection and the semantics of a particular def-
inition. Interactivity can be found in the word align-
ment between the languages as one moves his or her
mouse over the words, which can also be clicked
on for deeper exploration. And in addition to tra-
ditional text-to-speech, a visual representation of a
human language tutor pronouncing each sentence is
also included. Sample sentences between two simi-
lar words can be displayed side-by-side in a tabbed

47

(a) A screenshot of the definition and sample sentence areas of a Engkoo
result page.

(b) A screenshot of samples sentences for the POS-wildcard query “v. tv”
(meaning “verb TV”).

(c) A screenshot of machine translation integrated into the dictionary expe-
rience, where the top pane shows results of machine translation while the
bottom pane displays example sentences mined from the web.

Figure 2: Three scenarios of Engkoo.

48

user interface to easily expose the subtleties between
usages.

In the example seen in Figure 2(b), a user has
searched for the collocation verb+TV, represented
by the query “v. TV” to find commonly used verbs
describing actions for the noun “TV.” In the results,
we find fresh and authentic sample sentences mined
from the web, the first of which contains “watch
TV,” the most common collocation, as the top result.
Additionally, the corresponding keyword in Chinese
is automatically highlighted using statistical align-
ment techniques.
Machine Translation. For many users, the differ-
ence between a machine translation (MT) system
and a translation dictionary are not entirely clear. In
Engkoo, if a term or phrase is out-of-vocabulary, a
MT result is dynamically returned. For shorter MT
queries, sample sentences might also be returned as
one can see in Figure 2(c) which expands the search
and also raises confidence in a translation as one can
observe it used on the web. Like the sample sen-
tences, word alignment is also exposed on the ma-
chine translation. As the alignment naturally serves
as a word breaker, users can click the selection for
a lookup which would open a new tab with the def-
inition. This is especially useful in cases where a
user might want to find alternatives to a particular
part of a translation. Note that the seemingly single
line dictionary search box is also adapted to MT be-
havior, allowing users to paste in multi-line text as
it can detect and unfold itself to a larger text area as
needed.

4 Conclusions and Future work

We have presented Engkoo, a novel online transla-
tion system which uniquely unifies the scenarios of
dictionary, machine translation, and language learn-
ing. The features of the offering are based on an
ever-expanding data set derived from state-of-the-art
web mining and NLP techniques. The contribution
of the work is a complete software system that max-
imizes the web’s pedagogical potential by exploiting
its massive language resources. Direct user feed-
back and implicit log data suggest that the service
is effective for both translation utility and language
learning, with advantages over existing services. In
future work, we are examining extracting language

knowledge from the real-time web for translation in
news scenarios. Additionally, we are actively min-
ing other language pairs to build a multi-language
learning system.

Acknowledgments

We thank Cheng Niu, Dongdong Zhang, Frank
Soong, Gang Chen, Henry Li, Hao Wei, Kan Wang,
Long Jiang, Lijuan Wang, Mu Li, Tantan Feng, Wei-
jiang Xu and Yuki Arase for their valuable contribu-
tions to this paper, and the anonymous reviewers for
their valuable comments.

References
Long Jiang, Ming Zhou, Lee-Feng Chien, and Cheng

Niu. 2007. Named entity translation with web min-
ing and transliteration. In IJCAI, pages 1629–1634.

Gonglue Jiang, Chen Zhao, Matthew R. Scott, and Fang
Zou. 2009a. Combinable tabs: An interactive method
of information comparison using a combinable tabbed
document interface. In INTERACT, pages 432–435.

Long Jiang, Shiquan Yang, Ming Zhou, Xiaohua Liu,
and Qingsheng Zhu. 2009b. Mining bilingual data
from the web with adaptively learnt patterns. In
ACL/AFNLP, pages 870–878.

Tim Johns. 1991. From printout to handout: grammar
and vocabulary teaching in the context of data driven
learning. Special issue of ELR Journal, pages 27–45.

Mu Li, Nan Duan, Dongdong Zhang, Chi-Ho Li, and
Ming Zhou. 2009. Collaborative decoding: Partial
hypothesis re-ranking using translation consensus be-
tween decoders. In ACL/AFNLP, pages 585–592.

Xiaohua Liu and Ming Zhou. 2010. Evaluating the qual-
ity of web-mined bilingual sentences using multiple
linguistic features. In IALP, pages 281–284.

Xiaohua Liu, Bo Han, Kuan Li, Stephan Hyeonjun
Stiller, and Ming Zhou. 2010. Srl-based verb selec-
tion for esl. In EMNLP, pages 1068–1076.

Franz Josef Och and Hermann Ney. 2000. Improved
statistical alignment models. In ACL.

Lei Shi, Cheng Niu, Ming Zhou, and Jianfeng Gao. 2006.
A dom tree alignment model for mining parallel data
from the web. In ACL, pages 489–496.

Andreas Stolcke. 2002. SRILM – an extensible language
modeling toolkit. In ICSLP, volume 2, pages 901–904.

Guihua Sun, Xiaohua Liu, Gao Cong, Ming Zhou,
Zhongyang Xiong, John Lee, and Chin-Yew Lin.
2007. Detecting erroneous sentences using automat-
ically mined sequential patterns. In ACL.

49

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 50–55,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

Dr Sentiment Knows Everything!

Amitava Das and Sivaji Bandyopadhyay

Department of Computer Science and Engineering

Jadavpur University

India

amitava.santu@gmail.com sivaji_cse_ju@yahoo.com

Abstract

Sentiment analysis is one of the hot de-

manding research areas since last few dec-

ades. Although a formidable amount of

research have been done, the existing re-

ported solutions or available systems are

still far from perfect or do not meet the sa-

tisfaction level of end users’. The main is-

sue is the various conceptual rules that

govern sentiment and there are even more

clues (possibly unlimited) that can convey

these concepts from realization to verbali-

zation of a human being. Human psycholo-

gy directly relates to the unrevealed clues

and governs the sentiment realization of us.

Human psychology relates many things

like social psychology, culture, pragmatics

and many more endless intelligent aspects

of civilization. Proper incorporation of hu-

man psychology into computational senti-

ment knowledge representation may solve

the problem. In the present paper we pro-

pose a template based online interactive

gaming technology, called Dr Sentiment to

automatically create the PsychoSenti-

WordNet involving internet population.

The PsychoSentiWordNet is an extension

of SentiWordNet that presently holds hu-

man psychological knowledge on a few as-

pects along with sentiment knowledge.

1 Introduction

In order to identify sentiment from a text, lexical

analysis plays a crucial role. For example, words

like love, hate, good and favorite directly indicate

sentiment or opinion. Previous works (Pang et al.,

2002; Wiebe and Mihalcea, 2006; Baccianella et.

al., 2010) have already proposed various tech-

niques for making dictionaries for those sentiment

words. But polarity assignment of such sentiment

lexicons is a hard semantic disambiguation prob-

lem. The regulating aspects which govern the lexi-

cal level semantic orientation are natural language

context (Pang et al., 2002), language properties

(Wiebe and Mihalcea, 2006), domain pragmatic

knowledge (Aue and Gamon, 2005), time dimen-

sion (Read, 2005), colors and culture (Strapparava

and Ozbal, 2010) and many more unrevealed hid-

den aspects. Therefore it is a challenging and

enigmatic research problem.

The current trend is to attach prior polarity to

each entry at the sentiment lexicon level. Prior po-

larity is an approximation value based on heuristics

based statistics collected from corpus and not ex-

act. The probabilistic fixed point prior polarity

scores do not solve the problem completely rather

it places the problem into next level, called contex-

tual polarity classification.

We start with the hypothesis that the summation

of all the regulating aspects of sentiment orienta-

tion is human psychology and thus it is a multi-

faceted problem (Liu, 2010). More precisely what

we mean by human psychology is the union of all

known and unknown aspects that directly or indi-

rectly govern the sentiment orientation knowledge

of us. The regulating aspects wrapped in the

present PsychoSentiWordNet are Gender, Age,

City, Country, Language and Profession.

The PsychoSentiWordNet is an extension of the

existing SentiWordNet 3.0 (Baccianella et. al.,

2010) to hold the possible psychological ingre-

dients and govern the sentiment understandability

of us. The PsychoSentiWordNet holds variable

prior polarity scores that could be fetched depend-

ing upon those psychological regulating aspects.

50

An example with the input word ‘High’ may illu-

strate the definition better:

Aspects (Profession) Polarity

Null Positive

Businessman Negative

Share Broker Positive

In this paper, we propose an interactive gaming

(Dr Sentiment) technology to collect psycho-

sentimental polarity for lexicons. This technology

has proven itself as an excellent technique to col-

lect psychological sentiment of human society

even at multilingual level. Dr Sentiment presently

supports 56 languages and therefore we may call it

Global PsychoSentiWordNet. The supported lan-

guages by Dr Sentiment are reported in Table 1.

In this section we have philosophically argued

about the necessity of developing PsychoSenti-

WordNet. In the next section 2 we will describe the

technical details of the proposed architecture for

building the lexical resource. Section 3 explains

about some exciting outcomes of PsychoSenti-

WordNet. The developed PsychoSentiWordNet(s)

are expected to help automatic sentiment analysis

research in many aspects and other disciplines as

well and have been described in section 4.The data

structure and the organization are described in sec-

tion 5. The conclusion is drawn in section 6.

2 Dr Sentiment

Dr Sentiment
1
 is a template based interactive on-

line game, which collects player’s sentiment by

asking a set of simple template based questions and

finally reveals a player’s sentimental status. Dr

Sentiment fetches random words from Senti-

WordNet synsets and asks every player to tell

about his/her sentiment polarity understanding re-

garding the concept behind the word fetched by it.

There are several motivations behind developing

the intuitive game to automatically collect human

psycho-sentimental orientation information.

In the history of Information Retrieval research

there is a milestone when ESP game
2
 (Ahn et al.,

2004) innovated the concept of a game to automat-

ically label images available in the World Wide

Web. It has been identified as the most reliable

strategy to automatically annotate the online im-

1 http://www.amitavadas.com/Sentiment%20Game/index.php
2 http://www.espgame.org/

ages. We are highly motivated by the success of

the Image Labeler game.

A number of research endeavors could be found

in the literature for creation of Sentiment Lexicon

in several languages and domains. These tech-

niques can be broadly categorized into two classes,

one follows classical manual annotation techniques

(Andreevskaia and Bergler, 2006);(Wiebe and Ri-

loff, 2006) while the other follows various auto-

matic techniques (Mohammad et al., 2008). Both

types of techniques have few limitations. Manual

annotation techniques are undoubtedly trustable

but it generally takes time. Automatic techniques

demand manual validations and are dependent on

the corpus availability in the respective domain.

Manual annotation techniques require a large num-

ber of annotators to balance one’s sentimentality in

order to reach agreement. But human annotators

are quite unavailable and costly.

Sentiment is a property of human intelligence

and is not entirely based on the features of a lan-

guage. Thus people’s involvement is required to

capture the sentiment of the human society. We

have developed an online game to attract internet

population for the creation of PsychoSentiWord-

Net automatically. Involvement of Internet popula-

tion is an effective approach as the population is

very high in number and ever growing (approx.

360,985,492)
3

. Internet population consists of

people with various languages, cultures, age etc

and thus not biased towards any domain, language

or particular society. A detailed statistics on the

Internet usage and population has been reported in

the Table 2.

The lexicons tagged by this system are credible

as it is tagged by human beings. It is not a static

sentiment lexicon set [polarity changes with time

(Read, 2005)] as it is updated regularly. Around

10-20 players each day are playing it throughout

the world in different languages. The average

number of tagging per word is about 7.47 till date.

The Sign Up form of the “Dr Sentiment” game

asks the player to provide personal information

such as Sex, Age, City, Country, Language and

Profession. These collected personal details of a

player are kept as a log record in the database.

The gaming interface has four types of question

templates. The question templates are named as

Q1, Q2, Q3 and Q4.

3 http://www.internetworldstats.com/stats.htm

51

Languages

Afrikaans Bulgarian Dutch German Irish Malay Russian Thai

Albanian Catalan Estonian Greek Italian Maltese Serbian Turkish

Arabic Chinese Filipino Haitian Japanese Norwegian Slovak Ukrainian

Armenian Croatian Finnish Hebrew Korean Persian Slovenian Urdu

Azerbaijani Creole French Hungarian Latvian Polish Spanish Vietnamese

Basque Czech Galician Icelandic Lithuanian Portuguese Swahili Welsh

Belarusian Danish Georgian Indonesian Macedonian Romanian Swedish Yiddish

Table 1: Languages

WORLD INTERNET USAGE AND POPULATION STATISTICS

World Regions
Population

(2010 Est.)

Internet Users

Dec. 31, 2000

Internet Users

Latest Data

Penetration

(Population)

Growth

2000-2010

Users %

of Table

Africa 1,013,779,050 4,514,400 110,931,700 10.9 % 2,357.3 % 5.6 %

Asia 3,834,792,852 114,304,000 825,094,396 21.5 % 621.8 % 42.0 %

Europe 813,319,511 105,096,093 475,069,448 58.4 % 352.0 % 24.2 %

Middle East 212,336,924 3,284,800 63,240,946 29.8 % 1,825.3 % 3.2 %

North America 344,124,450 108,096,800 266,224,500 77.4 % 146.3 % 13.5 %

Latin America/Caribbean 592,556,972 18,068,919 204,689,836 34.5 % 1,032.8 % 10.4 %

Oceania / Australia 34,700,201 7,620,480 21,263,990 61.3 % 179.0 % 1.1 %

WORLD TOTAL 6,845,609,960 360,985,492 1,966,514,816 28.7 % 444.8 % 100.0 %

Table 2: Internet Usage and Population Statistics

To make the gaming interface more interesting

images have been added. These images have been

retrieved by Google image search API
4
 and to

avoid biasness we have randomized among the

first ten images retrieved by Google.

2.1 Gaming Strategy

Dr Sentiment asks 30 questions to each player.

There are predefined distributions of each question

type as 11 for Q1, 11 for Q2, 4 for Q3 and 4 for

Q4. These numbers are arbitrarily chosen and ran-

domly changed for experimentation. The questions

are randomly asked to keep the game more inter-

esting. For word based translation Google transla-

tion
5
 service has been used. At each Question (Q)

level translation service has been used to display

the sentiment word into player’s own language.

Google API provides multiple senses for word lev-

el translation and currently only the first sense has

been picked automatically.

2.2 Q1

An English word from the English SentiWordNet

synset is randomly chosen. The Google image

search API is fired with the word as a query. An

image along with the word itself is shown in the

Q1 page of the game.

4 http://code.google.com/apis/imagesearch/
5 http://translate.google.com/

Players press the different emoticons (Figure 1)

to express their sentimentality. The interface keeps

log records of each interaction.
Extreme

Positive
Positive Neutral Negative

Extreme

Negative

Figure 1: Emoticons to Express Player’s Senti-

ment

2.3 Q2

This question type is specially designed for relative

scoring technique. For example: good and better

both are positive but we need to know which one is

more positive than other. Table 3 shows how in

SentiWordNet relative scoring has been made.

With the present gaming technology relative polar-

ity scoring has been assigned to each n-n word pair

combination.

Randomly n (presently 2-4) words have been

chosen from the source SentiWordNet synsets

along with their images as retrieved by Google

API. Each player is then asked to select one of

them that he/she likes most. The relative score is

calculated and stored in the corresponding log ta-

ble.

Word Positivity Negativity
Good 0.625 0.0

Better 0.875 0.0

Best 0.980 0.0

Table 3: Relative Sentiment Scores in Senti-

WordNet

52

2.4 Q3

The player is asked for any positive word in his/her

mind. This technique helps to increase the cover-

age of existing SentiWordNet. The word is then

added to the existing PsychoSentiWordNet and

further used in Q1 to other users to note their sen-

timentality about the particular word.

2.5 Q4

A player is asked by Dr Sentiment about any nega-

tive word. The word is then added to the existing

PsychoSentiWordNet and further used in Q1 to

other users to note their sentimentality about the

particular word.

2.6 Comment Architecture

There are three types of Comments, Comment type

1 (CMNT1), Comment type 2 (CMNT2) and the

final comment as Dr Sentiment’s prescription.

CMNT1 type and CMNT2 type comments are as-

sociated with question types Q1 and Q2 respective-

ly.

2.6.1 CMNT1

Comment type 1 has 5 variations as shown in the

Comment table in Table 4. Comments are random-

ly retrieved from comment type table according to

their category:

• Positive word has been tagged as negative (PN)

• Positive word has been tagged as positive (PP)

• Negative word has been tagged as positive (NP)

• Negative word has been tagged as negative (NN)

• Neutral. (NU)

2.6.2 CMNT2

The strategy here is as same as the CMNT 1.

Comment type 2 has only two variations as.
• Positive word has been tagged as negative (PN)

• Negative word has been tagged as positive (NP)

2.7 Dr Sentiment’s Prescription

The final prescription depends on various factors

such as total number of positive, negative or neu-

tral comments and the total time taken by any

player. The final prescription also depends on the

range of the accumulated values of all the above

factors.

This is the most important appealing factor to a

player. The motivating message for players is that

Dr Sentiment can reveal their sentimental status:

whether they are extreme negative or positive or

very much neutral or diplomatic etc. It is not

claimed that the revealed status of a player by Dr

Sentiment is exact or ideal. It is only to make the

players motivated but the outcomes of the game

effectively helps to store human sentimental psy-

chology in terms of computational lexicon.

A word previously tagged by a player is avoided

by the tracking system during subsequent turns by

the same player. The intension is to tag more and

more words involving Internet population. We ob-

serve that the strategy helps to keep the game in-

teresting as a large number of players return to

play the game after this strategy was implemented.

3 Senti-Mentality

PsychoSentiWordNet gives a good sketch to un-

derstand the psycho-sentimental behavior of the

human society depending upon proposed psycho-

logical dimensions. The PsychoSentiWordNet is

basically the log records of every player’s tagged

words.

3.1 Concept-Culture-Wise Analysis

The word “blue” gets tagged by different players

around the world. But surprisingly it has been

tagged as positive from one part of the world and

negative from another part of the world. The

graphical illustration in Figure 2 may explain the

situation better. The observation is that most of the

negative tags are coming from the middle-east and

especially from the Islamic countries.

PN PP NP NN NU

You don’t like

<word>!

Good you have a good

choice!
Is <word> good!

Yes <word> is too

bad!

You should speak out

frankly!

You should like

<word>!
I love <word> too!

I hope it is a bad

choice!
You are quite right!

You are too diplomat-

ic!

But <word> is a good

itself!
I support your view!

I don’t agree with

you!

I also don’t like

<word>!

Why you hiding from

me? I am Dr Senti-

ment.

Table 4: Comments

53

We found a line in Wiki
6
 (see in Religion Section)

that may provide a good explanation: “Blue in Is-

lam: In verse 20:102 of the Qur’an, the word زرق

zurq (plural of azraq 'blue') is used metaphorically

for evil doers whose eyes are glazed with fear”.

But other explanations may be there for this situa-

tion. This is an interesting observation that sup-

ports the effectiveness of the developed

PsychoSentiWordNet. This information could be

further retrieved from the developed source by giv-

ing information like (blue, Italy), (blue, Iraq) or

(blue, USA) etc.

Figure 2: Geospatial Senti-Mentality

3.2 Age-Wise Analysis

Another interesting observation is that sentimental-

ity may vary age-wise. For better understanding we

look at the total statistics and the age wise distribu-

tion of all the players. Total 533 players have taken

part till date. The total number of players for each

range of age is shown at the top of every bar.

Figure 3: Age-Wise Senti-Mentality

In Figure 3 the horizontal bars are divided into two

colors (Green depicts the Positivity and Red de-

picts the negativity) according to the total positivi-

ty and negativity scores, gathered during playing.

6 http://en.wikipedia.org/wiki/Blue

This sociological study gives an idea on the varia-

tion of sentimentality with age. This information

may be retrieved from the developed source by

giving information like (X, 36-39) or (X, 45-49)

etc where X denotes any arbitrary lexicon synset.

3.3 Gender-Wise Analysis

It is observed from the collected statistics that

women are more positive than men! The variations

in sentimentality among men and women are

shown in the following Figure 4.

Figure 4: Gender Specific Senti-Mentality

3.4 Other-Wise

We have described several important observations

in the previous sections and there are other impor-

tant observations as well. Studies on the combina-

tions of the proposed psychological dimensions,

such as, location-age, location-profession and

gender-location may reveal some interesting re-

sults.

4 Expected Impact of the Resource

Undoubtedly the generated PsychoSentiWord-

Net(s) are important resources for senti-

ment/opinion or emotion analysis task. Moreover

the other non linguistic psychological dimensions

are very much important for further analysis as

well as for several newly discovered sub-

disciplines such as: Geospatial Information retriev-

al (Egenhofer, 2002), Personalized search (Gaucha

et al., 2003), Recommender System (Adomavicius

and Tuzhilin, 2005), Sentiment Tracking (Tong,

2001) etc.

5 The Data Structure and Organization

Deciding on the data structure for the PsychoSen-

tiWordNet was not trivial. Presently RDBMS (Re-

lational Database Management System) has been

54

used. Several tables are being used to keep user’s

clicking log and their personal information.

As one of the research motivations was to gen-

erate up-to-date prior polarity scores across various

dimensions, we decided to generate web service

API through which the people can access latest

prior polarity scores. The developed PsychoSenti-

WordNet is expected to perform better than a static

sentiment lexicon.

6 Conclusion and Future Directions

In the present paper the development of the Psy-

choSentiWordNet for 56 languages has been de-

scribed. No evaluation has been done yet as there

is no data available for this kind of experimenta-

tion and to the best of our knowledge this is the

first endeavor where sentiment analysis meets AI

and psychology.

Our present goal is to collect such corpus and

carry out experiments to check whether variable

prior polarity scores of PsychoSentiWordNet excel

over the fixed point prior polarity score of Senti-

WordNet.

Automatically picked first sense from Google

translation API may cause difficulties for cross

lingual projection of sentiment synsets. Erroneous

outputs from API may also cause some problems.

But these problems lead to another research issue

that may be termed as cross lingual sentiment syn-

set linking. Presently we are giving a closer look to

the qualitative analysis of developed multilingual

psycho-sentiment lexicons.

Acknowledgment

The work reported in this paper was supported by a

grant from the India-Japan Cooperative Program

(DST-JST) Research project entitled “Sentiment

Analysis where AI meets Psychology” funded by

Department of Science and Technology (DST),

Government of India.

References

Adomavicius Gediminas and Alexander Tuzhilin. To-

ward the Next Generation of Recommender Systems:

A Survey of the State-of-the-Art and Possible Exten-

sions. In the Proc. of IEEE Transactions on Know-

ledge and Data Engineering, VOL. 17, NO. 6, June

2005. ISSN 1041-4347/05. Pages 734-749.

Ahn Luis von and Laura Dabbish. Labeling Images with

a Computer Game.In the Proc. of ACM CHI 2004.

Andreevskaia Alina and Bergler Sabine. CLaC and

CLaC-NB: Knowledge-based and corpus-based ap-

proaches to sentiment tagging. In the Proc. of the 4th

SemEval-2007, Pages 117–120, Prague, June 2007.

Aue A. and Gamon M., Customizing sentiment classifi-

ers to new domains: A case study. In the Proc. Of

RANLP, 2005.

Baccianella Stefano, Andrea Esuli, and Fabrizio Sebas-

tiani. SENTIWORDNET 3.0: An Enhanced Lexical

Resource for Sentiment Analysis and Opinion Min-

ing. In the Proc. of LREC-10.

Bo Pang, Lee Lillian, and Vaithyanathan Shivakumar.

Thumbs up? Sentiment classification using machine

learning techniques. In the Proc. of EMNLP, Pages

79–86, 2002.

Egenhofer M.. Toward the Semantic Geospatial Web.

ACM-GIS 2002, McLean, VI A. Voisard and S.-C.

Chen (eds.), Pages. 1-4, November 2002.

Gaucha Susan, Jason Chaffeeb and Alexander Pret-

schnerc. Ontology-based personalized search and

browsing. In Proc. of Web Intelligence and Agent

Systems: An international journal. 2003. Pages 219–

234. ISSN 1570-1263/03.

Liu Bing . Sentiment Analysis: A Multi-Faceted Prob-

lem.In the IEEE Intelligent Systems, 2010.

Read Jonathon. Using emoticons to reduce dependency

in machine learning techniques for sentiment classi-

fication. In the Proc. of the ACL Student Research

Workshop, 2005.

Richard M. Tong. An operational system for detecting

and tracking opinions in online discussion. In the

Proc. of the Workshop on Operational Text Classifi-

cation (OTC), 2001.

Saif Mohammad, Dorr Bonnie and Hirst Graeme. Com-

puting Word-Pair Antonymy. In the Proc. of

EMNLP-2008.

Strapparava, C. and Valitutti, A. WordNet-Affect: an

affective extension of WordNet. In Proc. of LREC

2004, Pages 1083 – 1086

Wiebe Janyce and Mihalcea Rada. Word sense and sub-

jectivity. In the Proc. of COLING/ACL-06. Pages

1065-1072.

55

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 56–61,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

BLAST: A Tool for Error Analysis of Machine Translation Output

Sara Stymne
Department of Computer and Information Science

Linköping University, Linköping, Sweden
sara.stymne@liu.se

Abstract

We present BLAST, an open source tool for er-
ror analysis of machine translation (MT) out-
put. We believe that error analysis, i.e., to
identify and classify MT errors, should be an
integral part of MT development, since it gives
a qualitative view, which is not obtained by
standard evaluation methods. BLAST can aid
MT researchers and users in this process, by
providing an easy-to-use graphical user inter-
face. It is designed to be flexible, and can be
used with any MT system, language pair, and
error typology. The annotation task can be
aided by highlighting similarities with a ref-
erence translation.

1 Introduction

Machine translation evaluation is a difficult task,
since there is not only one correct translation of a
sentence, but many equally good translation options.
Often, machine translation (MT) systems are only
evaluated quantitatively, e.g. by the use of automatic
metrics, which is fast and cheap, but does not give
any indication of the specific problems of a MT sys-
tem. Thus, we advocate human error analysis of MT
output, where humans identify and classify the prob-
lems in machine translated sentences.

In this paper we present BLAST,1 a graphical tool
for performing human error analysis, from any MT
system and for any language pair. BLAST has a
graphical user interface, and is designed to be easy

1The BiLingual Annotation/Annotator/Analysis Support
Tool, available for download at http://www.ida.liu.
se/∼sarst/blast/

and intuitive to work with. It can aid the user by
highlighting similarities with a reference sentence.
BLAST is flexible in that it can be used with out-
put from any MT system, and with any hierarchical
error typology. It has a modular design, allowing
easy extension with new modules. To the best of our
knowledge, there is no other publicly available tool
for MT error annotation. Since we believe that error
analysis is a vital complement to MT evaluation, we
think that BLAST can be useful for many other MT
researchers and developers.

2 MT Evaluation and Error Analysis

Hovy et al. (2002) discussed the complexity of MT
evaluation, and stressed the importance of adjusting
evaluation to the purpose and context of the trans-
lation. However, MT is very often only evaluated
quantitatively using a single metric, especially in re-
search papers. Quantitative evaluations can be au-
tomatic, using metrics such as Bleu (Papineni et
al., 2002) or Meteor (Denkowski and Lavie, 2010),
where the MT output is compared to one or more hu-
man reference translations. Metrics, however, only
give a single quantitative score, and do not give any
information about the strengths and weaknesses of
the system. Comparing scores from different met-
rics can give a very rough indication of some major
problems, especially in combination with a part-of-
speech analysis (Popović et al., 2006).

Human evaluation is also often quantitative, for
instance in the form of estimates of values such as
adequacy and fluency, or by ranking sentences from
different systems (e.g. Callison-Burch et al. (2007)).
A combination of human and automatic metrics is

56

human-targeted metrics such as HTER, where a hu-
man corrects the output of a system to the clos-
est correct translation, on which standard metrics
such as TER is then computed (Snover et al., 2006).
While these types of evaluation are certainly useful,
they are expensive and time-consuming, and still do
not tell us anything about the particular errors of a
system.2

Thus, we think that qualitative evaluation is an
important complement, and that error analysis, the
identification and classification of MT errors, is an
important task. There have been several suggestions
for general MT error typologies (Flanagan, 1994;
Vilar et al., 2006; Farrús et al., 2010), targeted at
different user groups and purposes, focused on either
evaluation of single systems, or comparison between
systems. It is also possible to focus error analysis at
a specific problem, such as verb form errors (Murata
et al., 2005).

We have not been able to find any other freely
available tool for error analysis of MT. Vilar et al.
(2006) mentioned in a footnote that “a tool for high-
lighting the differences [between the MT system and
a correct translation] also proved to be quite useful”
for error analysis. They do not describe this tool any
further, and do not discuss if it was also used to mark
and store the error annotations themselves.

Some tools for post-editing of MT output, a re-
lated activity to error analysis, have been described
in the literature. Font Llitjós and Carbonell (2004)
presented an online tool for eliciting information
from the user when post-editing sentences, in or-
der to improve a rule-based translation system. The
post-edit operations were labeled with error cate-
gories, making it a type of error analysis. This tool
was highly connected to their translation system,
and it required users to post-edit sentences by mod-
ifying word alignments, something that many users
found difficult. Glenn et al. (2008) described a post-
editing tool used for HTER calculation, which has
been used in large evaluation campaigns. The tool
is a pure post-editing tool and the edits are not clas-
sified. Graphical tools have also successfully been
used to aid humans in other MT-related tasks, such
as human MT evaluation of adequacy, fluency and

2Though it does, at least in principle, seem possible to mine
HTER annotations for more information

system comparison (Callison-Burch et al., 2007),
and word alignment (Ahrenberg et al., 2003).

3 System Overview

BLAST is a tool for human annotations of bilingual
material. Its main purpose is error analysis for ma-
chine translation. BLAST is designed for use in any
MT evaluation project. It is not tied to the informa-
tion provided by specific MT systems, or to specific
languages, and it can be used with any hierarchi-
cal error typology. It has a preprocessing module
for automatically aiding the annotator by highlight-
ing similarities between the MT output and a refer-
ence. Its modular design allows easy integration of
new modules for preprocessing. BLAST has three
working modes for handling error annotations: for
adding new annotations, for editing existing annota-
tions, and for searching among annotations.

BLAST can handle two types of annotations: er-
ror annotations and support annotations. Error an-
notations are based on a hierarchical error typology,
and are used to annotate errors in MT output. Error
annotations are added by the users of BLAST. Sup-
port annotations are used as a support to the user,
currently to mark similarities in the system and ref-
erence sentences. The support annotations are nor-
mally created automatically by BLAST, but they can
also be modified by the user. Both annotation types
are stored with the indices of the words they apply
to.

Figure 1 shows a screenshot of BLAST. The MT
output is shown to the annotator one segment at a
time, in the upper part of the screen. A segment nor-
mally consists of a sentence and the MT output can
be accompanied by a source sentence, a reference
sentence, or both. Error annotations are marked in
the segments by bold, underlined, colored text, and
support annotations are marked by light background
colors. The bottom part of the tool, contains the er-
ror typology, and controls for updating annotations
and navigation. The error typology is shown using
a menu structure, where submenus are activated by
the user clicking on higher levels.

3.1 Design goals

We created BLAST with the goal that it should be
flexible, and allow maximum freedom for the user,

57

Figure 1: Screenshot of BLAST

based on the following goals:

• Independent of the MT system being analyzed,
particularly not dependent on specific informa-
tion given by a particular MT system, such as
alignment information

• Compatible with any error typology
• Language pair independent
• Possible to mark where in a sentence an error

occurs
• Possible to view either source or reference sen-

tences, or both
• Possible to automatically highlight similarities

between the system and the reference sentences
• Containing a search function for errors
• Simple to understand and use

The current implementation of BLAST fulfils all
these goals, with the possible small limitation that
the error typology has to be hierarchical. We believe
this limitation is minor, however, since it is possible
to have a relatively flat structure if desired, and to
re-use the same submenu in many places, allowing
cross-classification within a hierarchical typology.

The flexibility of the tool gives users a lot of free-
dom in how to use it in their evaluation projects.
However, we believe that it is important within ev-
ery error annotation project to use a set error typol-
ogy and guidelines for annotation, but the annotation
tool should not limit users in making these choices.

3.2 Error Typologies
As described above, BLAST is easily configurable
with new typologies for annotation, with the only
restriction that the typology is hierarchical. BLAST

currently comes with the following implemented ty-
pologies, some of which are general, and some of
which are targeted at specific language (pairs):

• Vilar et al. (2006)
– General
– Chinese
– Spanish

• Farrús et al. (2010)
– Catalan–Spanish

• Flanagan (1994) (slightly modified into a hier-
archical structure)

– French

58

– German
• Our own tentative fine-grained typology

– General
– Swedish

The error typologies can be very big, and it is hard
to fit an arbitrarily large typology into a graphical
tool. BLAST thus uses a menu structure which al-
ways shows the categories in the first level of the ty-
pology. Lower subtypologies are only shown when
they are activated by the user clicking on a higher
level. In Figure 1, the subtypologies to Word order
were activated by the user first clicking on Word or-
der, then on Phrase level.

It is important that typologies are easy to extend
and modify, especially in order to cover new target
languages, since the translation problems to some
extent will be dependent on the target language, for
instance with regard to the different agreement phe-
nomena in languages. The typologies that come with
BLAST can serve as a starting point for adjusting ty-
pologies, especially to new target languages.

3.3 Implementation
BLAST is implemented as a Java application using
Swing for the graphical user interface. Using Java
makes it platform independent, and it is currently
tested on Unix, Linux, Mac, and Windows. BLAST

has an object-oriented design, with a particular fo-
cus on modular design, to allow it to be easily ex-
tendible with new modules for preprocessing, read-
ing and writing to different file formats, and present-
ing statistics. Unicode is used in order to allow a
high number of languages, and sentences can be dis-
played both right to left, and left to right. BLAST

is open source and is released under the LGPL li-
cense.3

3.4 File formats
The main file types used in BLAST is the annotation
file, containing the translation segments and annota-
tions, and the typology file. These files are stored
in a simple text file format. There is also a configu-
ration file, which can be used for program settings,
besides using command line options, for instance to
configure color schemes, and to change preprocess-
ing settings. The statistics of an annotation project

3http://www.gnu.org/copyleft/lesser.html

are printed in a text file in a human-readable format
(see Section 4.5).

The annotation file contains the translation seg-
ments for the MT system, and possibly for the
source and reference sentences, and all error and
support annotations. The annotations are stored with
the indices of the word(s) in the segments that were
marked, and a label identifying the error type. The
annotation file is initially created automatically by
BLAST based on sentence aligned files. It is then
updated by BLAST with the annotations added by
the user.

The typology file has a header with main informa-
tion, and then an item for each menu containing:

• The name of the menu
• A list of menu items, containing:

– Display name
– Internal name (used in annotation file, and

internally in BLAST)
– The name of its submenu (if any)

The typology files have to be specified by the user,
but BLAST comes with several typology files, as de-
scribed in Section 3.2.

4 Working with BLAST

BLAST has three different working modes: annota-
tion, edit and search. The main mode is annotation,
which allows the user to add new error annotations.
The edit mode allows the user to edit and remove er-
ror annotations. The search mode allows the user to
search for errors of different types. BLAST can also
create support annotations, that can later be updated
by the user, and calculate and print statistics of an
annotation project.

4.1 Annotation

The annotation mode is the main working mode in
BLAST, and it is active in Figure 1. In annotation
mode a segment is shown with all its current er-
ror annotations. The annotations are marked with
bold and colored text, where the color depends on
the main type of the error. For each new annotation
the user selects the word or words that are wrong,
and selects an error type. In figure 1, the words no
television, and the error type Word order→Phrase
level→Long are selected in order to add a new error

59

annotation. BLAST ignores identical annotations,
and warns the user if they try to add an annotation
for the exact same words as another annotation.

4.2 Edit

In edit mode the user can change existing error an-
notations. In this mode only one annotation at a time
is shown, and the user can switch between them. For
each annotation affected words are highlighted, and
the error typology area shows the type of the error.
The currently shown error can be changed to a dif-
ferent error type, or it can be removed. The edit
mode is useful for revising annotations, and for cor-
recting annotation errors.

4.3 Search

In search mode, it is possible to search for errors of
a certain type. To search, users choose the error type
they want to search for in the error typology, and
then search backwards or forwards for error annota-
tions of that type. It is possible both to search for
specific errors deep in the typology, and to search
for all errors of a type higher in the typology, for
instance, to search for all word order errors, regard-
less of subclassification. Search is active between all
segments, not only for the currently shown segment.
Search is useful for controlling the consistency of
annotations, and for finding instances of specific er-
rors.

4.4 Support annotations

Error annotation is a hard task for humans, and thus
we try to aid it by including automatic preprocess-
ing, where similarities between the system and refer-
ence sentences are marked at different levels of sim-
ilarity. Even if the goal of the error analysis often is
not to compare the MT output to a single reference,
but to the closest correct equivalent, it can still be
useful to be able to see the similarities to one ref-
erence sentence, to be able to identify problematic
parts easier.

For this module we have adapted the code
for alignment used in the Meteor-NEXT metric
(Denkowski and Lavie, 2010) to BLAST. In Meteor-
NEXT the system and reference sentences are
aligned at the levels of exact matching, stemmed
matching, synonyms, and paraphrases. All these
modules work on lower-cased data, so we added a

module for exact matching with the original casing
kept. The exact and lower-cased matching works
for most languages, and stemming for 15 languages.
The synonym module uses WordNet, and is only
available for English. The paraphrase module is
based on an automatic paraphrase induction method
(Bannard and Callison-Burch, 2005), it is currently
trained for five languages, but the Meteor-NEXT
code for training it for additional languages is in-
cluded.

Support annotations are normally only created au-
tomatically, but BLAST allows the user to edit them.
The mechanism for adding, removing or changing
support annotations is separate from error annota-
tions, and can be used regardless of mode.

4.5 Create Statistics

The statistics module prints statistics about the cur-
rently loaded annotation project. The statistics are
printed to a file, in a human-readable format. It con-
tains information about the number of sentences and
errors in the project, average number of errors per
sentence, and how many sentences there are with
certain numbers of errors. The main part of the
statistics is the number and percentage of errors for
each node in the error typology. It is also possible to
get the number of errors for cross-classifications, by
specifying regular expressions for the categories to
cross-classify in the configuration file.

5 Future Extensions

BLAST is under active development, and we plan to
add new features. Most importantly we want to add
the possibility to annotate two MT systems in paral-
lel, which can be useful if the purpose of the annota-
tion is to compare MT systems. We are also working
on refining and developing the existing proposals for
error typologies, which is an important complement
to the tool itself. We intend to define a new fine-
grained general error typology, with extensions to a
number of target languages.

The modularity of BLAST also makes it possible
to add new modules, for instance for preprocess-
ing and to support other file formats. One example
would be to support error annotation of only specific
phenomena, such as verb errors, by adding a prepro-
cessing module for highlighting verbs with support

60

annotations, and a suitable verb-focused error typol-
ogy. We are also working on a preprocessing module
based on grammar checker techniques (Stymne and
Ahrenberg, 2010), that highlights parts of the MT
output that it suspects are non-grammatical.

Even though the main purpose of BLAST is for
error annotation of machine translation output, the
freedom in the use of error typologies and support
annotations also makes it suitable for other tasks
where bilingual material is used, such as for anno-
tations of named entities in bilingual texts, or for
analyzing human translations, e.g. giving feedback
to second language learners, with only the addition
of a suitable typology, and possibly a preprocessing
module.

6 Conclusion

We presented BLAST; a flexible tool for annotation
of bilingual segments, specifically intended for error
analysis of MT. BLAST facilitates the error analysis
task, which we believe is vital for MT researchers,
and could also be useful for other users of MT. Its
flexibility makes it possible to annotate translations
from any MT system and between any language
pairs, using any hierarchical error typology.

References
Lars Ahrenberg, Magnus Merkel, and Michael Petterst-

edt. 2003. Interactive word alignment for language
engineering. In Proceedings of EACL, pages 49–52,
Budapest, Hungary.

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In Proceed-
ings of ACL, pages 597–604, Ann Arbor, Michigan,
USA.

Chris Callison-Burch, Cameron Fordyce, Philipp Koehn,
Christof Monz, and Josh Schroeder. 2007. (Meta-)
evaluation of machine translation. In Proceedings of
WMT, pages 136–158, Prague, Czech Republic, June.

Michael Denkowski and Alon Lavie. 2010. METEOR-
NEXT and the METEOR paraphrase tables: Improved
evaluation support for five target languages. In Pro-
ceedings of WMT and MetricsMATR, pages 339–342,
Uppsala, Sweden.

Mireia Farrús, Marta R. Costa-jussà, José B. Mariño, and
José A. R. Fonollosa. 2010. Linguistic-based evalu-
ation criteria to identify statistical machine translation
errors. In Proceedings of EAMT, pages 52–57, Saint
Raphaël, France.

Mary Flanagan. 1994. Error classification for MT
evaluation. In Proceedings of AMTA, pages 65–72,
Columbia, Maryland, USA.

Ariadna Font Llitjós and Jaime Carbonell. 2004. The
translation correction tool: English-Spanish user stud-
ies. In Proceedings of LREC, pages 347–350, Lisbon,
Portugal.

Meghan Lammie Glenn, Stephanie Strassel, Lauren
Friedman, and Haejoong Lee. 2008. Management
of large annotation projects involving multiple human
judges: a case study of GALE machine translation
post-editing. In Proceedings of LREC, pages 2957–
2960, Marrakech, Morocco.

Eduard Hovy, Margaret King, and Andrei Popescu-Belis.
2002. Principles of context-based machine translation
evaluation. Machine Translation, 17(1):43–75.

Masaki Murata, Kiyotaka Uchimoto, Qing Ma, Toshiyuki
Kanamaru, and Hitoshi Isahara. 2005. Analysis of
machine translation systems’ errors in tense, aspect,
and modality. In Proceedings of PACLIC 19, pages
155–166, Taipei, Taiwan.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic eval-
uation of machine translation. In Proceedings of ACL,
pages 311–318, Philadelphia, Pennsylvania, USA.

Maja Popović, Adrià de Gisper, Deepa Gupta, Patrik
Lambert, Hermann Ney, José Mariño, and Rafael
Banchs. 2006. Morpho-syntactic information for au-
tomatic error analysis of statistical machine translation
output. In Proceedings of WMT, pages 1–6, New York
City, New York, USA.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human notation.
In Proceedings of AMTA, pages 223–231, Cambridge,
Massachusetts, USA.

Sara Stymne and Lars Ahrenberg. 2010. Using a gram-
mar checker for evaluation and postprocessing of sta-
tistical machine translation. In Proceedings of LREC,
pages 2175–2181, Valetta, Malta.

David Vilar, Jia Xu, Luis Fernando D’Haro, and Her-
mann Ney. 2006. Error analysis of machine transla-
tion output. In Proceedings of LREC, pages 697–702,
Genoa, Italy.

61

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 62–67,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

Prototyping virtual instructors from human-human corpora

Luciana Benotti
PLN Group, FAMAF

National University of Córdoba
Córdoba, Argentina

luciana.benotti@gmail.com

Alexandre Denis
TALARIS team, LORIA/CNRS

Lorraine. Campus scientifique, BP 239
Vandoeuvre-lès-Nancy, France

alexandre.denis@loria.fr

Abstract

Virtual instructors can be used in several ap-
plications, ranging from trainers in simulated
worlds to non player characters for virtual
games. In this paper we present a novel
algorithm for rapidly prototyping virtual in-
structors from human-human corpora without
manual annotation. Automatically prototyp-
ing full-fledged dialogue systems from cor-
pora is far from being a reality nowadays. Our
algorithm is restricted in that only the virtual
instructor can perform speech acts while the
user responses are limited to physical actions
in the virtual world. We evaluate a virtual in-
structor, generated using this algorithm, with
human users. We compare our results both
with human instructors and rule-based virtual
instructors hand-coded for the same task.

1 Introduction

Virtual human characters constitute a promising
contribution to many fields, including simulation,
training and interactive games (Kenny et al., 2007;
Jan et al., 2009). The ability to communicate using
natural language is important for believable and ef-
fective virtual humans. Such ability has to be good
enough to engage the trainee or the gamer in the ac-
tivity. Nowadays, most conversational systems oper-
ate on a dialogue-act level and require extensive an-
notation efforts in order to be fit for their task (Rieser
and Lemon, 2010). Semantic annotation and rule
authoring have long been known as bottlenecks for
developing conversational systems for new domains.

In this paper, we present novel a algorithm for
generating virtual instructors from automatically an-

notated human-human corpora. Our algorithm,
when given a task-based corpus situated in a virtual
world, generates an instructor that robustly helps a
user achieve a given task in the virtual world of the
corpus. There are two main approaches toward au-
tomatically producing dialogue utterances. One is
the selection approach, in which the task is to pick
the appropriate output from a corpus of possible out-
puts. The other is the generation approach, in which
the output is dynamically assembled using some
composition procedure, e.g. grammar rules. The se-
lection approach to generation has only been used
in conversational systems that are not task-oriented
such as negotiating agents (Gandhe and Traum,
2007), question answering characters (Kenny et al.,
2007), and virtual patients (Leuski et al., 2006). Our
algorithm can be seen as a novel way of doing robust
generation by selection and interaction management
for task-oriented systems.

In the next section we introduce the corpora used
in this paper. Section 3 presents the two phases of
our algorithm, namely automatic annotation and di-
alogue management through selection. In Section 4
we present a fragment of an interaction with a vir-
tual instructor generated using the corpus and the
algorithm introduced in the previous sections. We
evaluate the virtual instructor in interactions with
human subjects using objective as well as subjec-
tive metrics. We present the results of the evaluation
in Section 5. We compare our results with both hu-
man and rule-based virtual instructors hand-coded
for the same task. Finally, Section 6 concludes the
paper proposing an improved virtual instructor de-
signed as a result of our error analysis.

62

2 The GIVE corpus

The Challenge on Generating Instructions in Vir-
tual Environments (GIVE; Koller et al. (2010)) is
a shared task in which Natural Language Gener-
ation systems must generate real-time instructions
that guide a user in a virtual world. In this paper, we
use the GIVE-2 Corpus (Gargett et al., 2010), a cor-
pus of human instruction giving in virtual environ-
ments. We use the English part of the corpus which
consists of 63 American English written discourses
in which one subject guided another in a treasure
hunting task in 3 different 3D worlds.

The task setup involved pairs of human partners,
each of whom played one of two different roles. The
“direction follower” (DF) moved about in the vir-
tual world with the goal of completing a treasure
hunting task, but had no knowledge of the map of
the world or the specific behavior of objects within
that world (such as, which buttons to press to open
doors). The other partner acted as the “direction
giver” (DG), who was given complete knowledge of
the world and had to give instructions to the DF to
guide him/her to accomplish the task.

The GIVE-2 corpus is a multimodal corpus which
consists of all the instructions uttered by the DG, and
all the object manipulations done by the DF with the
corresponding timestamp. Furthermore, the DF’s
position and orientation is logged every 200 mil-
liseconds, making it possible to extract information
about his/her movements.

3 The unsupervised conversational model

Our algorithm consists of two phases: an annotation
phase and a selection phase. The annotation phase
is performed only once and consists of automatically
associating the DG instruction to the DF reaction.
The selection phase is performed every time the vir-
tual instructor generates an instruction and consists
of picking out from the annotated corpus the most
appropriate instruction at a given point.

3.1 The automatic annotation

The basic idea of the annotation is straightforward:
associate each utterance with its corresponding re-
action. We assume that a reaction captures the se-
mantics of its associated instruction. Defining re-
action involves two subtle issues, namely boundary

determination and discretization. We discuss these
issues in turn and then give a formal definition of
reaction.

We define the boundaries of a reaction as follows.
A reaction rk to an instruction uk begins right af-
ter the instruction uk is uttered and ends right before
the next instruction uk+1 is uttered. In the follow-
ing example, instruction 1 corresponds to the reac-
tion 〈2, 3, 4〉, instruction 5 corresponds to 〈6〉, and
instruction 7 to 〈8〉.

DG(1): hit the red you see in the far room
DF(2): [enters the far room]
DF(3): [pushes the red button]
DF(4): [turns right]
DG(5): hit far side green
DF(6): [moves next to the wrong green]
DG(7): no
DF(8): [moves to the right green and pushes it]

As the example shows, our definition of bound-
aries is not always semantically correct. For in-
stance, it can be argued that it includes too much
because 4 is not strictly part of the semantics of 1.
Furthermore, misinterpreted instructions (as 5) and
corrections (e.g., 7) result in clearly inappropriate
instruction-reaction associations. Since we want to
avoid any manual annotation, we decided to use this
naive definition of boundaries anyway. We discuss
in Section 5 the impact that inappropriate associa-
tions have on the performance of a virtual instructor.

The second issue that we address here is dis-
cretization of the reaction. It is well known that there
is not a unique way to discretize an action into sub-
actions. For example, we could decompose action 2
into ‘enter the room’ or into ‘get close to the door
and pass the door’. Our algorithm is not dependent
on a particular discretization. However, the same
discretization mechanism used for annotation has to
be used during selection, for the dialogue manager
to work properly. For selection (i.e., in order to de-
cide what to say next) any virtual instructor needs
to have a planner and a planning domain represen-
tation, i.e., a specification of how the virtual world
works and a way to represent the state of the virtual
world. Therefore, we decided to use them in order
to discretize the reaction.

Now we are ready to define reaction formally. Let
Sk be the state of the virtual world when uttering in-

63

struction uk, Sk+1 be the state of the world when
uttering the next utterance uk+1 and D be the plan-
ning domain representation. The reaction to uk is
defined as the sequence of actions returned by the
planner with Sk as initial state, Sk+1 as goal state
and D as planning domain.

The annotation of the corpus then consists of au-
tomatically associating each utterance to its (dis-
cretized) reaction.

3.2 Selecting what to say next
In this section we describe how the selection phase is
performed every time the virtual instructor generates
an instruction.

The instruction selection algorithm consists in
finding in the corpus the set of candidate utterances
C for the current task plan P ; P being the se-
quence of actions returned by the same planner and
planning domain used for discretization. We define
C = {U ∈ Corpus | U.Reaction is a prefix of P}.
In other words, an utterance U belongs to C if the
first actions of the current plan P exactly match the
reaction associated to the utterance. All the utter-
ances that pass this test are considered paraphrases
and hence suitable in the current context.

While P does not change, the virtual instructor
iterates through the set C, verbalizing a different ut-
terance at fixed time intervals (e.g., every 3 seconds).
In other words, the virtual instructor offers alterna-
tive paraphrases of the intended instruction. When
P changes as a result of the actions of the DF, C is
recalculated.

It is important to notice that the discretization
used for annotation and selection directly impacts
the behavior of the virtual instructor. It is crucial
then to find an appropriate granularity of the dis-
cretization. If the granularity is too coarse, many
instructions in the corpus will have an empty asso-
ciated reaction. For instance, in the absence of the
representation of the user orientation in the planning
domain (as is the case for the virtual instructor we
evaluate in Section 5), instructions like “turn left”
and “turn right” will have empty reactions making
them indistinguishable during selection. However,
if the granularity is too fine the user may get into sit-
uations that do not occur in the corpus, causing the
selection algorithm to return an empty set of candi-
date utterances. It is the responsibility of the virtual

instructor developer to find a granularity sufficient
to capture the diversity of the instructions he wants
to distinguish during selection.

4 A virtual instructor for a virtual world

We implemented an English virtual instructor for
one of the worlds used in the corpus collection we
presented in Section 2. The English fragment of the
corpus that we used has 21 interactions and a total
of 1136 instructions. Games consisted on average
of 54.2 instructions from the human DG, and took
about 543 seconds on average for the human DF to
complete the task.

On Figures 1 to 4 we show an excerpt of an in-
teraction between the system and a real user that we
collected during the evaluation. The figures show a
2D map from top view and the 3D in-game view. In
Figure 1, the user, represented by a blue character,
has just entered the upper left room. He has to push
the button close to the chair. The first candidate ut-
terance selected is “red closest to the chair in front of
you”. Notice that the referring expression uniquely
identifies the target object using the spatial proxim-
ity of the target to the chair. This referring expres-
sion is generated without any reasoning on the tar-
get distractors, just by considering the current state
of the task plan and the user position.

Figure 1: “red closest to the chair in front of you”

After receiving the instruction the user gets closer
to the button as shown in Figure 2. As a result of the
new user position, a new task plan exists, the set of
candidate utterances is recalculated and the system
selects a new utterance, namely “the closet one”.

The generation of the ellipsis of the button or the

64

Figure 2: “the closet one”

Figure 3: “good”

Figure 4: “exit the way you entered”

chair is a direct consequence of the utterances nor-
mally said in the corpus at this stage of the task plan
(that is, when the user is about to manipulate this ob-
ject). From the point of view of referring expression

algorithms, the referring expression may not be op-
timal because it is over-specified (a pronoun would
be preferred as in “click it”), Furthermore, the in-
struction contains a spelling error (‘closet’ instead
of ‘closest’). In spite of this non optimality, the in-
struction led our user to execute the intended reac-
tion, namely pushing the button.

Right after the user clicks on the button (Figure 3),
the system selects an utterance corresponding to the
new task plan. The player position stayed the same
so the only change in the plan is that the button no
longer needs to be pushed. In this task state, DGs
usually give acknowledgements and this then what
our selection algorithm selects: “good”.

After receiving the acknowledgement, the user
turns around and walks forward, and the next action
in the plan is to leave the room (Figure 4). The sys-
tem selects the utterance “exit the way you entered”
which refers to the previous interaction. Again, the
system keeps no representation of the past actions
of the user, but such utterances are the ones that are
found at this stage of the task plan.

5 Evaluation and error analysis

In this section we present the results of the evalu-
ation we carried out on the virtual instructor pre-
sented in Section 4 which was generated using the
dialogue model algorithm introduced in Section 3.

We collected data from 13 subjects. The partici-
pants were mostly graduate students; 7 female and
6 male. They were not English native speakers but
rated their English skills as near-native or very good.

The evaluation contains both objective measures
which we discuss in Section 5.1 and subjective mea-
sures which we discuss in Section 5.2.

5.1 Objective metrics

The objective metrics we extracted from the logs of
interaction are summarized in Table 1. The table
compares our results with both human instructors
and the three rule-based virtual instructors that were
top rated in the GIVE-2 Challenge. Their results cor-
respond to those published in (Koller et al., 2010)
which were collected not in a laboratory but con-
necting the systems to users over the Internet. These
hand-coded systems are called NA, NM and Saar.
We refer to our system as OUR.

65

Human NA Saar NM OUR
Task success 100% 47% 40% 30% 70%
Canceled 0% 24% n/a 35% 7%
Lost 0% 29% n/a 35% 23%
Time (sec) 543 344 467 435 692
Mouse actions 12 17 17 18 14
Utterances 53 224 244 244 194

Table 1: Results for the objective metrics

In the table we show the percentage of games that
users completed successfully with the different in-
structors. Unsuccessful games can be either can-
celed or lost. To ensure comparability, time until
task completion, number of instructions received by
users, and mouse actions are only counted on suc-
cessfully completed games.

In terms of task success, our system performs bet-
ter than all hand-coded systems. We duly notice that,
for the GIVE Challenge in particular (and proba-
bly for human evaluations in general) the success
rates in the laboratory tend to be higher than the suc-
cess rate online (this is also the case for completion
times) (Koller et al., 2009).

In any case, our results are preliminary given the
amount of subjects that we tested (13 versus around
290 for GIVE-2), but they are indeed encouraging.
In particular, our system helped users to identify bet-
ter the objects that they needed to manipulate in the
virtual world, as shown by the low number of mouse
actions required to complete the task (a high number
indicates that the user must have manipulated wrong
objects). This correlates with the subjective evalu-
ation of referring expression quality (see next sec-
tion).

We performed a detailed analysis of the instruc-
tions uttered by our system that were unsuccessful,
that is, all the instructions that did not cause the in-
tended reaction as annotated in the corpus. From the
2081 instructions uttered in the 13 interactions, 1304
(63%) of them were successful and 777 (37%) were
unsuccessful.

Given the limitations of the annotation discussed
in Section 3.1 (wrong annotation of correction ut-
terances and no representation of user orientation)
we classified the unsuccessful utterances using lexi-
cal cues into 1) correction (‘no’,‘don’t’,‘keep’, etc.),
2) orientation instruction (‘left’, ‘straight’, ‘behind’,

etc.) and 3) other. We found that 25% of the unsuc-
cessful utterances are of type 1, 40% are type 2, 34%
are type 3 (1% corresponds to the default utterance
“go” that our system utters when the set of candidate
utterances is empty). Frequently, these errors led to
contradictions confusing the player and significantly
affecting the completion time of the task as shown in
Table 1. In Section 6 we propose an improved virtual
instructor designed as a result of this error analysis.

5.2 Subjective metrics
The subjective measures were obtained from re-
sponses to the GIVE-2 questionnaire that was pre-
sented to users after each game. It asked users to rate
different statements about the system using a contin-
uous slider. The slider position was translated to a
number between -100 and 100. As done in GIVE-
2, for negative statements, we report the reversed
scores, so that in Tables 2 and 3 greater numbers
are always better. In this section we compare our re-
sults with the systems NA, Saar and NM as we did
in Section 5.1, we cannot compare against human in-
structors because these subjective metrics were not
collected in (Gargett et al., 2010).

The GIVE-2 Challenge questionnaire includes
twenty-two subjective metrics. Metrics Q1 to Q13
and Q22 assess the effectiveness and reliability of
instructions. For almost all of these metrics we got
similar or slightly lower results than those obtained
by the three hand-coded systems, except for three
metrics which we show in Table 2. We suspect that
the low results obtained for Q5 and Q22 relate to
the unsuccessful utterances identified and discussed
in Section 5.1. The high unexpected result in Q6 is
probably correlated with the low number of mouse
actions mentioned in Section 5.1.

NA Saar NM OUR
Q5: I was confused about which direction to go in

29 5 9 -12
Q6: I had no difficulty with identifying the objects the
system described for me

18 20 13 40
Q22: I felt I could trust the system’s instructions

37 21 23 0

Table 2: Results for the subjective measures assessing the
efficiency and effectiveness of the instructions

Metrics Q14 to Q20 are intended to assess the nat-

66

uralness of the instructions, as well as the immer-
sion and engagement of the interaction. As Table 3
shows, in spite of the unsuccessful utterances, our
system is rated as more natural and more engaging
(in general) than the best systems that competed in
the GIVE-2 Challenge.

NA Saar NM OUR
Q14: The system’s instructions sounded robotic

-4 5 -1 28
Q15: The system’s instructions were repetitive

-31 -26 -28 -8
Q16: I really wanted to find that trophy

-11 -7 -8 7
Q17: I lost track of time while solving the task

-16 -11 -18 16
Q18: I enjoyed solving the task

-8 -5 -4 4
Q19: Interacting with the system was really annoying

8 -2 -2 4
Q20: I would recommend this game to a friend

-30 -25 -24 -28

Table 3: Results for the subjective measures assessing the
naturalness and engagement of the instructions

6 Conclusions and future work

In this paper we presented a novel algorithm for
rapidly prototyping virtual instructors from human-
human corpora without manual annotation. Using
our algorithm and the GIVE corpus we have gener-
ated a virtual instructor1 for a game-like virtual en-
vironment. We obtained encouraging results in the
evaluation with human users that we did on the vir-
tual instructor. Our system outperforms rule-based
virtual instructors hand-coded for the same task both
in terms of objective and subjective metrics. It is
important to mention that the GIVE-2 hand-coded
systems do not need a corpus but are tightly linked
to the GIVE task. Our algorithm requires human-
human corpora collected on the target task and en-
vironment, but it is independent of the particular in-
struction giving task. For instance, it could be used
for implementing game tutorials, real world naviga-
tion systems or task-based language teaching.

In the near future we plan to build a new version
of the system that improves based on the error anal-
ysis that we did. For instance, we plan to change

1Demo at cs.famaf.unc.edu.ar/˜luciana/give-OUR

our discretization mechanism in order to take orien-
tation into account. This is supported by our algo-
rithm although we may need to enlarge the corpus
we used so as not to increase the number of situa-
tions in which the system does not find anything to
say. Finally, if we could identify corrections auto-
matically, as suggested in (Raux and Nakano, 2010),
we could get another increase in performance, be-
cause we would be able to treat them as corrections
and not as instructions as we do now.

In sum, this paper presents a novel way of au-
tomatically prototyping task-oriented virtual agents
from corpora who are able to effectively and natu-
rally help a user complete a task in a virtual world.

References
Sudeep Gandhe and David Traum. 2007. Creating spo-

ken dialogue characters from corpora without annota-
tions. In Proceedings of Interspeech, Belgium.

Andrew Gargett, Konstantina Garoufi, Alexander Koller,
and Kristina Striegnitz. 2010. The GIVE-2 corpus of
giving instructions in virtual environments. In Proc. of
the LREC, Malta.

Dusan Jan, Antonio Roque, Anton Leuski, Jacki Morie,
and David Traum. 2009. A virtual tour guide for
virtual worlds. In Proc. of IVA, pages 372–378, The
Netherlands. Springer-Verlag.

Patrick Kenny, Thomas D. Parsons, Jonathan Gratch, An-
ton Leuski, and Albert A. Rizzo. 2007. Virtual pa-
tients for clinical therapist skills training. In Proc. of
IVA, pages 197–210, France. Springer-Verlag.

Alexander Koller, Kristina Striegnitz, Donna Byron, Jus-
tine Cassell, Robert Dale, Sara Dalzel-Job, Johanna
Moore, and Jon Oberlander. 2009. Validating the
web-based evaluation of nlg systems. In Proc. of ACL-
IJCNLP, Singapore.

Alexander Koller, Kristina Striegnitz, Andrew Gargett,
Donna Byron, Justine Cassell, Robert Dale, Johanna
Moore, and Jon Oberlander. 2010. Report on the sec-
ond challenge on generating instructions in virtual en-
vironments (GIVE-2). In Proc. of INLG, Dublin.

Anton Leuski, Ronakkumar Patel, David Traum, and
Brandon Kennedy. 2006. Building effective question
answering characters. In Proc. of SIGDIAL, pages 18–
27, Australia. ACL.

Antoine Raux and Mikio Nakano. 2010. The dynamics
of action corrections in situated interaction. In Proc.
of SIGDIAL, pages 165–174, Japan. ACL.

Verena Rieser and Oliver Lemon. 2010. Learning hu-
man multimodal dialogue strategies. Natural Lan-
guage Engineering, 16:3–23.

67

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 68–73,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

An Interactive Machine Translation System with Online Learning
Daniel Ortiz-Martı́nez, Luis A. Leiva, Vicent Alabau,

Ismael Garcı́a-Varea†, Francisco Casacuberta
ITI - Institut Tecnològic d’Informàtica, Universitat Politècnica de València
† Departamento de Sistemas Informáticos, Universidad de Castilla-La Mancha

{dortiz,luileito,valabau,fcn}@iti.upv.es, †ismael.garcia@uclm.es

Abstract

State-of-the-art Machine Translation (MT)
systems are still far from being perfect. An
alternative is the so-called Interactive Ma-
chine Translation (IMT) framework, where
the knowledge of a human translator is com-
bined with the MT system. We present a sta-
tistical IMT system able to learn from user
feedback by means of the application of on-
line learning techniques. These techniques al-
low the MT system to update the parameters of
the underlying models in real time. According
to empirical results, our system outperforms
the results of conventional IMT systems. To
the best of our knowledge, this online learning
capability has never been provided by previ-
ous IMT systems. Our IMT system is imple-
mented in C++, JavaScript, and ActionScript;
and is publicly available on the Web.

1 Introduction

The research in the field of machine translation
(MT) aims to develop computer systems which are
able to translate text or speech without human in-
tervention. However, current translation technology
has not been able to deliver full automated high-
quality translations. Typical solutions to improve the
quality of the translations supplied by an MT system
require manual post-editing. This serial process pre-
vents the MT system from integrating the knowledge
of the human translator.

An alternative way to take advantage of the exist-
ing MT technologies is to use them in collaboration
with human translators within a computer-assisted
translation (CAT) or interactive framework (Isabelle
and Church, 1997). Interactivity in CAT has been
explored for a long time. Systems have been de-
signed to interact with linguists to solve ambiguities
or update user dictionaries.

An important contribution to CAT technology was
pioneered by the TransType project (Foster et al.,

1997; Langlais et al., 2002). The idea proposed in
that work was to embed data driven MT techniques
within the interactive translation environment. Fol-
lowing the TransType ideas, Barrachina et al. (2009)
proposed the so-called IMT framework, in which
fully-fledged statistical MT (SMT) systems are used
to produce full target sentences hypotheses, or por-
tions thereof, which can be accepted or amended
by a human translator. Each corrected text segment
is then used by the MT system as additional infor-
mation to achieve improved suggestions. Figure 1
shows an example of a typical IMT session.

The vast majority of the existing work on
IMT makes use of the well-known batch learning
paradigm. In the batch learning paradigm, the train-
ing of the IMT system and the interactive transla-
tion process are carried out in separate stages. This
paradigm is not able to take advantage of the new
knowledge produced by the user of the IMT system.
In this paper, we present an application of the online
learning paradigm to the IMT framework. In the on-
line learning paradigm, the training and prediction
stages are no longer separated. This feature is par-
ticularly useful in IMT since it allows to take into ac-
count the user feedback. Specifically, our proposed
IMT system can be extended with the new training
samples that are generated each time the user vali-
dates the translation of a given source sentence. The
online learning techniques implemented in our IMT
system incrementally update the statistical models
involved in the translation process.

2 Related work

There are some works on IMT in the literature that
try to take advantage of user feedback. One exam-
ple is the work by Nepveu et al. (2004), where dy-
namic adaptation of an IMT system via cache-based
model extensions to language and translation models
is proposed. One major drawback of such proposal
is its inability to learn new words.

68

source(f): Para ver la lista de recursos
reference(ê): To view a listing of resources

interaction-0 ep

es To view the resources list

interaction-1
ep To view
k a
es list of resources

interaction-2
ep To view a list
k list i
es list i ng resources

interaction-3
ep To view a listing
k o
es o f resources

accept ep To view a listing of resources

Figure 1: IMT session to translate a Spanish sentence into English. In interaction-0, the system suggests a translation
(es). In interaction-1, the user moves the mouse to accept the first eight characters “To view ” and presses the a key
(k), then the system suggests completing the sentence with “list of resources” (a new es). Interactions 2 and 3 are
similar. In the final interaction, the user accepts the current suggestion.

Recent research on IMT has proposed the use of
online learning as one possible way to successfully
incorporate user feedback in IMT systems (Ortiz-
Martı́nez et al., 2010). In the online learning setting,
models are trained sample by sample. For this rea-
son, such learning paradigm is appropriate for its use
in the IMT framework. The work by Ortiz-Martı́nez
et al. (2010) implements online learning as incre-
mental learning. Specifically, an IMT system able
to incrementally update the parameters of all of the
different models involved in the interactive transla-
tion process is proposed. One previous attempt to
implement online learning in IMT is the work by
Cesa-Bianchi et al. (2008). In that work, the authors
present a very constrained version of online learn-
ing, which is not able to extend the translation mod-
els due to the high time cost of the learning process.

We have adopted the online learning techniques
proposed in (Ortiz-Martı́nez et al., 2010) to imple-
ment our IMT system. We are not aware of other
IMT tools that include such functionality. For in-
stance, a prototype system for text prediction to help
translators is shown in (Foster et al., 2002). Addi-
tionally, Koehn (2009) presents the Caitra transla-
tion tool. Caitra aids linguists suggesting sentence
completions, alternative words or allowing users to
post-edit machine translation output. However, nei-
ther of these systems are able to take advantage of
the user validated translations.

3 Interactive Machine Translation

IMT can be seen as an evolution of the statistical ma-
chine translation (SMT) framework. In SMT, given
source string f , we seek for the target string e which
maximizes the posterior probability:

ê = argmax
e

Pr(e|f) (1)

Within the IMT framework, a state-of-the-art
SMT system is employed in the following way. For
a given source sentence, the SMT system automati-
cally generates an initial translation. A human trans-
lator checks this translation from left to right, cor-
recting the first error. The SMT system then pro-
poses a new extension, taking the correct prefix ep

into account. These steps are repeated until the
whole input sentence has been correctly translated.
In the resulting decision rule, we maximize over all
possible extensions es of ep:

ês = argmax
es

Pr(es|ep, f) (2)

It is worth to note that the user interactions are at
character level, that is, for each submitted keystroke
the system provides a new extension (or suffix) to
the current hypothesis. A typical IMT session for a
given source sentence is depicted in Figure 1.

State-of-the-art SMT systems follow a log-linear
approach (Och and Ney, 2002), where the posterior

69

probability Pr(e | f) of Eq. (1) is used. Such log-
linear approach can be easily adapted for its use in
the IMT framework as follows:

ês = argmax
es

{
M∑

m=1

λmhm(ep, es, f)

}
(3)

where each hm(ep, es, f) is a feature function rep-
resenting a statistical model and λm its correspond-
ing weight. Typically, a set of statistical generative
models are used as feature functions. Among this
feature functions, the most relevant are the language
and translation models. The language model is im-
plemented using statistical n-gram language mod-
els and the translation model is implemented using
phrase-based models.

The IMT system proposed here is based on a log-
linear SMT system which includes a total of seven
feature functions: an n-gram language model, a tar-
get sentence length model, inverse and direct phrase-
based models, source and target phrase length mod-
els and a reordering model.

4 Online Learning

In the online learning paradigm, learning proceeds
as a sequence of trials. In each trial, a sample is
presented to the learning algorithm to be classified.
Once the sample is classified, its correct label is told
to the learning algorithm.

The online learning paradigm fits nicely in the
IMT framework, since the interactive translation of
the source sentences generates new user-validated
training samples that can be used to extend the sta-
tistical models involved in the translation process.

One key aspect in online learning is the time re-
quired by the learning algorithm to process the new
training samples. One way to satisfy this constraint
is to obtain incrementally updateable versions of the
algorithms that are executed to train the statistical
models involved in the translation process. We have
adopted this approach to implement our IMT sys-
tem. Specifically, our proposed IMT system imple-
ments the set of training algorithms that are required
to incrementally update each component of the log-
linear model. Such log-linear model is composed of
seven components (see section 3). One key aspect of
the required training algorithms is the necessity to
replace the conventional expectation-maximization

(EM) algorithm by its incremental version (Neal and
Hinton, 1998). The complete details can be found in
(Ortiz-Martı́nez et al., 2010).

5 System Overview

In this section the main features of our prototype are
shown, including prototype design, interaction pro-
tocol, prototype functionalities and demo usage.

5.1 Prototype Design
Prototype architecture has been built on two main
aspects, namely, accessibility and flexibility. The
former is necessary to reach a larger number of po-
tential users. The latter allows researchers to test
different techniques and interaction protocols.

For that reason, we developed an CAT Appli-
cation Programming Interface (API) between the
client and the actual translation engine, by using
a network communication protocol and exposing a
well-defined set of functions.

Figure 2: IMT system architecture.

A diagram of the architecture is shown in Fig-
ure 2. On the one hand, the IMT client provides a
User Interface (UI) which uses the API to commu-
nicate with the IMT server through the Web. The
hardware requirements in the client are very low,
as the translation process is carried out remotely on
the server, so virtually any computer (including net-
books, tablets or 3G mobile phones) should be fairly
enough. On the other hand, the server, which is
unaware of the implementation details of the IMT
client, uses and adapts the statistical models that are
used to perform the translation.

5.2 User Interaction Protocol
The protocol that rules the IMT process has the fol-
lowing steps:

1. The system proposes a full translation of the
selected text segment.

70

Figure 3: Demo interface. The source text segments are automatically extracted from source document. Such segments
are marked as pending (light blue), validated (dark green), partially translated (light green), and locked (light red). The
translation engine can work either at full-word or character level.

2. The user validates the longest prefix of the
translation which is error-free and/or corrects
the first error in the suffix. Corrections are
entered by amendment keystrokes or mouse
clicks/wheel operations.

3. In this way, a new extended consolidated pre-
fix is produced based on the previous validated
prefix and the interaction amendments. Using
this new prefix, the system suggests a suitable
continuation of it.

4. Steps 2 and 3 are iterated until the user-desired
translation is produced.

5. The system adapts the models to the new vali-
dated pair of sentences.

5.3 Prototype Functionality

The following is a list of the main features that the
prototype supports:

• When the user corrects the solution proposed
by the system, a new improved suffix is pre-
sented to the user.
• The system is able to learn from user-validated

translations.
• The user is able to perform actions by means

of keyboard shortcuts or mouse gestures. The
supported actions on the proposed suffix are:
Substitution Substitute the first word or char-

acter of the suffix.

Deletion Delete the first word of the suffix.
Insertion Insert a word before the suffix.
Rejection The rejected word will not appear in

the following proposals.
Acceptance Assume that the current transla-

tion is correct and adapt the models.
• At any time, the user is able to visualize the

original document (Figure 4(a)), as well as a
properly formated draft of the current transla-
tion (Figure 4(b)).
• Users can select the document to be translated

from a list or upload their own documents.

5.4 Demo Description and Usage
This demo exploits the WWW to enable the connec-
tion of simultaneous accesses across the globe, coor-
dinating client-side scripting with server-side tech-
nologies. The interface uses web technologies such
as XHTML, JavaScript, and ActionScript; while the
IMT engine is written in C++.

The prototype is publicly available on the Web
(http://cat.iti.upv.es/imt/). To begin
with, the UI loads an index of all available transla-
tion corpora. Currently, the prototype can be tested
with the well-known Europarl corpora (Koehn,
2005). The user chooses a corpus and navigates to
the main interface page (Figure 3), where she in-
teractively translates the text segments one by one.
User’s feedback is then processed by the IMT server.

71

(a) Source document example, created from EuroParl corpus.

(b) Translated example document, preserving original format and highlighting non-translated sentences.

Figure 4: Translating documents with the proposed system.

All corrections are stored in plain text logs on the
server, so the user can retake them in any mo-
ment, also allowing collaborative translations be-
tween users. On the other hand, this prototype al-
lows uploading custom documents in text format.

Since the users operate within a web browser,
the system also provides crossplatform compatibil-
ity and requires neither computational power nor
disk space on the client’s machine. The communi-
cation between application and web server is based
on asynchronous HTTP connections, providing thus
a richer interactive experience (no page refreshes are
required.) Moreover, the Web server communicates
with the IMT engine through binary TCP sockets,
ensuring really fast response times.

6 Experimental Results

Experimental results were carried out using the Xe-
rox corpus (Barrachina et al., 2009), which con-
sists of translation of Xerox printer manual involv-
ing three different language pairs: French-English,
Spanish-English, and German-English. This corpus
has been extensively used in the literature to report
IMT results. The corpus consists of approximately
50,000 sentences pairs for training, 1,000 for devel-
opment, and 1,000 for test.

The evaluation criteria used in the experiments are
the key-stroke and mouse-action ratio (KSMR) met-
ric (Barrachina et al., 2009), which measures the
user effort required to generate error-free transla-
tions, and the well-known BLEU score, which con-
stitutes a measure of the translation quality.

The test corpora were interactively translated
from English to the other three languages, compar-
ing the performance of a batch IMT (baseline) and
the online IMT systems. The batch IMT system
is a conventional IMT system which is not able to
take advantage of user feedback after each trans-
lation is performed. The online IMT system uses
the translations validated by the user to adapt the
translation models at runtime. Both systems were
initialized with a log-linear model trained in batch
mode using the training corpus. Table 1 shows the
BLEU score and the KSMR for the batch and the
online IMT systems (95% confidence intervals are
shown). The BLEU score was calculated from the
first translation hypothesis produced by the IMT sys-
tem for each source sentence. All the obtained im-
provements with the online IMT system were statis-
tically significant. The average online training time
for each new sample presented to the system, and
the average response time for each user interaction

72

(that is, time that the system uses to propose new
extensions for corrected prefixes) are also shown in
Table 1, which are less than a tenth of a second and
around two tenths of a second respectively1. Ac-
cording to the reported response and online training
times, we can argue that the system proposed here is
able to be used on real time scenarios.

System BLEU KSMR LT/RT (s)

En-Sp batch 55.1± 2.3 18.2± 1.1 – /0.09
online 60.6± 2.3 15.8± 1.0 0.04 /0.09

En-Fr batch 33.7± 2.0 33.9± 1.3 – /0.14
online 42.2± 2.2 27.9± 1.3 0.09 /0.14

En-Ge batch 20.4± 1.8 40.3± 1.2 – /0.15
online 28.0± 2.0 35.0± 1.3 0.07 /0.15

Table 1: BLEU and KSMR results for the XEROX test
corpora using the batch and the online IMT systems, re-
porting the average online learning (LT) and the interac-
tion response times (RP) in seconds.

It is worth mentioning that the results presented
here significantly improve those presented in (Bar-
rachina et al., 2009) for other state-of-the-art IMT
systems using the same corpora.

7 Conclusions

We have described an IMT system with online learn-
ing which is able to learn from user feedback in real
time. As far as we know, to our knowledge, this
feature have never been provided by previously pre-
sented IMT prototypes.

The proposed IMT tool is publicly available
through the Web (http://cat.iti.upv.es/
imt/). Currently, the system can be used to inter-
actively translate the well-known Europarl corpus.
We have also carried out experiments with simulated
users. According to such experiments, our IMT
system is able to outperform the results obtained
by conventional IMT systems implementing batch
learning. Future work includes researching further
on the benefits provided by our online learning tech-
niques with experiments involving real users.

Acknowledgments
Work supported by the EC (FEDER/FSE), the Span-
ish Government (MEC, MICINN, MITyC, MAEC,

1All the experiments were executed in a PC with 2.40 GHz
Intel Xeon processor and 1GB of memory.

“Plan E”, under grants MIPRCV “Consolider In-
genio 2010” CSD2007-00018, iTrans2 TIN2009-
14511, erudito.com TSI-020110-2009-439), the
Generalitat Valenciana (grant Prometeo/2009/014,
grant GV/2010/067), the Universitat Politècnica de
València (grant 20091027), and the Spanish JCCM
(grant PBI08-0210-7127).

References
S. Barrachina, O. Bender, F. Casacuberta, J. Civera,

E. Cubel, S. Khadivi, A. Lagarda, H. Ney, J. Tomás,
and E. Vidal. 2009. Statistical approaches to
computer-assisted translation. Computational Lin-
guistics, 35(1):3–28.

N. Cesa-Bianchi, G. Reverberi, and S. Szedmak. 2008.
Online learning algorithms for computer-assisted
translation. Deliverable D4.2, SMART: Stat. Multi-
lingual Analysis for Retrieval and Translation.

G. Foster, P. Isabelle, and P. Plamondon. 1997. Target-
text mediated interactive machine translation. Ma-
chine Translation, 12(1):175–194.

G. Foster, P. Langlais, and G. Lapalme. 2002. Transtype:
text prediction for translators. In Proc. HLT, pages
372–374.

P. Isabelle and K. Church. 1997. Special issue on
new tools for human translators. Machine Translation,
12(1–2).

P. Koehn. 2005. Europarl: A parallel corpus for statisti-
cal machine translation. In Proc. of the MT Summit X,
pages 79–86, September.

P. Koehn. 2009. A web-based interactive computer aided
translation tool. In Proc. ACL-IJCNLP, ACLDemos,
pages 17–20.

P. Langlais, G. Lapalme, and M. Loranger. 2002.
Transtype: Development-evaluation cycles to boost
translator’s productivity. Machine Translation,
15(4):77–98.

R.M. Neal and G.E. Hinton. 1998. A view of the
EM algorithm that justifies incremental, sparse, and
other variants. In Proc. of the NATO-ASI on Learning
in graphical models, pages 355–368, Norwell, MA,
USA.

L. Nepveu, G. Lapalme, P. Langlais, and G. Foster. 2004.
Adaptive language and translation models for interac-
tive machine translation. In Proc. EMNLP, pages 190–
197.

F. J. Och and H. Ney. 2002. Discriminative Training
and Maximum Entropy Models for Statistical Machine
Translation. In Proc. ACL, pages 295–302.

D. Ortiz-Martı́nez, I. Garcı́a-Varea, and F. Casacuberta.
2010. Online learning for interactive statistical ma-
chine translation. In Proc. NAACL/HLT, pages 546–
554.

73

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 74–79,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

Wikulu: An Extensible Architecture for Integrating Natural Language
Processing Techniques with Wikis

Daniel Bär, Nicolai Erbs, Torsten Zesch, and Iryna Gurevych
Ubiquitous Knowledge Processing Lab

Computer Science Department, Technische Universität Darmstadt
Hochschulstrasse 10, D-64289 Darmstadt, Germany

www.ukp.tu-darmstadt.de

Abstract

We present Wikulu1, a system focusing on
supporting wiki users with their everyday
tasks by means of an intelligent interface.
Wikulu is implemented as an extensible archi-
tecture which transparently integrates natural
language processing (NLP) techniques with
wikis. It is designed to be deployed with any
wiki platform, and the current prototype inte-
grates a wide range of NLP algorithms such
as keyphrase extraction, link discovery, text
segmentation, summarization, or text similar-
ity. Additionally, we show how Wikulu can
be applied for visually analyzing the results
of NLP algorithms, educational purposes, and
enabling semantic wikis.

1 Introduction

Wikis are web-based, collaborative content author-
ing systems (Leuf and Cunningham, 2001). As they
offer fast and simple means for adding and editing
content, they are used for various purposes such as
creating encyclopedias (e.g. Wikipedia2), construct-
ing dictionaries (e.g. Wiktionary3), or hosting online
communities (e.g. ACLWiki4). However, as wikis do
not enforce their users to structure pages or add com-
plementary metadata, wikis often end up as a mass
of unmanageable pages with meaningless page titles
and no usable link structure (Buffa, 2006).

To solve this issue, we present the Wikulu sys-
tem which uses natural language processing to sup-
port wiki users with their typical tasks of adding,

1Portmanteau of the Hawaiian terms wiki (“fast”) and kukulu
(“to organize”)

2http://www.wikipedia.org
3http://www.wiktionary.org
4http://aclweb.org/aclwiki

organizing, and finding content. For example,
Wikulu supports users with reading longer texts by
highlighting keyphrases using keyphrase extraction
methods such as TextRank (Mihalcea and Tarau,
2004). Support integrated in Wikulu also includes
text segmentation to segment long pages, text simi-
larity for detecting potential duplicates, or text sum-
marization to facilitate reading of lengthy pages.
Generally, Wikulu allows to integrate any NLP com-
ponent which conforms to the standards of Apache
UIMA (Ferrucci and Lally, 2004).

Wikulu is designed to integrate seamlessly with
any wiki. Our system is implemented as an HTTP
proxy server which intercepts the communication
between the web browser and the underlying wiki
engine. No further modifications to the original wiki
installation are necessary. Currently, our system pro-
totype contains adaptors for two widely used wiki
engines: MediaWiki5 and TWiki6. Adaptors for other
wiki engines can be added with minimal effort. Gen-
erally, Wikulu could also be applied to any web-
based system other than wikis with only slight mod-
ifications to its architecture.

In Figure 1, we show the integration of Wikulu
with Wikipedia.7 The additional user interface com-
ponents are integrated into the default toolbar (high-
lighted by a red box in the screenshot). In this ex-
ample, the user has requested keyphrase highlight-
ing in order to quickly get an idea about the main
content of the wiki article. Wikulu then invokes the

5http://mediawiki.org (e.g. used by Wikipedia)
6http://twiki.org (often used for corporate wikis)
7As screenshots only provide a limited overview of

Wikulu’s capabilities, we refer the reader to a screencast:
http://www.ukp.tu-darmstadt.de/research/
projects/wikulu

74

Figure 1: Integration of Wikulu with Wikipedia. The aug-
mented toolbar (red box) and the results of a keyphrase
extraction algorithm (yellow text spans) are highlighted.

corresponding NLP component, and highlights the
returned keyphrases in the article. In the next sec-
tion, we give a more detailed overview of the differ-
ent types of support provided by Wikulu.

2 Supporting Wiki Users by Means of NLP

In this section, we present the different types of
NLP-enabled support provided by Wikulu.

Detecting Duplicates Whenever users add new
content to a wiki there is the danger of duplicating
already contained information. In order to avoid du-
plication, users would need comprehensive knowl-
edge of what content is already present in the wiki,
which is almost impossible for large wikis like
Wikipedia. Wikulu helps to detect potential du-
plicates by computing the text similarity between
newly added content and each existing wiki page.
If a potential duplicate is detected, the user is noti-
fied and may decide to augment the duplicate page
instead of adding a new one. Wikulu integrates text
similarity measures such as Explicit Semantic Anal-
ysis (Gabrilovich and Markovitch, 2007) and Latent
Semantic Analysis (Landauer et al., 1998).

Suggesting Links While many wiki users read-
ily add textual contents to wikis, they often re-
strain from also adding links to related pages. How-
ever, links in wikis are crucial as they allow users
to quickly navigate from one page to another, or
browse through the wiki. Therefore, it may be rea-
sonable to augment a page about the topic sentiment

Figure 2: Automatic discovery of links to other wiki ar-
ticles. Suitable text phrases to place a link on are high-
lighted in green.

analysis by a link to a page providing related in-
formation such as evaluation datasets. Wikulu sup-
ports users in this tedious task by automatically sug-
gesting links. Link suggestion thereby is a two-step
process: (a) first, suitable text phrases are extracted
which might be worth to place a link on (see Fig-
ure 2), and (b) for each phrase, related pages are
ranked by comparing their relevance to the current
page, and then presented to the user. The user may
thus decide whether she wants to use a detected
phrase as a link or not, and if so, which other wiki
page to link this phrase to. Wikulu currently inte-
grates link suggestion algorithms by Geva (2007)
and Itakura and Clarke (2007).

Semantic Searching The capabilities of a wiki’s
built-in search engine are typically rather limited
as it traditionally performs e.g. keyword-based re-
trieval. If that keyword is not found in the wiki, the
query returns an empty result set. However, a page
might exist which is semantically related to the key-
word, and should thus yield a match.

As the search engine is typically a core part of the
wiki system, it is rather difficult to modify its be-
havior. However, by leveraging Wikulu’s architec-
ture, we can replace the default search mechanisms
by algorithms which allow for semantic search to al-
leviate the vocabulary mismatch problem (Gurevych
et al., 2007).

Segmenting Long Pages Due to the open edit-
ing policy of wikis, pages tend to grow rather fast.

75

Figure 3: Analysis of a wiki article with respect to topical
coherence. Suggested segment breaks are highlighted by
yellow bars.

For users, it is thus a major challenge to keep an
overview of what content is present on a certain
page. Wikulu therefore supports users by analyzing
long pages through employing text segmentation al-
gorithms which detect topically coherent segments
of text. It then suggests segment boundaries which
the user may or may not accept for inserting a sub-
heading which makes pages easier to read and better
to navigate. As shown in Figure 3, users are also en-
couraged to set a title for each segment.8 When ac-
cepting one or more of these suggested boundaries,
Wikulu stores them persistently in the wiki. Wikulu
currently integrates text segmentation methods such
as TextTiling (Hearst, 1997) or C99 (Choi, 2000).

Summarizing Pages Similarly to segmenting
pages, Wikulu makes long wiki pages more acces-
sible by generating an extractive summary. While
generative summaries generate a summary in own
words, extractive summaries analyze the original
wiki text sentence-by-sentence, rank each sentence,
and return a list of the most important ones (see Fig-
ure 4). Wikulu integrates extractive text summariza-
tion methods such as LexRank (Erkan and Radev,
2004).

Highlighting Keyphrases Another approach to
assist users in better grasping the idea of a wiki page
at a glance is to highlight important keyphrases (see
Figure 1). As Tucker and Whittaker (2009) have

8In future work, we plan to suggest suitable titles for each
segment automatically.

Figure 4: Extractive summary of the original wiki page
shown in Figure 3

shown, highlighting important phrases assists users
with reading longer texts and yields faster under-
standing. Wikulu thus improves readability by em-
ploying automatic keyphrase extraction algorithms.
Additionally, Wikulu allows to dynamically adjust
the number of keyphrases shown by presenting a
slider to the user. We integrated keyphrase extrac-
tion methods such as TextRank (Mihalcea and Tarau,
2004) and KEA (Witten et al., 1999).

3 Further Use Cases

Further use cases for supporting wiki users include
(i) visually analyzing the results of NLP algorithms,
(ii) educational purposes, and (iii) enabling semantic
wikis.

Visually Analyzing the Results of NLP Algo-
rithms Wikulu facilitates analyzing the results of
NLP algorithms by using wiki pages as input doc-
uments and visualizing the results directly on that
page. Consider an NLP algorithm which performs
sentiment analysis. Typically, we were to put our
analysis sentences in a text file, launch the NLP ap-
plication, process the file, and would read the output
from either a built-in console or a separate output
file. This procedure suffers from two major draw-
backs: (a) it is inconvenient to copy existing data
into a custom input format which can be fed into the
NLP system, and (b) the textual output does not al-
low presenting the results in a visually rich manner.

Wikulu tackles both challenges by using wiki
pages as input/output documents. For instance,

76

by running the sentiment analysis component right
from within the wiki, its output can be written back
to the originating wiki page, resulting in visually
rich, possibly interactive presentations.

Educational Purposes Wikulu is a handy tool for
educational purposes as it allows to (a) rapidly create
test data in a collaborative manner (see Section 2),
and (b) visualize the results of NLP algorithms, as
described above. Students can gather hands-on ex-
perience by experimenting with NLP components in
an easy-to-use wiki system. They can both collab-
oratively edit input documents, and explore possi-
ble results of e.g. different configurations of NLP
components. In our system prototype, we integrated
highlighting parts-of-speech which have been deter-
mined by a POS tagger.

Enabling Semantic Wikis Semantic wikis such
as the Semantic MediaWiki (Krötzsch et al., 2006)
augment standard wikis with machine-readable se-
mantic annotations of pages and links. As those
annotations have to be entered manually, this step
is often skipped by users which severely limits the
usefulness of semantic wikis. Wikulu could support
users e.g. by automatically suggesting the type of a
link by means of relation detection or the type of a
page by means of text categorization. Thus, Wikulu
could constitute an important step towards the se-
mantification of the content contained in wikis.

4 System Architecture

In this section, we detail our system architecture and
describe what is necessary to make NLP algorithms
available through our system. We also give a walk-
through of Wikulu’s information flow.

4.1 Core Components

Wikulu builds upon a modular architecture, as de-
picted in Figure 5. It acts as an HTTP proxy server
which intercepts the communication between the
web browser and the target wiki engine, while it al-
lows to run any Apache UIMA-compliant NLP com-
ponent using an extensible plugin mechanism.

In the remainder of this section, we introduce each
module: (a) the proxy server which allows to add
Wikulu to any target wiki engine, (b) the JavaScript
injection that bridges the gap between the client- and

server-side code, (c) the plugin manager which gives
access to any Apache UIMA-based NLP component,
and (d) the wiki abstraction layer which offers a
high-level interface to typical wiki operations such
as reading and writing the wiki content.

Proxy Server Wikulu is designed to work with
any underlying wiki engine such as MediaWiki or
TWiki. Consequently, we implemented it as an
HTTP proxy server which allows it to be enabled at
any time by changing the proxy settings of a user’s
web browser.9 The proxy server intercepts all re-
quests between the user who interacts with her web
browser, and the underlying wiki engine. For ex-
ample, Wikulu passes certain requests to its lan-
guage processing components, or augments the de-
fault wiki toolbar by additional commands. We elab-
orate on the latter in the following paragraph.

JavaScript Injection Wikulu modifies the re-
quests between web browser and target wiki by in-
jecting custom client-side JavaScript code. Wikulu
is thus capable of altering the default behavior of
the wiki engine, e.g. replacing a keyword-based re-
trieval by enhanced search methods (cf. Section 2),
adding novel behavior such as additional toolbar
buttons or advanced input fields, or augmenting the
originating web page after a certain request has been
processed, e.g. an NLP algorithm has been run.

Plugin Manager Wikulu does not perform lan-
guage processing itself. It relies on Apache UIMA-
compliant NLP components which use wiki pages
(or parts thereof) as input texts. Wikulu offers a so-
phisticated plugin manager which takes care of dy-
namically loading those NLP components. The plu-
gin loader is designed to run plugins either every
time a wiki page loads, or manually by picking them
from the augmented wiki toolbar.

The NLP components are available as server-side
Java classes. Via direct web remoting10, those com-
ponents are made accessible through a JavaScript
proxy object. Wikulu offers a generic language pro-
cessing plugin which takes the current page contents

9The process of enabling a custom proxy server can be
simplified by using web browser extensions such as Mul-
tiproxy Switch (https://addons.mozilla.org/de/
firefox/addon/multiproxy-switch).

10http://directwebremoting.org

77

Browser

Duplicate Detection

JavaScript
Injection

P
lu

gi
n

M
an

ag
er

Wiki Abstraction
Layer

Wiki

Semantic Search

Link Suggestion

Text Segmentation

Text Summarization

Keyphrase Highlighting

...

W
ik

u
lu

 P
ro

x
y

Apache UIMA-compliant
NLP components

User

Figure 5: Wikulu acts as a proxy server which intercepts
the communication between the web browser and the un-
derlying wiki engine. Its plugin manager allows to inte-
grate any Apache UIMA-compliant NLP component.

as input text, runs an NLP component, and writes its
output back to the wiki. To run a custom Apache
UIMA-compliant NLP component with Wikulu, one
just needs to plug that particular NLP component
into the generic plugin. No further adaptations to
the generic plugin are necessary. However, more ad-
vanced users may create fully customized plugins.

Wiki Abstraction Layer Wikulu communicates
with the underlying wiki engine via an abstraction
layer. That layer provides a generic interface for
accessing and manipulating the underlying wiki en-
gine. Thereby, Wikulu can both be tightly coupled to
a certain wiki instance such as MediaWiki or TWiki,
while being flexible at the same time to adapt to a
changing environment. New adaptors for other tar-
get wiki engines such as Confluence11 can be added
with minimal effort.

4.2 Walk-Through Example

Let’s assume that a user encounters a wiki page
which is rather lengthy. She realizes that Wikulu’s
keyphrase extraction component might help her to
better grasp the idea of this page at a glance, so
she activates Wikulu by setting her web browser to
pass all requests through the proxy server. After

11http://www.atlassian.com/software/
confluence

JS
Injection

Proxy
Server

Keyphr.
Plugin

Wiki
Abstr. Lay. Wiki

get content from wiki page get
page

extract
keyphrases

Browser

highlight
keyphrases

inject
keyphrases

Figure 6: Illustration of Wikulu’s information flow when
a user has requested to highlight keyphrases on the cur-
rent page as described in Section 4.2

applying the settings, the JavaScript injection mod-
ule adds additional links to the wiki’s toolbar on
the originating wiki page. Having decided to ap-
ply keyphrase extraction, she then invokes that NLP
component by clicking the corresponding link (see
Figure 6). Before the request is passed to that com-
ponent, Wikulu extracts the wiki page contents us-
ing the high-level wiki abstraction layer. Thereafter,
the request is passed via direct web remoting to the
NLP component which has been loaded by Wikulu’s
plugin mechanism. After processing the request, the
extracted keyphrases are returned to Wikulu’s cus-
tom JavaScript handlers and finally highlighted in
the originating wiki page.

5 Related Work

Supporting wiki users with NLP techniques has not
attracted a lot of research attention yet. A no-
table exception is the work by Witte and Gitzinger
(2007). They propose an architecture to connect
wikis to services providing NLP functionality which
are based on the General Architecture for Text En-
gineering (Cunningham et al., 2002). Contrary to
Wikulu, though, their system does not integrate
transparently with an underlying wiki engine, but
rather uses a separate application to apply NLP tech-
niques. Thereby, wiki users can leverage the power
of NLP algorithms, but need to interrupt their cur-
rent workflow to switch to a different application.

78

Moreover, their system is only loosely coupled with
the underlying wiki engine. While it allows to read
and write existing pages, it does not allow further
modifications such as adding user interface controls.

A lot of work in the wiki community is done in the
context of Wikipedia. For example, the FastestFox12

plug-in for Wikipedia is able to suggest links to re-
lated articles. However, unlike Wikulu, FastestFox
is tailored towards Wikipedia and cannot be used
with any other wiki platform.

6 Summary

We presented Wikulu, an extensible system which
integrates natural language processing techniques
with wikis. Wikulu addresses the major challenge of
supporting wiki users with their everyday tasks. Be-
sides that, we demonstrated how Wikulu serves as
a flexible environment for (a) visually analyzing the
results of NLP algorithms, (b) educational purposes,
and (c) enabling semantic wikis. By its modular and
flexible architecture, we envision that Wikulu can
support wiki users both in small focused environ-
ments as well as in large-scale communities such as
Wikipedia.

Acknowledgments
This work has been supported by the Volkswagen Foun-
dation as part of the Lichtenberg-Professorship Program
under grant No. I/82806, and by the Klaus Tschira Foun-
dation under project No. 00.133.2008. We would like to
thank Johannes Hoffart for designing and implementing
the foundations of this work, as well as Artem Vovk and
Carolin Deeg for their contributions.

References
Michel Buffa. 2006. Intranet Wikis. In Proceedings

of the IntraWebs Workshop at the 15th International
Conference on World Wide Web.

Freddy Y. Y. Choi. 2000. Advances in domain indepen-
dent linear text segmentation. In Proceedings of the
1st Meeting of the North American Chapter of the As-
sociation for Computational Linguistics, pages 26–33.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. 2002. GATE:
A Framework and Graphical Development Environ-
ment for Robust NLP Tools and Applications. In
Proc. of the 40th Annual Meeting of the Association
for Computational Linguistics, pages 168–175.

12http://smarterfox.com

Güneş Erkan and Dragomir Radev. 2004. LexRank:
Graph-based Lexical Centrality as Salience in Text
Summarization. Journal of Artificial Intelligence Re-
search, 22:457–479.

David Ferrucci and Adam Lally. 2004. UIMA: An Ar-
chitectural Approach to Unstructured Information Pro-
cessing in the Corporate Research Environment. Nat-
ural Language Engineering, pages 1–26.

Evgeniy Gabrilovich and Shaul Markovitch. 2007. Com-
puting Semantic Relatedness using Wikipedia-based
Explicit Semantic Analysis. In Proceedings of the
20th International Joint Conference on Artificial In-
telligence, pages 1606–1611.

Shlomo Geva. 2007. GPX: Ad-Hoc Queries and Auto-
mated Link Discovery in the Wikipedia. In Prepro-
ceedings of the INEX Workshop, pages 404–416.

Iryna Gurevych, Christof Müller, and Torsten Zesch.
2007. What to be?–Electronic Career Guidance Based
on Semantic Relatedness. In Proceedings of the 45th
Annual Meeting of the Association for Computational
Linguistics, pages 1032–1039.

Marti A. Hearst. 1997. TextTiling: Segmenting text into
multi-paragraph subtopic passages. Computational
Linguistics, 23(1):33–64.

Kelly Y. Itakura and Charles L. A. Clarke. 2007. Univer-
sity of Waterloo at INEX2007: Adhoc and Link-the-
Wiki Tracks. In INEX 2007 Workshop Preproceed-
ings, pages 417–425.

Markus Krötzsch, Denny Vrandečić, and Max Völkel.
2006. Semantic MediaWiki. In Proc. of the 5th Inter-
national Semantic Web Conference, pages 935–942.

Thomas K. Landauer, Peter W. Foltz, and Darrell Laham.
1998. An introduction to Latent Semantic Analysis.
Discourse Processes, 25(2):259–284.

Bo Leuf and Ward Cunningham. 2001. The Wiki Way:
Collaboration and Sharing on the Internet. Addison-
Wesley Professional.

Rada Mihalcea and Paul Tarau. 2004. TextRank: Bring-
ing Order into Texts. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing, pages 404–411.

Simon Tucker and Steve Whittaker. 2009. Have A Say
Over What You See: Evaluating Interactive Compres-
sion Techniques. In Proceedings of the Intl. Confer-
ence on Intelligent User Interfaces, pages 37–46.

René Witte and Thomas Gitzinger. 2007. Connecting
wikis and natural language processing systems. In
Proc. of the Intl. Symposium on Wikis, pages 165–176.

Ian H. Witten, Gordon W. Paynter, Eibe Frank, Carl
Gutwin, and Craig G. Nevill-Manning. 1999. KEA:
Practical automatic keyphrase extraction. In Proceed-
ings of the 4th ACM Conference on Digital Libraries,
pages 254–255.

79

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 80–85,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

A Speech-based Just-in-Time Retrieval System using Semantic Search

Andrei Popescu-Belis, Majid Yazdani, Alexandre Nanchen, and Philip N. Garner
Idiap Research Institute
Rue Marconi 19, CP 592

1920 Martigny, Switzerland
{apbelis,myazdani,ananchen,pgarner}@idiap.ch

Abstract

The Automatic Content Linking Device is a
just-in-time document retrieval system which
monitors an ongoing conversation or a mono-
logue and enriches it with potentially related
documents, including multimedia ones, from
local repositories or from the Internet. The
documents are found using keyword-based
search or using a semantic similarity measure
between documents and the words obtained
from automatic speech recognition. Results
are displayed in real time to meeting partici-
pants, or to users watching a recorded lecture
or conversation.

1 Introduction

Enriching a monologue or a conversation with re-
lated content, such as textual or audio-visual docu-
ments on the same topic, is a task with multiple ap-
plications in the field of computer-mediated human-
human communication. In this paper, we describe
the Automatic Content Linking Device (ACLD), a
system that analyzes spoken input from one or more
speakers using automatic speech recognition (ASR),
in order to retrieve related content, in real-time, from
a variety of repositories. These include local doc-
ument databases or archives of multimedia record-
ings, as well as websites. Local repositories are
queried using a keyword-based search engine, or us-
ing a semantic similarity measure, while websites
are queried using commercial search engines.

We will first describe the scenarios of use of the
ACLD in Section 2, and review previous systems for

just-in-time retrieval in Section 3. The ACLD com-
ponents will be outlined in Sections 4.1 to 4.5. Four
types of evaluation results obtained with our system
will finally be summarized in Sections 5.1 to 5.4.

2 Content Linking: Scenarios of Use

Just-in-time information retrieval, i.e. finding useful
documents without the need for a user to initiate a di-
rect search for them, is one of the ways in which the
large quantity of knowledge that is available in net-
worked environments can be efficiently put to use.
To perform this task, a system must consider ex-
plicit and implicit input from users, mainly speech
or typed input, and attempt to model their context,
in order to provide recommendations, which users
are free to consult if they feel the need for additional
information.

One of the main scenarios of use for the ACLD
involves people taking part in meetings, who often
mention documents containing facts under discus-
sion, but do not have the time to search for them
without interrupting the discussion flow. The ACLD
performs this search for them. Moreover, as the
ACLD was developed on meetings from the AMI
Corpus, it can also perform the same operations on
a replayed meeting, as a complement to a meet-
ing browser, for development or demonstration pur-
poses.

In a second scenario, content linking is performed
over live or recorded lectures, for instance in a
computer-assisted learning environment for individ-
ual students. The ACLD enriches the lectures with
related material drawn from various repositories,
through a search process that can be guided in real

80

time by its user. The advantage of real-time con-
tent linking over a more static enrichment, such as
the Feynman lectures at Microsoft Research,1 is that
users can tune search parameters at will while view-
ing the lecture.

3 Just-in-Time Retrieval Systems

The first precursors to the ACLD were the Fixit
query-free search system (Hart and Graham, 1997),
the Remembrance Agent for just-in-time retrieval
(Rhodes and Maes, 2000), and the Implicit Queries
(IQ) system (Dumais et al., 2004). Fixit monitored
the state of a user’s interaction with a diagnostic
system, and excerpts from maintenance manuals de-
pending on the interaction state. The Remembrance
Agent was integrated to the Emacs text editor, and
ran searches over emails or notes at regular time in-
tervals (every few seconds) using the latest 20–500
words typed by the user. The IQ system generated
context-sensitive searches based on a user’s ongoing
activities on their computer, such as writing email.
A version of the Remembrance Agent called Jim-
miny was conceived as a wearable assistant for tak-
ing notes, but ASR was only simulated for evalua-
tion (Rhodes, 1997).

The Watson system (Budzik and Hammond,
2000) monitored the user’s operations in a text ed-
itor, but proposed a more complex mechanism than
the Remembrance Agent for selecting terms for
queries, which were directed to a web search engine.
Another assistant for an authoring environment was
developed in the A-Propos project (Puerta Melguizo
et al., 2008). A query-free system was designed for
enriching television news with articles from the Web
(Henziker et al., 2005).

The FAME interactive space (Metze and al.,
2006), which provides multi-modal access to record-
ings of lectures via a table top interface, bears many
similarities to the ACLD. However, it requires the
use of specific voice commands by one user only,
and does not spontaneously follow a conversation.

More recently, several speech-based search en-
gines have become available, including as smart
phone applications. Conversely, many systems al-
low searching of spoken document archives.2 Inspi-

1See http://research.microsoft.com/apps/tools/tuva/.
2See workshops at http://www.searchingspeech.org.

ration from these approaches, which are not query-
free, can nevertheless be useful to just-in-time re-
trieval. Other related systems are the Speech Spot-
ter (Goto et al., 2004) and a personal assistant using
dual-purpose speech (Lyons et al., 2004), which en-
able users to search for information using commands
that are identified in the speech flow.

The ACLD improves over numerous past ones by
giving access to indexed multimedia recordings as
well as websites, with fully operational ASR and se-
mantic search, as we now explain.

4 Description of the ACLD

The architecture of the ACLD comprises the follow-
ing functions: document preparation, text extraction
and indexing; input sensing and query preparation;
search and integration of results; user interface to
display the results.

4.1 Document Preparation and Indexing
The preparation of the local database of documents
for content linking involves mainly the extraction of
text, and then the indexing of the documents, which
is done using Apache Lucene software. Text can be
extracted from a large variety of formats (includ-
ing MS Office, PDF, and HTML) and hierarchies
of directories are recursively scanned. The docu-
ment repository is generally prepared before using
the ACLD, but users can also add files at will. Be-
cause past discussions are relevant to subsequent
ones, they are passed through offline ASR and then
chunked into smaller units (e.g. of fixed length, or
based on a homogeneous topic). The resulting texts
are indexed along with the other documents.

The ACLD uses external search engines to search
in external repositories, for instance the Google Web
search API or the Google Desktop application to
search the user’s local drives.

4.2 Sensing the User’s Information Needs
We believe that the most useful cues about the in-
formation needs of participants in a conversation,
or of people viewing a lecture, are the words that
are spoken during the conversation or the lecture.
For the ACLD, we use the AMI real-time ASR sys-
tem (Garner et al., 2009). One of its main features
is the use of a pre-compiled grammar, which al-
lows it to retain accuracy even when running in real-

81

time on a low resource machine. Of course, when
content linking is done over past meetings, or for
text extraction from past recordings, the ASR sys-
tem runs slower than real-time to maximize accuracy
of recognition. However, the accuracy of real-time
ASR is only about 1% lower than the unconstrained
mode which takes several times real-time.

For the RT07 meeting data, when using signals
from individual headset microphones, the AMI ASR
system reaches about 38% word error rate. With
a microphone array, this increases to about 41%.
These values indicate that enough correct words are
sensed by the real-time ASR to make it applicable
to the ACLD, and that a robust search mechanism
could help avoiding retrieval errors due to spurious
words.

The words obtained from the ASR are filtered for
stopwords, so that only content words are used for
search; our list has about 80 words. Furthermore,
we believe that existing knowledge about the impor-
tant terminology of a domain or project can be used
to increase the impact of specific words on search. A
list of pre-specified keywords can be defined based
on such knowledge and can be modified while run-
ning the ACLD. For instance, for remote control de-
sign as in the AMI Corpus scenario, this list includes
about 30 words such as ‘chip’, ‘button’, or ‘mate-
rial’. If any of them is detected in the ASR output,
then their importance is increased for searching, but
otherwise all the other words from the ASR (minus
the stopwords) are used for constructing the query.

4.3 Querying the Document Database

The Query Aggregator (QA) uses the ASR words
to retrieve the most relevant documents from one or
more databases. The current version of the ACLD
makes use of semantic search (see next subsection),
while previous versions used word-based search
from Apache Lucene for local documents, or from
the Google Web or Google Desktop APIs. ASR
words from the latest time frame are put together
(minus the stopwords) to form queries, and recog-
nized keywords are boosted in the Lucene query.
Queries are formulated at regular time intervals, typ-
ically every 15-30 seconds, or on demand. This du-
ration is a compromise between the need to gather
enough words for search, and the need to refresh the
search results reasonably often.

The results are integrated with those from the
previous time frame, using a persistence model to
smooth variations over time. The model keeps track
of the salience of each result, initialized from their
ranking among the search results, then decreasing
in time unless the document is again retrieved. The
rate of decrease (or its inverse, persistence) can be
tuned by the user, but in any case, all past results are
saved by the user interface and can be consulted at
any time.

4.4 Semantic Search over Wikipedia

The goal of our method for semantic search is to
improve the relevance of the retrieved documents,
and to make the mechanism more robust to noise
from the ASR. We have applied to document re-
trieval the graph-based model of semantic rela-
tedness that we recently developed (Yazdani and
Popescu-Belis, 2010), which is also related to other
proposals (Strube and Ponzetto, 2006; Gabrilovich
and Markovitch, 2007; Yeh et al., 2009).

The model is grounded in a measure of seman-
tic relatedness between text fragments, which is
computed using random walk over the network of
Wikipedia articles – about 1.2 million articles from
the WEX data set (Metaweb Technologies, 2010).
The articles are linked through hyperlinks, and also
through lexical similarity links that are constructed
upon initialization. The random walk model allows
the computation of a visiting probability (VP) from
one article to another, and then a VP between sets of
articles, which has been shown to function as a mea-
sure of semantic relatedness, and has been applied
to various NLP problems. To compute relatedness
between two text fragments, these are first projected
represented into the network by the ten closest arti-
cles in terms of lexical similarity.

For the ACLD, the use of semantic relatedness for
document retrieval amounts to searching, in a very
large collection, the documents that are the most
closely related to the words from the ASR in a given
timeframe. Here, the document collection is (again)
the set of Wikipedia articles from WEX, and the goal
is to return the eight most related articles. Such a
search is hard to perform in real time; hence, the so-
lution that was found makes use of several approx-
imations to compute average VP between the ASR
fragment and all articles in the Wikipedia network.

82

Figure 1: Unobtrusive UI displaying document results.
Hovering the mouse over a result (here, the most relevant
one) displays a pop-up window with more information
about it.

4.5 The User Interface (UI)

The main goal of the UI is to make available all
information produced by the system, in a config-
urable way, allowing users to see a larger or smaller
amount of information according to their needs. A
modular architecture with a flexible layout has been
implemented, maximizing the accessibility but also
the understandability of the results, and displaying
also intermediary data such as ASR words and found
keywords. The UI displays up to five widgets, which
can be arranged at will:

1. ASR results with highlighted keywords.

2. Tag-cloud of keywords, coding for recency and
frequency of keywords.

3. Names of documents and past meeting snippets
found by the QA.

4. Names of web pages found via the Google API.

5. Names of local files found via the Google
Desktop API.

Two main arrangements are intended, though
many others are possible: an informative full-screen
UI, shown in Figure 2 with widgets 1–4; and an un-
obtrusive widget UI, with superposed tabs, shown in
Figure 1 with widget 3.

The document names displayed in widgets 3–5
function as hyperlinks to the documents, launching
appropriate external viewers when the user clicks on
them. Moreover, when hovering over a document
name, a pop-up window displays metadata and doc-
ument excerpts that match words from the query, as
an explanation of why the document was retrieved.

5 Evaluation Experiments

Four types of evidence for the relevance and utility
of the ACLD are summarized in this section.

5.1 Feedback from Potential Users

The ACLD was demonstrated to about 50 potential
users (industrial partners, focus groups, etc.) in a
series of sessions of about 30 minutes, starting with
a presentation of the ACLD and continuing with a
discussion and elicitation of feedback. The overall
concept was generally found useful, with positive
verbal evaluations. Feedback for smaller and larger
improvements was collected: e.g. the importance of
matching context, linking on demand, and the UI un-
obtrusive mode.

5.2 Pilot Task-based Experiments

A pilot experiment was conducted by a team at the
University of Edinburgh with an earlier version of
the unobtrusive UI. Four subjects had to complete a
task that was started in previous meetings (ES2008a-
b-c from the AMI Corpus). The goal was to compare
two conditions, with vs. without the ACLD, in terms
of satisfied constraints, overall efficiency, and satis-
faction. Two pilot runs have shown that the ACLD
was being consulted about five times per meeting.
Therefore, many more runs are required to reach sta-
tistical significance of observations, and remain to
be executed depending on future resources.

5.3 Usability Evaluation of the UI

The UI was submitted to a usability evaluation ex-
periment with nine non-technical subjects. The
subjects used the ACLD over a replayed meeting
recording, and were asked to perform several tasks
with it, such as adding a keyword to monitor, search-
ing for a word, or changing the layout. The subjects
then rated usability-related statements, leading to an
assessment on the System Usability Scale (Brooke,
1996).

The overall usability score was 68% (SD: 10),
which is considered as ‘acceptable usability’ for the
SUS. The average task-completion time was 45–
75 seconds. In free-form feedback, subjects found
the system helpful to review meetings but also lec-
tures, appreciated the availability of documents, but
also noted that search results (with keyword-based

83

Figure 2: Full screen UI with four widgets: ASR, keywords, document and website results.

search) were often irrelevant. They also suggested
simplifying the UI (menus, layout) and embedding
a media player for use in the meeting or lecture re-
play scenario.

5.4 Comparing the Relevance of
Keyword-based vs. Semantic Search

We compared the output of semantic search with
that of keyword-based search. The ASR transcript
of one AMI meeting (ES2008d) was passed to both
search methods, and ‘evaluation snippets’ contain-
ing the manual transcript for one-minute excerpts,
accompanied by the 8-best Wikipedia articles found
by each method were produced. Overall, 36 snip-
pets were generated. The manual transcript shown to
subjects was enriched with punctuation and speak-
ers’ names, and the names of the Wikipedia pages
were placed on each side of the transcript frame.

Subjects were then asked to read each snippet,
and decide which of the two document sets was the
most relevant to the discussion taking place, i.e. the
most useful as a suggestion to the participants. They
could also answer ‘none’, and could consult the re-
sult if necessary.

Results were obtained from 8 subjects, each see-

ing 9 snippets out of 36. Every snippet was thus
seen by two subjects. The subjects agreed on 23
(64%) snippets and disagreed on 13 (36%). In fact,
the number of true disagreements not including the
answer ‘none’ was only 7 out of 36.

Over the 23 snippets on which subjects agreed,
the result of semantic search was judged more rel-
evant than that of keyword search for 19 snippets
(53% of the total), and the reverse for 4 snippets
only (11%). Alternatively, if one counts the votes
cast by subjects in favor of each system, regardless
of agreement, then semantic search received 72%
of the votes and keyword-based only 28%. These
numbers show that semantic search quite clearly im-
proves relevance in comparison to keyword-based
one, but there is still room for improvement.

6 Conclusion

The ACLD is, to the best of our knowledge, the
first just-in-time retrieval system to use spontaneous
speech and to support access to multimedia docu-
ments and web pages, using a robust semantic search
method. Future work will aim at improving the rel-
evance of semantic search, at modeling context to

84

improve timing of results, and at inferring relevance
feedback from users. The ACLD should also be ap-
plied to specific use cases, and an experiment with
group work in a learning environment is under way.

Acknowledgments

The authors gratefully acknowledge the support
of the EU AMI and AMIDA Integrated Projects
(http://www.amiproject.org) and of the Swiss IM2
NCCR on Interactive Multimodal Information Man-
agement (http://www.im2.ch).

References
John Brooke. 1996. SUS: A ‘quick and dirty’ us-

ability scale. In Patrick W. Jordan, Bruce Thomas,
Bernard A. Weerdmeester, and Ian L. McClelland, ed-
itors, Usability evaluation in industry, pages 189–194.
Taylor and Francis, London, UK.

Jay Budzik and Kristian J. Hammond. 2000. User inter-
actions with everyday applications as context for just-
in-time information access. In IUI 2000 (5th Interna-
tional Conference on Intelligent User Interfaces), New
Orleans, LA.

Susan Dumais, Edward Cutrell, Raman Sarin, and Eric
Horvitz. 2004. Implicit Queries (IQ) for contextual-
ized search. In SIGIR 2004 (27th ACM SIGIR Confer-
ence) Demonstrations, page 534, Sheffield, UK.

Evgeniy Gabrilovich and Shaul Markovitch. 2007. Com-
puting semantic relatedness using Wikipedia-based
explicit semantic analysis. In IJCAI 2007 (20th Inter-
national Joint Conference on Artificial Intelligence),
pages 6–12, Hyderabad, India.

Philip N. Garner, John Dines, Thomas Hain, Asmaa
El Hannani, Martin Karafiat, Danil Korchagin, Mike
Lincoln, Vincent Wan, and Le Zhang. 2009. Real-
time ASR from meetings. In Interspeech 2009 (10th
Annual Conference of the Intl. Speech Communication
Association), pages 2119–2122, Brighton, UK.

Masataka Goto, Koji Kitayama, Katsunobu Itou, and Tet-
sunori Kobayashi. 2004. Speech Spotter: On-demand
speech recognition in human-human conversation on
the telephone or in face-to-face situations. In ICSLP
2004 (8th International Conference on Spoken Lan-
guage Processing), pages 1533–1536, Jeju Island.

Peter E. Hart and Jamey Graham. 1997. Query-free in-
formation retrieval. IEEE Expert: Intelligent Systems
and Their Applications, 12(5):32–37.

Monika Henziker, Bay-Wei Chang, Brian Milch, and
Sergey Brin. 2005. Query-free news search. World
Wide Web: Internet and Web Information Systems,
8:101–126.

Kent Lyons, Christopher Skeels, Thad Starner, Cor-
nelis M. Snoeck, Benjamin A. Wong, and Daniel Ash-
brook. 2004. Augmenting conversations using dual-
purpose speech. In UIST 2004 (17th Annual ACM
Symposium on User Interface Software and Technol-
ogy), pages 237–246, Santa Fe, NM.

Metaweb Technologies. 2010. Freebase Wikipedia Ex-
traction (WEX). http://download.freebase.com/wex/.

Florian Metze and al. 2006. The ‘Fame’ interactive
space. In Machine Learning for Multimodal Interac-
tion II, LNCS 3869, pages 126–137. Springer, Berlin.

Maria Carmen Puerta Melguizo, Olga Monoz Ramos,
Lou Boves, Toine Bogers, and Antal van den Bosch.
2008. A personalized recommender system for writ-
ing in the Internet age. In LREC 2008 Workshop on
NLP Resources, Algorithms, and Tools for Authoring
Aids, pages 21–26, Marrakech, Morocco.

Bradley J. Rhodes and Pattie Maes. 2000. Just-in-time
information retrieval agents. IBM Systems Journal,
39(3-4):685–704.

Bradley J. Rhodes. 1997. The Wearable Remembrance
Agent: A system for augmented memory. Personal
Technologies: Special Issue on Wearable Computing,
1:218–224.

Michael Strube and Simone Paolo Ponzetto. 2006.
Wikirelate! Computing semantic relatedness using
Wikipedia. In AAAI 2006 (21st National Conference
on Artificial Intelligence), pages 1419–1424, Boston,
MA.

Majid Yazdani and Andrei Popescu-Belis. 2010. A ran-
dom walk framework to compute textual semantic sim-
ilarity: A unified model for three benchmark tasks. In
ICSC 2010 (4th IEEE International Conference on Se-
mantic Computing), pages 424–429, Pittsburgh, PA.

Eric Yeh, Daniel Ramage, Christopher D. Manning,
Eneko Agirre, and Aitor Soroa. 2009. WikiWalk: ran-
dom walks on Wikipedia for semantic relatedness. In
TextGraphs-4 (4th Workshop on Graph-based Methods
for NLP), pages 41–49, Singapore.

85

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 86–91,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

MACAON
An NLP Tool Suite for Processing Word Lattices

Alexis Nasr Frédéric Béchet Jean-François Rey Benoı̂t Favre Joseph Le Roux∗
Laboratoire d’Informatique Fondamentale de Marseille- CNRS - UMR 6166

Université Aix-Marseille
(alexis.nasr,frederic.bechet,jean-francois.rey,benoit.favre,joseph.le.roux)

@lif.univ-mrs.fr

Abstract

MACAON is a tool suite for standard NLP tasks
developed for French. MACAON has been de-
signed to process both human-produced text
and highly ambiguous word-lattices produced
by NLP tools. MACAON is made of several na-
tive modules for common tasks such as a tok-
enization, a part-of-speech tagging or syntac-
tic parsing, all communicating with each other
through XML files . In addition, exchange pro-
tocols with external tools are easily definable.
MACAON is a fast, modular and open tool, dis-
tributed under GNU Public License.

1 Introduction

The automatic processing of textual data generated
by NLP software, resulting from Machine Transla-
tion, Automatic Speech Recognition or Automatic
Text Summarization, raises new challenges for lan-
guage processing tools. Unlike native texts (texts
produced by humans), this new kind of texts is the
result of imperfect processors and they are made
of several hypotheses, usually weighted with con-
fidence measures. Automatic text production sys-
tems can produce these weighted hypotheses as n-
best lists, word lattices, or confusion networks. It is
crucial for this space of ambiguous solutions to be
kept for later processing since the ambiguities of the
lower levels can sometimes be resolved during high-
level processing stages. It is therefore important to
be able to represent this ambiguity.

∗This work has been funded by the French Agence Nationale
pour la Recherche, through the projects SEQUOIA (ANR-08-
EMER-013) and DECODA (2009-CORD-005-01)

MACAON is a suite of tools developped to pro-
cess ambiguous input and extend inference of in-
put modules within a global scope. It con-
sists in several modules that perform classical
NLP tasks (tokenization, word recognition, part-of-
speech tagging, lemmatization, morphological anal-
ysis, partial or full parsing) on either native text
or word lattices. MACAON is distributed under
GNU public licence and can be downloaded from
http://www.macaon.lif.univ-mrs.fr/.

From a general point of view, a MACAON module
can be seen as an annotation device1 which adds a
new level of annotation to its input that generally de-
pends on annotations from preceding modules. The
modules communicate through XML files that allow
the representation different layers of annotation as
well as ambiguities at each layer. Moreover, the ini-
tial XML structuring of the processed files (logical
structuring of a document, information from the Au-
tomatic Speech Recognition module . . .) remains
untouched by the processing stages.

As already mentioned, one of the main charac-
teristics of MACAON is the ability for each module
to accept ambiguous inputs and produce ambiguous
outputs, in such a way that ambiguities can be re-
solved at a later stage of processing. The compact
representation of ambiguous structures is at the heart
of the MACAON exchange format, described in sec-
tion 2. Furthermore every module can weight the
solutions it produces. such weights can be used to
rank solutions or limit their number for later stages

1Annotation must be taken here in a general sense which in-
cludes tagging, segmentation or the construction of more com-
plex objets as syntagmatic or dependencies trees.

86

of processing.

Several processing tools suites alread exist for
French among which SXPIPE (Sagot and Boullier,
2008), OUTILEX (Blanc et al., 2006), NOOJ2 or UNI-
TEX3. A general comparison of MACAON with these
tools is beyond the scope of this paper. Let us just
mention that MACAON shares with most of them the
use of finite state machines as core data represen-
tation. Some modules are implemented as standard
operations on finite state machines.

MACAON can also be compared to the numerous
development frameworks for developping process-
ing tools, such as GATE4, FREELING5, ELLOGON6

or LINGPIPE7 that are usually limited to the process-
ing of native texts.

The MACAON exchange format shares a cer-
tain number of features with linguistic annotation
scheme standards such as the Text Encoding Initia-
tive8, XCES9, or EAGLES10. They all aim at defining
standards for various types of corpus annotations.
The main difference between MACAON and these
approaches is that MACAON defines an exchange for-
mat between NLP modules and not an annotation
format. More precisely, this format is dedicated to
the compact representation of ambiguity: some in-
formation represented in the exchange format are
to be interpreted by MACAON modules and would
not be part of an annotation format. Moreover,
the MACAON exchange format was defined from the
bottom up, originating from the authors’ need to use
several existing tools and adapt their input/output
formats in order for them to be compatible. This is in
contrast with a top down approach which is usually
chosen when specifying a standard. Still, MACAON

shares several characteristics with the LAF (Ide and
Romary, 2004) which aims at defining high level
standards for exchanging linguistic data.

2www.nooj4nlp.net/pages/nooj.html
3www-igm.univ-mlv.fr/˜unitex
4gate.ac.uk
5garraf.epsevg.upc.es/freeling
6www.ellogon.org
7alias-i.com/lingpipe
8www.tei-c.org/P5
9www.xml-ces.org

10www.ilc.cnr.it/eagles/home.html

2 The MACAON exchange format

The MACAON exchange format is based on four con-
cepts: segment, attribute, annotation level and seg-
mentation.

A segment refers to a segment of the text or
speech signal that is to be processed, as a sentence,
a clause, a syntactic constituent, a lexical unit, a
named entity . . . A segment can be equipped with at-
tributes that describe some of its aspects. A syntac-
tic constituent, for example, will define the attribute
type which specifies its syntactic type (Noun Phrase,
Verb Phrase . . .). A segment is made of one or more
smaller segments.

A sequence of segments covering a whole sen-
tence for written text, or a spoken utterance for oral
data, is called a segmentation. Such a sequence can
be weighted.

An annotation level groups together segments of
a same type, as well as segmentations defined on
these segments. Four levels are currently defined:
pre-lexical, lexical, morpho-syntactic and syntactic.

Two relations are defined on segments: the prece-
dence relation that organises linearly segments of a
given level into segmentations and the dominance
relation that describes how a segment is decomposed
in smaller segments either of the same level or of a
lower level.

We have represented in figure 2, a schematic rep-
resentation of the analysis of the reconstructed out-
put a speech recognizer would produce on the in-
put time flies like an arrow11. Three annotation lev-
els have been represented, lexical, morpho-syntactic
and syntactic. Each level is represented by a finite-
state automaton which models the precedence rela-
tion defined over the segments of this level. Seg-
ment time, for example, precedes segment flies. The
segments are implicitly represented by the labels of
the automaton’s arcs. This label should be seen as
a reference to a more complex objet, the actual seg-
ment. The dominance relations are represented with
dashed lines that link segments of different levels.
Segment time, for example, is dominated by seg-
ment NN of the morpho-syntactic level.

This example illustrates the different ambiguity
cases and the way they are represented.

11For readability reasons, we have used an English example,
MACAON, as mentioned above, currently exists for French.

87

thyme

time

flies

like

liken

an arrow

a row

JJ IN

VB

DT NN

DT NN

VB

NN

NN

VBZ

VB VB

VP

VP

NP

NP

VP

NP

VP

VP

PP

NP

NP

Figure 1: Three annotation levels for a sample sentence.
Plain lines represent annotation hypotheses within a level
while dashed lines represent links between levels. Trian-
gles with the tip up are “and” nodes and triangles with
the tip down are “or” nodes. For instance, in the part-of-
speech layer, The first NN can either refer to “time” or
“thyme”. In the chunking layer, segments that span mul-
tiple part-of-speech tags are linked to them through “and”
nodes.

The most immediate ambiguity phenomenon is
the segmentation ambiguity: several segmentations
are possible at every level. This ambiguity is rep-
resented in a compact way through the factoring of
segments that participate in different segmentations,
by way of a finite state automaton.

The second ambiguity phenomenon is the dom-
inance ambiguity, where a segment can be decom-
posed in several ways into lower level segments.
Such a case appears in the preceding example, where
the NN segment appearing in one of the outgoing
transition of the initial state of the morpho-syntactic
level dominates both thyme and time segments of the
lexical level. The triangle with the tip down is an
“or” node, modeling the fact that NN corresponds to
time or thyme.

Triangles with the tip up are “and” nodes. They
model the fact that the PP segment of the syntac-
tic level dominates segments IN, DT and NN of the
morpho-syntactic level.

2.1 XML representation
The MACAON exchange format is implemented in
XML. A segment is represented with the XML tag

<segment> which has four mandatory attributes:

• type indicates the type of the segment, four dif-
ferent types are currently defined: atome (pre-
lexical unit usually referred to as token in en-
glish), ulex (lexical unit), cat (part of speech)
and chunk (a non recursive syntactic unit).

• id associates to a segment a unique identifier in
the document, in order to be able to reference
it.

• start and end define the span of the segment.
These two attributes are numerical and repre-
sent either the index of the first and last char-
acter of the segment in the text string or the
beginning and ending time of the segment in
a speech signal.

A segment can define other attributes that can be
useful for a given description level. We often find
the stype attribute that defines subtypes of a given
type.

The dominance relation is represented through the
use of the <sequence> tag. The domination of the
three segments IN, DT and NN by a PP segment,
mentionned above is represented below, where p1,
p2 and p3 are respectively the ids of segments IN,
DT and NN.

<segment type="chunk" stype="PP" id="c1">
<sequence>
<elt segref="p1"/>
<elt segref="p2"/>
<elt segref="p3"/>

</sequence>
</segment>

The ambiguous case, described above where seg-
ment NN dominates segments time or thyme is rep-
resented below as a disjunction of sequences inside
a segment. The disjunction itself is not represented
as an XML tag. l1 and l2 are respectively the ids
of segments time and thyme.

<segment type="cat" stype="NN" id="c1">
<sequence>
<elt segref="l1" w="-3.37"/>

</sequence>
<sequence>
<elt segref="l2" w="-4.53"/>

</sequence>
</segment>

88

The dominance relation can be weighted, by way
of the attribute w. Such a weight represents in the
preceding example the conditional log-probability
of a lexical unit given a part of speech, as in a hidden
Markov model.

The precedence relation (i.e. the organization
of segments in segmentations), is represented as a
weighted finite state automaton. Automata are rep-
resented as a start state, accept states and a list of
transitions between states, as in the following exam-
ple that corresponds to the lexical level of our exam-
ple.
<fsm n="9">

<start n="0"/>
<accept n="6"/>
<ltrans>
<trans o="0" d="1" i="l1" w="-7.23"/>
<trans o="0" d="1" i="l2" w="-9.00"/>
<trans o="1" d="2" i="l3" w="-3.78"/>
<trans o="2" d="3" i="l4" w="-7.37"/>
<trans o="3" d="4" i="l5" w="-3.73"/>
<trans o="2" d="4" i="l6" w="-6.67"/>
<trans o="4" d="5" i="l7" w="-4.56"/>
<trans o="5" d="6" i="l8" w="-2.63"/>
<trans o="4" d="6" i="l9" w="-7.63"/>

</ltrans>
</fsm>

The <trans/> tag represents a transition, its
o,d,i and w features are respectively the origin, and
destination states, its label (the id of a segment) and
a weight.

An annotation level is represented by the
<section> tag which regroups two tags, the
<segments> tag that contains the different segment
tags defined at this annotation level and the <fsm>

tag that represents all the segmentations of this level.

3 The MACAON architecture

Three aspects have guided the architecture of
MACAON: openness, modularity, and speed. Open-
ness has been achieved by the definition of an ex-
change format which has been made as general as
possible, in such a way that mapping can be de-
fined from and to third party modules as ASR, MT
systems or parsers. Modularity has been achieved
by the definition of independent modules that com-
municate with each other through XML files using
standard UNIX pipes. A module can therefore be re-
placed easily. Speed has been obtained using effi-
cient algorithms and a representation especially de-

signed to load linguistic data and models in a fast
way.

MACAON is composed of libraries and compo-
nents. Libraries contain either linguistic data, mod-
els or API functions. Two kinds of components are
presented, the MACAON core components and third
party components for which mappings to and from
the MACAON exchange format have been defined.

3.1 Libraries

The main MACAON library is macaon common.
It defines a simple interface to the MACAON ex-
change format and functions to load XML MACAON

files into memory using efficient data structures.
Other libraries macaon lex, macaon code and
macaon tagger lib represent the lexicon, the
morphological data base and the tagger models in
memory.

MACAON only relies on two third-party libraries,
which are gfsm12, a finite state machine library and
libxml, an XML library13.

3.2 The MACAON core components

A brief description of several standard components
developed in the MACAON framework is given be-
low. They all comply with the exchange format de-
scribed above and add a <macaon stamp> to the
XML file that indicates the name of the component,
the date and the component version number, and rec-
ognizes a set of standard options.

maca select is a pre-processing component: it adds
a macaon tag under the target tags specified by
the user to the input XML file. The follow-
ing components will only process the document
parts enclosed in macaon tags.

maca segmenter segments a text into sentences by
examining the context of punctuation with a
regular grammar given as a finite state automa-
ton. It is disabled for automatic speech tran-
scriptions which do not typically include punc-
tuation signs and come with their own segmen-
tation.

12ling.uni-potsdam.de/˜moocow/projects/
gfsm/

13xmlsoft.org

89

maca tokenizer tokenizes a sentence into pre-
lexical units. It is also based on regular gram-
mars that recognize simple tokens as well as a
predefined set of special tokens, such as time
expressions, numerical expressions, urls. . . .

maca lexer allows to regroup pre-lexical units into
lexical units. It is based on the lefff French lex-
icon (Sagot et al., 2006) which contains around
500,000 forms. It implements a dynamic pro-
gramming algorithm that builds all the possible
grouping of pre-lexical units into lexical units.

maca tagger associates to every lexical unit one or
more part-of-speech labels. It is based on a
trigram Hidden Markov Model trained on the
French Treebank (Abeillé et al., 2003). The es-
timation of the HMM parameters has been re-
alized by the SRILM toolkit (Stolcke, 2002).

maca anamorph produces the morphological anal-
ysis of lexical units associated to a part of
speech. The morphological information come
from the lefff lexicon.

maca chunker gathers sequences of part-of-speech
tags in non recursive syntactic units. This com-
ponent implements a cascade of finite state
transducers, as proposed by Abney (1996). It
adds some features to the initial Abney pro-
posal, like the possibility to define the head of
a chunk.

maca conv is a set of converters from and to the
MACAON exchange format. htk2macaon
and fsm2macaon convert word lattices from
the HTK format (Young, 1994) and ATT
FSM format (Mohri et al., 2000) to the
MACAON exchange format. macaon2txt and
txt2macaon convert from and to plain text
files. macaon2lorg and lorg2macaon
convert to and from the format of the LORG

parser (see section 3.3).

maca view is a graphical interface that allows to in-
spect MACAON XML files and run the compo-
nents.

3.3 Third party components
MACAON is an open architecture and provides a rich
exchange format which makes possible the repre-

sentation of many NLP tools input and output in the
MACAON format. MACAON has been interfaced with
the SPEERAL Automatic Speech Recognition Sys-
tem (Nocera et al., 2006). The word lattices pro-
duced by SPEERAL can be converted to pre-lexical
MACAON automata.

MACAON does not provide any native module for
parsing yet but it can be interfaced with any already
existing parser. For the purpose of this demonstra-
tion we have chosen the LORG parser developed at
NCLT, Dublin14. This parser is based on PCFGs
with latent annotations (Petrov et al., 2006), a for-
malism that showed state-of-the-art parsing accu-
racy for a wide range of languages. In addition it of-
fers a sophisticated handling of unknown words re-
lying on automatically learned morphological clues,
especially for French (Attia et al., 2010). Moreover,
this parser accepts input that can be tokenized, pos-
tagged or pre-bracketed. This possibility allows for
different settings when interfacing it with MACAON.

4 Applications

MACAON has been used in several projects, two of
which are briefly described here, the DEFINIENS

project and the LUNA project.
DEFINIENS (Barque et al., 2010) is a project that

aims at structuring the definitions of a large coverage
French lexicon, the Trésor de la langue française.
The lexicographic definitions have been processed
by MACAON in order to decompose the definitions
into complex semantico-syntactic units. The data
processed is therefore native text that possesses a
rich XML structure that has to be preserved during
processing.

LUNA15 is a European project that aims at extract-
ing information from oral data about hotel booking.
The word lattices produced by an ASR system have
been processed by MACAON up to a partial syntactic
level from which frames are built. More details can
be found in (Béchet and Nasr, 2009). The key aspect
of the use of MACAON for the LUNA project is the
ability to perform the linguistic analyses on the mul-
tiple hypotheses produced by the ASR system. It is
therefore possible, for a given syntactic analysis, to

14www.computing.dcu.ie/˜lorg. This software
should be freely available for academic research by the time
of the conference.

15www.ist-luna.eu

90

Figure 2: Screenshot of the MACAON visualization inter-
face (for French models). It allows to input a text and see
the n-best results of the annotation.

find all the word sequences that are compatible with
this analysis.

Figure 2 shows the interface that can be used to
see the output of the pipeline.

5 Conclusion

In this paper we have presented MACAON, an NLP
tool suite which allows to process native text as well
as several hypotheses automatically produced by an
ASR or an MT system. Several evolutions are cur-
rently under development, such as a named entity
recognizer component and an interface with a de-
pendency parser.

References

Anne Abeillé, Lionel Clément, and François Toussenel.
2003. Building a treebank for french. In Anne
Abeillé, editor, Treebanks. Kluwer, Dordrecht.

Steven Abney. 1996. Partial parsing via finite-state cas-
cades. In Workshop on Robust Parsing, 8th European
Summer School in Logic, Language and Information,
Prague, Czech Republic, pages 8–15.

M. Attia, J. Foster, D. Hogan, J. Le Roux, L. Tounsi, and
J. van Genabith. 2010. Handling Unknown Words in
Statistical Latent-Variable Parsing Models for Arabic,
English and French. In Proceedings of SPMRL.

Lucie Barque, Alexis Nasr, and Alain Polguère. 2010.
From the definitions of the trésor de la langue française
to a semantic database of the french language. In EU-
RALEX 2010, Leeuwarden, Pays Bas.

Frédéric Béchet and Alexis Nasr. 2009. Robust depen-
dency parsing for spoken language understanding of
spontaneous speech. In Interspeech, Brighton, United
Kingdom.

Olivier Blanc, Matthieu Constant, and Eric Laporte.
2006. Outilex, plate-forme logicielle de traitement de
textes écrits. In TALN 2006, Leuven.

Nancy Ide and Laurent Romary. 2004. International
standard for a linguistic annotation framework. Nat-
ural language engineering, 10(3-4):211–225.

M. Mohri, F. Pereira, and M. Riley. 2000. The design
principles of a weighted finite-state transducer library.
Theoretical Computer Science, 231(1):17–32.

P. Nocera, G. Linares, D. Massonié, and L. Lefort. 2006.
Phoneme lattice based A* search algorithm for speech
recognition. In Text, Speech and Dialogue, pages 83–
111. Springer.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning Accurate, Compact, and In-
terpretable Tree Annotation. In ACL.

Benoı̂t Sagot and Pierre Boullier. 2008. Sxpipe 2:
architecture pour le traitement présyntaxique de cor-
pus bruts. Traitement Automatique des Langues,
49(2):155–188.

Benoı̂t Sagot, Lionel Clément, Eric Villemonte de la
Clergerie, and Pierre Boullier. 2006. The lefff 2 Syn-
tactic Lexicon for French: Architecture, Acquisition,
Use. In International Conference on Language Re-
sources and Evaluation, Genoa.

Andreas Stolcke. 2002. Srilm - an extensible language
modeling toolkit. In International Conference on Spo-
ken Language Processing, Denver, Colorado.

S.J. Young. 1994. The HTK Hidden Markov Model
Toolkit: Design and Philosophy. Entropic Cambridge
Research Laboratory, Ltd, 2:2–44.

91

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 92–96,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

Multimodal Menu-based Dialogue with Speech Cursor in DICO II+

Staffan Larsson
University of Gothenburg

Sweden
sl@ling.gu.se

Alexander Berman
Talkamatic AB

Sweden
alex@talkamatic.se

Jessica Villing
University of Gothenburg

Sweden
jessica@ling.gu.se

Abstract

This paper describes Dico II+, an in-vehicle
dialogue system demonstrating a novel com-
bination of flexible multimodal menu-based
dialogueand a “speech cursor” which enables
menu navigation as well as browsing long list
using haptic input and spoken output.

1 Introduction

Dico is a multimodal in-car dialogue system appli-
cation, originally developed in the DICO (with cap-
ital letters) project by Volvo Technology AB and
the University of Gothenburg. Dico is built on top
of the GoDiS dialogue system platform (Larsson,
2002), which in turn is implemented using TrindiKit
(Traum and Larsson, 2003).

The main goal of the original Dico application
(Olsson and Villing, 2005), (Villing and Larsson,
2006) was to develop an interface that is less dis-
tracting for the driver, and thus both safer and easier
to use than existing interfaces. (Larsson and Villing,
2009) described the Dico II system resulting from
work in the DICO project. Since then, the Dico
demonstrator has been further developed.

In this paper, we describe the Dico II+ demon-
strator which introduces a novel combination of
flexible Multimodal Menu-Based Dialogue and a
Speech Cursor which together enable flexible multi-
modal interaction without the need for looking at the
screen. In the following, we will first argue for the
usefulness of in-vehicle dialogue systems. We will
then briefly present the GoDiS platform which Dico
II+ is based on, as well as some aspects of flexible
dialogue enabled by the GoDiS dialogue manager.

2 In-vehicle dialogue systems

Voice interaction is a very natural means of com-
munication for humans, and enabling spoken inter-
action with technologies may thus make it easier
and less cognitively demanding for people to in-
teract with machines. However, this requires that
the spoken interaction is similar to ordinary spoken
human-human dialogue. A problem with available
in-vehicle voice control technologies is that they are
not flexible enough in terms of the interaction strate-
gies and modalities offered to the user.

3 GoDiS features in Dico

GoDiS (Larsson, 2002) is an experimental di-
alogue system implementing a theory of Issue-
Based Dialogue Management based on Ginzburg’s
concept of Questions Under Discussion (QUD).
GoDiS is implemented using the TrindiKit, a toolkit
for implementing dialogue move engines and dia-
logue systems based on the Information State ap-
proach (Traum and Larsson, 2003). GoDiS has
been adapted to several different dialogue types, do-
mains, and languages, including menu-based mul-
timodal dialogue when acting as an interface to an
mp3 player (Hjelm et al., 2005).

The GoDiS dialogue manager allows the user
to interact more flexibly and naturally with menu-
based interfaces to devices. General dialogue man-
agement issues such as accommodation, task switch-
ing and grounding are handled by the application-
independent dialogue manager. Re-using these tech-
nologies in new applications enables rapid prototyp-
ing of advanced dialogue applications.

92

3.1 Accommodation

The applications in Dico II+ are based on exist-
ing menu interfaces, using a method for converting
menus into dialogue plans (see below). While it is
possible for the novice user to let the system take
initiative and guide the user through the menus step-
by-step, expert users might prefer to use accommo-
dation strategies enabling the user to skip through
the menus and getting right to the point. Two exam-
ples are shown below.

Ex. 1:

S: “What do you want to do? Go to the
phonebook, manage settings, or...”

U: “Call Lisa’s home number”

S: “OK. Calling Lisa’s home number.”

Ex. 2:

U: “Lisa’s home number”

S: “OK. Do you want to change the num-
ber or make a call?”

U: “Make a call.”

S: “OK. Calling Lisa’s home number.”

3.2 Multiple simultaneous tasks and task
switching

GoDiS enables arbitrarily nested subdialogues. It
is possible to start one dialogue to perform a task,
and then start a subdialogue before the first task is
completed. When the second task is completed the
system automatically returns to the first task, and ex-
plicitly signals this. This gives the user freedom to
switch task at any time:

Ex. 3:

U: “Change Lisa’s home number.”

S: “Okay. Let’s see. What phone number
do you want instead?”

U: “Check my messages.”

S: “You have got this message. Hi!
I have got a new home number, it is
(031)234567. Best regards, Lisa.”

S: “Returning to change an entry. What
phone number do you want instead?”

U: “oh three one twentythree fourtyfive
sixtyseven.”

U: “Okay. Changing Lisa’s home num-
ber to oh three one two three four five six
seven.”

3.3 Feedback and grounding

The GoDiS dialogue manager provides general feed-
back strategies to make sure that the dialogue part-
ners have contact, that the system can can hear what
the user says, understands the words that are spoken
(semantic understanding), understands the meaning
of the utterance (pragmatic understanding) and ac-
cepts the dialogue moves performed in utterances.

As an example, the single user utterance “Lisa”
may result in positive feedback on the semantic level
but negative on the pragmatic, resulting in a system
utterance consisting of two feedback moves and a
clarification question: “Lisa. I don’t quite under-
stand. Do you want to make a call, change an entry
in the phonebook, or delete an entry from the phone-
book?”

4 Multimodal menu-based dialogue

Dico II+ implemented a concept of Multimodal
Menu-based Dialogue (MMD). Technologies for
MMD in menu-based applications have already been
developed for other GoDiS applications (Hjelm et
al., 2005) and the ideas behind these solutions were
re-implemented and significantly improved in Dico.

A common argument for using spoken interaction
in a car context is that the driver should be able to
use a system without looking at a screen. However,
there are many situations where current technology
requires the user to look at a screen at some point
in the interaction. The idea behind MMD is that the
user should be able to switch between and combine
modalities freely across and within utterances. This
makes it possible to use the system using speech
only, using traditional GUI interaction only, or us-
ing a combination of the two.

MMD enables integrated multimodality for user
input, meaning that a single contribution can use
several input modalities, e.g. “Call this contact
[click]” where the [click] symbolises haptic input
(e.g. a mouse click) which in this case selects a spe-
cific contact. For output, MMD uses parallel mul-

93

timodality, i.e., output is generally rendered both
as speech and as GUI output. To use speech only,
the user can merely ignore the graphical output and
not use the haptic input device. To enable interac-
tion using GUI only, speech input and output can be
turned on or off using a button which toggles be-
tween “speech on” and “speech off” mode.

The GUI used in Dico II+ is a generic graphi-
cal interface for the GoDiS system, developed by
Talkamatic AB with graphical adaptations for Dico.
It represents GoDiS dialogue moves graphically as
menus using a refined version of the conversion
schema presented in (Larsson et al., 2001) . For
example, alternative questions are represented as
multiple choice menus, and wh-questions are rep-
resented as scrollable lists. Conversely, haptic user
input from the GUI is interpreted as dialogue moves.
Selecting an action in a multiple-choice menu cor-
responds to making a request move, and selecting
an item in a scrollable list corresponds to an answer
move.

5 Speech Cursor

This section describes an important addition to the
GoDiS dialogue manager and Dico demonstrator,
which enables the user to use spoken interaction in
combination with haptic input to access all func-
tionality (including browsing long lists) without ever
having to look at the screen. In combination with
the flexible dialogue capabilities of the GoDiS dia-
logue manager, and the concept of MMD, we believe
that a Speech Cursor provides a powerful and user-
friendly way of interacting with menu-based inter-
faces in cognitively demanding environments such
as the in-vehicle environment.

5.1 The problem

A common argument for using spoken interaction
in a car context is that the driver should be able to
use a system without looking at a screen. However,
there are many situations where current technology
requires the user to look at a screen at some point
in the interaction. This was true also for Dico II
in the case of browsing lists; for example, to find
out which contacts were listed in the phonebook, the
user would at some point have to look at the screen.

Imagine that the user wants to select a song from

a song database, and that the user has made restric-
tions filtering out 30 songs from the database. The
dialogue system asks the user which of the songs she
wants to hear displaying them in a list on the screen.

The user must now either look at the screen and
use a scroll-wheel or similar to select a song, or look
at the screen to see which songs are available, and
then speak the proper song title. This means that
part of the point of using spoken interaction in the
car is lost. The example discusses car use, but is
applicable any time when the user cannot or does
not want to look at a screen, for instance when using
a cellphone walking in a city, or when using a web
application on a portable device.

An existing interaction strategy for addressing the
problems of browsing lists is to allow a kind of meta-
dialogue, where the system verbally presents a num-
ber of items (for instance 5) from the list, then asking
the user if she or he would like to hear the subse-
quent 5 items, until the list has been read in its en-
tirety or until the users responds negatively. While
this strategy in principle solves the problem, it is
rather time-consuming compared to browsing the
list using a screen and a haptic input device (such
as a scroll-wheel); this may decrease the perceived
usability of the voice interface in comparison with
traditional GUI-based interaction.

Some existing voice interaction systems use a
technology to establish understanding which con-
sists of displaying the top N best recognition hy-
potheses to the user, each one associated with a num-
ber, together with a verbal request to the user to
say the number corresponding to the desired result.
This situation, however, requires the user to look at
a screen, and is arguably quite unnatural.

5.2 The solution: Speech Cursor
Dico II+ requires a haptic menu navigation de-
vice, such as a mouse (trackball, touch pad,
TrackPointTM) with buttons, pointers and drivers,
keyboard with arrow keys, or jog dial/shuttle wheel.
A typical in-vehicle menu navigation device consists
of three or four buttons (UP, DOWN, OK and possi-
ble BACK).

Every time a new item gets focus, the system
reads out a voice icon - a spoken representation of
the item. This representation can be textual, in-
tended to be realised using a TTS, or in the form

94

of audio data, to be played directly. Every time a
new element gets focus, all any ongoing voice out-
put is interrupted by the voice icon for the element
in focus.

6 Combining flexible dialogue and Speech
Cursor

Combining flexible dialogue processing with the
Speech Cursor concept1 enables interaction where
the user may freely choose between using domain-
level spoken utterances (requests, confirmations,
questions, answers etc.) and using the Speech Cur-
sor. This is an improvement over existing technol-
ogy in that it offers a greater variety of interaction
styles which can be freely chosen and combined by
the user, as well as offering flexible dialogue inter-
action. Specifically, it provides flexible spoken dia-
logue interaction in combination with user-friendly
browsing of long lists without the need for looking
at the screen.

Here is a walk-through of a sample interaction:

Ex. 4:

U: “I want to listen to Madonna”(This ut-
terance uses accommodation to allow the
user to supply unrequested information)

S: “There are 3 songs by Madonna. What
song do you want?” (Showing list of all
songs by Madonna: ’Like a Prayer’, ’La
Isla Bonita’, ’Music’, ...)

U: [DOWN]

S: “Like a Prayer from the album Like a
Prayer” (“Like a Prayer” is highlighted)

U: [DOWN]

S: “La Isla Bonita from the album True
Blue” (“La Isla Bonita” is highlighted)

U: [DOWN]

S: “Music from the alb+” (“Music” is
highlighted)

U: [UP]

S: “Like a Prayer”
1The combination of a (simple or flexible) spoken dialogue

system and the voice cursor technology is patent pending.

U: [OK]

S: “OK, playing Like a Prayer.”

Here is a further example:

Ex. 5:

U: “I want to add an ABBA song”

S: “What album?” (Shows ”Waterloo”
and ”Arrival)

U: [DOWN]

S: “Wat...”

U: [DOWN]

S: “Arrival”

U: [OK]

S: “what song?” (Shows “Mamma Mia”
and “Money Money Money”)

U: “Mamma Mia”

A promotional demo film showing interactions
similar to the above is available2, courtesy of Talka-
matic AB.

Acknowledgments

The work reported here was funded DICO, Vinnova
project P28536-1. Additional funding was provided
by Talkamatic AB, and by CLT, the Centre of Lan-
guage Technology at the University of Gothenburg.
Dico II+ was implemented by the authors, Fredrik
Kronlid, Peter Ljunglöf and Andreas Wiberg. The
authors gratefully acknowledge the assistance of
Volvo Technology AB and the DICO project group.
The GoDiS system is the property of Talkamatic
AB.

References
David Hjelm, Ann-Charlotte Forslund, Staffan Larsson,

and Andreas Wallentin. 2005. DJ GoDiS: Multimodal
menu-based dialogue in an asychronous isu system. In
Claire Gardent and Bertrand Gaiffe, editors, Proceed-
ings of the ninth workshop on the semantics and prag-
matics of dialogue.

2www.youtube.com/watch?v=yvLcQOeBAJE

95

Staffan Larsson and Jessica Villing. 2009. Multimodal
menu-based dialogue in dico ii. In Jens Edlund,
Joakim Gustafson, Anna Hjalmarsson, and Gabriel
Skantze, editors, Proceedings of DiaHolmia, 2009
Workshop on the Semantics and Pragmatics of Dia-
logue.

Staffan Larsson, Robin Cooper, and Stina Ericsson.
2001. menu2dialog. In Proceedings of the 2nd IJCAI
Workshop on Knowledge and Reasoning in Practical
Dialogue Systems, pages 41–45.

Staffan Larsson. 2002. Issue-based Dialogue Manage-
ment. Ph.D. thesis, Göteborg University.

Anna Olsson and Jessica Villing. 2005. Dico - a dialogue
system for a cell phone. Master’s thesis, Department
of Linguistics, Goteborg University.

David Traum and Staffan Larsson. 2003. The informa-
tion state approach to dialogue management. In Ron-
nie Smith and Jan Kuppevelt, editors, Current and New
Directions in Discourse & Dialogue. Kluwer Aca-
demic Publishers.

Jessica Villing and Staffan Larsson. 2006. Dico - a mul-
timodal in-vehicle dialogue system. In D. Schlangen
and R. Fernandez, editors, Proceedings of the 10th
workshop on the semantics and pragmatics of dia-
logue.

96

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 97–102,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

Wikipedia Revision Toolkit: Efficiently Accessing Wikipedia’s Edit History

Oliver Ferschke, Torsten Zesch, and Iryna Gurevych
Ubiquitous Knowledge Processing Lab

Computer Science Department, Technische Universität Darmstadt
Hochschulstrasse 10, D-64289 Darmstadt, Germany

http://www.ukp.tu-darmstadt.de

Abstract

We present an open-source toolkit which
allows (i) to reconstruct past states of
Wikipedia, and (ii) to efficiently access the
edit history of Wikipedia articles. Recon-
structing past states of Wikipedia is a pre-
requisite for reproducing previous experimen-
tal work based on Wikipedia. Beyond that,
the edit history of Wikipedia articles has been
shown to be a valuable knowledge source for
NLP, but access is severely impeded by the
lack of efficient tools for managing the huge
amount of provided data. By using a dedi-
cated storage format, our toolkit massively de-
creases the data volume to less than 2% of
the original size, and at the same time pro-
vides an easy-to-use interface to access the re-
vision data. The language-independent design
allows to process any language represented in
Wikipedia. We expect this work to consolidate
NLP research using Wikipedia in general, and
to foster research making use of the knowl-
edge encoded in Wikipedia’s edit history.

1 Introduction

In the last decade, the free encyclopedia Wikipedia
has become one of the most valuable and com-
prehensive knowledge sources in Natural Language
Processing. It has been used for numerous NLP
tasks, e.g. word sense disambiguation, semantic re-
latedness measures, or text categorization. A de-
tailed survey on usages of Wikipedia in NLP can be
found in (Medelyan et al., 2009).

The majority of Wikipedia-based NLP algorithms
works on single snapshots of Wikipedia, which are

published by the Wikimedia Foundation as XML
dumps at irregular intervals.1 Such a snapshot only
represents the state of Wikipedia at a certain fixed
point in time, while Wikipedia actually is a dynamic
resource that is constantly changed by its millions of
editors. This rapid change is bound to have an influ-
ence on the performance of NLP algorithms using
Wikipedia data. However, the exact consequences
are largely unknown, as only very few papers have
systematically analyzed this influence (Zesch and
Gurevych, 2010). This is mainly due to older snap-
shots becoming unavailable, as there is no official
backup server. As a consequence, older experimen-
tal results cannot be reproduced anymore.

In this paper, we present a toolkit that solves
both issues by reconstructing a certain past state of
Wikipedia from its edit history, which is offered by
the Wikimedia Foundation in form of a database
dump. Section 3 gives a more detailed overview of
the reconstruction process.

Besides reconstructing past states of Wikipedia,
the revision history data also constitutes a novel
knowledge source for NLP algorithms. The se-
quence of article edits can be used as training data
for data-driven NLP algorithms, such as vandalism
detection (Chin et al., 2010), text summarization
(Nelken and Yamangil, 2008), sentence compres-
sion (Yamangil and Nelken, 2008), unsupervised
extraction of lexical simplifications (Yatskar et al.,
2010), the expansion of textual entailment corpora
(Zanzotto and Pennacchiotti, 2010), or assesing the
trustworthiness of Wikipedia articles (Zeng et al.,
2006).

1http://download.wikimedia.org/

97

However, efficient access to this new resource
has been limited by the immense size of the data.
The revisions for all articles in the current English
Wikipedia sum up to over 5 terabytes of text. Con-
sequently, most of the above mentioned previous
work only regarded small samples of the available
data. However, using more data usually leads to bet-
ter results, or how Church and Mercer (1993) put
it “more data are better data”. Thus, in Section 4,
we present a tool to efficiently access Wikipedia’s
edit history. It provides an easy-to-use API for pro-
grammatically accessing the revision data and re-
duces the required storage space to less than 2% of
its original size. Both tools are publicly available
on Google Code (http://jwpl.googlecode.
com) as open source software under the LGPL v3.

2 Related Work

To our knowledge, there are currently only two alter-
natives to programmatically access Wikipedia’s re-
vision history.

One possibility is to manually parse the original
XML revision dump. However, due to the huge size
of these dumps, efficient, random access is infeasi-
ble with this approach.

Another possibility is using the MediaWiki API2,
a web service which directly accesses live data from
the Wikipedia website. However, using a web ser-
vice entails that the desired revision for every single
article has to be requested from the service, trans-
ferred over the Internet and then stored locally in
an appropriate format. Access to all revisions of
all Wikipedia articles for a large-scale analysis is
infeasible with this method because it is strongly
constricted by the data transfer speed over the In-
ternet. Even though it is possible to bypass this bot-
tleneck by setting up a local Wikipedia mirror, the
MediaWiki API can only provide full text revisions,
which results in very large amounts of data to be
transferred.

Better suited for tasks of this kind are APIs
that utilize databases for storing and accessing the
Wikipedia data. However, current database-driven
Wikipedia APIs do not support access to article re-
visions. That is why we decided to extend an es-
tablished API with the ability to efficiently access

2http://www.mediawiki.org/wiki/API

Wikipedia’s edit history. Two established Wikipedia
APIs have been considered for this purpose.

Wikipedia Miner3 (Milne and Witten, 2009) is
an open source toolkit which provides access to
Wikipedia with the help of a preprocessed database.
It represents articles, categories and redirects as Java
classes and provides access to the article content ei-
ther as MediaWiki markup or as plain text. The
toolkit mainly focuses on Wikipedia’s structure, the
contained concepts, and semantic relations, but it
makes little use of the textual content within the ar-
ticles. Even though it was developed to work lan-
guage independently, it focuses mainly on the En-
glish Wikipedia.

Another open source API for accessing Wikipedia
data from a preprocessed database is JWPL4 (Zesch
et al., 2008). Like Wikipedia Miner, it also rep-
resents the content and structure of Wikipedia as
Java objects. In addition to that, JWPL contains a
MediaWiki markup parser to further analyze the ar-
ticle contents to make available fine-grained infor-
mation like e.g. article sections, info-boxes, or first
paragraphs. Furthermore, it was explicitly designed
to work with all language versions of Wikipedia.

We have chosen to extend JWPL with our revi-
sion toolkit, as it has better support for accessing ar-
ticle contents, natively supports multiple languages,
and seems to have a larger and more active developer
community. In the following section, we present the
parts of the toolkit which reconstruct past states of
Wikipedia, while in section 4, we describe tools al-
lowing to efficiently access Wikipedia’s edit history.

3 Reconstructing Past States of Wikipedia

Access to arbitrary past states of Wikipedia is re-
quired to (i) evaluate the performance of Wikipedia-
based NLP algorithms over time, and (ii) to repro-
duce Wikipedia-based research results. For this rea-
son, we have developed a tool called TimeMachine,
which addresses both of these issues by making use
of the revision dump provided by the Wikimedia
Foundation. By iterating over all articles in the re-
vision dump and extracting the desired revision of
each article, it is possible to recover the state of
Wikipedia at an earlier point in time.

3http://wikipedia-miner.sourceforge.net
4http://jwpl.googlecode.com

98

Property Description Example Value
language The Wikipedia language version english

mainCategory Title of the main category of the
Wikipedia language version used

Categories

disambiguationCategory Title of the disambiguation category of
the Wikipedia language version used

Disambiguation

fromTimestamp Timestamp of the first snapshot to be
extracted

20090101130000

toTimestamp Timestamp of the last snapshot to be ex-
tracted

20091231130000

each Interval between snapshots in days 30
removeInputFilesAfterProcessing Remove source files [true/false] false

metaHistoryFile Path to the revision dump PATH/pages-meta-history.xml.bz2

pageLinksFile Path to the page-to-page link records PATH/pagelinks.sql.gz

categoryLinksFile Path to the category membership
records

PATH/categorylinks.sql.gz

outputDirectory Output directory PATH/outdir/

Table 1: Configuration of the TimeMachine

The TimeMachine is controlled by a single con-
figuration file, which allows (i) to restore individual
Wikipedia snapshots or (ii) to generate whole snap-
shot series. Table 1 gives an overview of the con-
figuration parameters. The first three properties set
the environment for the specific language version of
Wikipedia. The two timestamps define the start and
end time of the snapshot series, while the interval
between the snapshots in the series is set by the pa-
rameter each. In the example, the TimeMachine re-
covers 13 snapshots between Jan 01, 2009 at 01.00
p.m and and Dec 31, 2009 at 01.00 p.m at an inter-
val of 30 days. In order to recover a single snap-
shot, the two timestamps have simply to be set to
the same value, while the parameter ‘each’ has no
effect. The option removeInputFilesAfterProcessing
specifies whether to delete the source files after pro-
cessing has finished. The final four properties define
the paths to the source files and the output directory.

The output of the TimeMachine is a set of eleven
text files for each snapshot, which can directly be
imported into an empty JWPL database. It can be
accessed with the JWPL API in the same way as
snapshots created using JWPL itself.

Issue of Deleted Articles The past snapshot of
Wikipedia created by our toolkit is identical to the
state of Wikipedia at that time with the exception of
articles that have been deleted meanwhile. Articles
might be deleted only by Wikipedia administrators

if they are subject to copyright violations, vandal-
ism, spam or other conditions that violate Wikipedia
policies. As a consequence, they are removed from
the public view along with all their revision infor-
mation, which makes it impossible to recover them
from any future publicly available dump.5 Even
though about five thousand pages are deleted every
day, only a small percentage of those pages actually
corresponds to meaningful articles. Most of the af-
fected pages are newly created duplicates of already
existing articles or spam articles.

4 Efficient Access to Revisions

Even though article revisions are available from the
official Wikipedia revision dumps, accessing this in-
formation on a large scale is still a difficult task.
This is due to two main problems. First, the revi-
sion dump contains all revisions as full text. This
results in a massive amount of data and makes struc-
tured access very hard. Second, there is no efficient
API available so far for accessing article revisions
on a large scale.

Thus, we have developed a tool called
RevisionMachine, which solves these issues.
First, we describe our solution to the storage prob-
lem. Second, we present several use cases of the
RevisionMachine, and show how the API simplifies
experimental setups.

5http://en.wikipedia.org/wiki/Wikipedia:
DEL

99

4.1 Revision Storage
As each revision of a Wikipedia article stores the
full article text, the revision history obviously con-
tains a lot of redundant data. The RevisionMachine
makes use of this fact and utilizes a dedicated stor-
age format which stores a revision only by means
of the changes that have been made to the previous
revision. For this purpose, we have tested existing
diff libraries, like Javaxdelta6 or java-diff7, which
calculate the differences between two texts. How-
ever, both their runtime and the size of the result-
ing output was not feasible for the given size of the
data. Therefore, we have developed our own diff
algorithm, which is based on a longest common sub-
string search and constitutes the foundation for our
revision storage format.

The processing of two subsequent revisions can
be divided into four steps:

• First, the RevisionMachine searches for all
common substrings with a user-defined mini-
mal length.

• Then, the revisions are divided into blocks of
equal length. Corresponding blocks of both
revisions are then compared. If a block is
contained in one of the common substrings,
it can be marked as unchanged. Otherwise,
we have to categorize the kind of change
that occurred in this block. We differenti-
ate between five possible actions: Insert,
Delete, Replace, Cut and Paste8. This
information is stored in each block and is later
on used to encode the revision.

• In the next step, the current revision is repre-
sented by means of a sequence of actions per-
formed on the previous revision.
For example, in the adjacent revision pair

r1 : This is the very first sentence!
r2 : This is the second sentence

r2 can be encoded as
REPLACE 12 10 ’second’
DELETE 31 1

6http://javaxdelta.sourceforge.net/
7http://www.incava.org/projects/java/

java-diff
8Cut and Paste operations always occur pairwise. In ad-

dition to the other operations, they can make use of an additional
temporary storage register to save the text that is being moved.

• Finally, the string representation of this ac-
tion sequence is compressed and stored in the
database.

With this approach, we achieve to reduce the de-
mand for disk space for a recent English Wikipedia
dump containing all article revisions from 5470 GB
to only 96 GB, i.e. by 98%. The compressed data is
stored in a MySQL database, which provides sophis-
ticated indexing mechanisms for high-performance
access to the data.

Obviously, storing only the changes instead of
the full text of each revision trades in speed for
space. Accessing a certain revision now requires re-
constructing the text of the revision from a list of
changes. As articles often have several thousand re-
visions, this might take too long. Thus, in order to
speed up the recovery of the revision text, every n-th
revision is stored as a full revision. A low value of
n decreases the time needed to access a certain re-
vision, but increases the demand for storage space.
We have found n = 1000 to yield a good trade-off9.
This parameter, among a few other possibilities to
fine-tune the process, can be set in a graphical user
interface provided with the RevisionMachine.

4.2 Revision Access

After the converted revisions have been stored in
the revision database, it can either be used stand-
alone or combined with the JWPL data and ac-
cessed via the standard JWPL API. The latter op-
tion makes it possible to combine the possibilities
of the RevisionMachine with other components like
the JWPL parser for the MediaWiki syntax.

In order to set up the RevisionMachine, it is only
necessary to provide the configuration details for the
database connection (see Listing 1). Upon first ac-
cess, the database user has to have write permission
on the database, as indexes have to be created. For
later use, read permission is sufficient. Access to the
RevisionMachine is achieved via two API objects.
The RevisionIterator allows to iterate over all revi-
sions in Wikipedia. The RevisionAPI grants access
to the revisions of individual articles. In addition to

9If hard disk space is no limiting factor, the parameter can be
set to 1 to avoid the compression of the revisions and maximize
the performance.

100

/ / S e t up d a t a b a s e c o n n e c t i o n
DatabaseConfiguration db = new DatabaseConfiguration () ;
db .setDatabase (” dbname ”) ;
db .setHost (” hos tname ”) ;
db .setUser (” username ”) ;
db .setPassword (”pwd”) ;
db .setLanguage (Language .english) ;
/ / C r e a t e API o b j e c t s
Wikipedia wiki = WikiConnectionUtils .getWikipediaConnection (db) ;
RevisionIterator revIt = new RevisionIterator (db) ;
RevisionApi revApi = new RevisionApi (db) ;

Listing 1: Setting up the RevisionMachine

that, the Wikipedia object provides access to JWPL
functionalities.

In the following, we describe three use cases of
the RevisionMachine API, which demonstrate how
it is easily integrated into experimental setups.

Processing all article revisions in Wikipedia
The first use case focuses on the utilization of the
complete set of article revisions in a Wikipedia snap-
shot. Listing 2 shows how to iterate over all revi-
sions. Thereby, the iterator ensures that successive
revisions always correspond to adjacent revisions of
a single article in chronological order. The start of
a new article can easily be detected by checking the
timestamp and the article id. This approach is es-
pecially useful for applications in statistical natural
language processing, where large amounts of train-
ing data are a vital asset.

Processing revisions of individual articles The
second use case shows how the RevisionMachine
can be used to access the edit history of a specific
article. The example in Listing 3 illustrates how all
revisions for the article Automobile can be retrieved
by first performing a page query with the JWPL API
and then retrieving all revision timestamps for this
page, which can finally be used to access the revi-
sion objects.

Accessing the meta data of a revision The third
use case illustrates the access to the meta data of in-
dividual revisions. The meta data includes the name
or IP of the contributor, the additional user comment
for the revision and a flag that identifies a revision as
minor or major. Listing 4 shows how the number of
edits and unique contributors can be used to indicate
the level of edit activity for an article.

5 Conclusions

In this paper, we presented an open-source toolkit
which extends JWPL, an API for accessing
Wikipedia, with the ability to reconstruct past states
of Wikipedia, and to efficiently access the edit his-
tory of Wikipedia articles.

Reconstructing past states of Wikipedia is a
prerequisite for reproducing previous experimen-
tal work based on Wikipedia, and is also a re-
quirement for the creation of time-based series of
Wikipedia snapshots and for assessing the influence
of Wikipedia growth on NLP algorithms. Further-
more, Wikipedia’s edit history has been shown to be
a valuable knowledge source for NLP, which is hard
to access because of the lack of efficient tools for
managing the huge amount of revision data. By uti-
lizing a dedicated storage format for the revisions,
our toolkit massively decreases the amount of data
to be stored. At the same time, it provides an easy-
to-use interface to access the revision data.

We expect this work to consolidate NLP re-
search using Wikipedia in general, and to foster
research making use of the knowledge encoded in
Wikipedia’s edit history. The toolkit will be made
available as part of JWPL, and can be obtained from
the project’s website at Google Code. (http://
jwpl.googlecode.com)

Acknowledgments

This work has been supported by the Volkswagen Foun-
dation as part of the Lichtenberg-Professorship Program
under grant No. I/82806, and by the Hessian research
excellence program “Landes-Offensive zur Entwicklung
Wissenschaftlich-ökonomischer Exzellenz” (LOEWE) as
part of the research center ”Digital Humanities”. We
would also like to thank Simon Kulessa for designing and
implementing the foundations of the RevisionMachine.

101

/ / I t e r a t e ove r a l l r e v i s i o n s o f a l l a r t i c l e s
w h i l e (revIt .hasNext ()) {

Revision rev = revIt .next ()
rev .getTimestamp () ;
rev .getArticleID () ;
/ / p r o c e s s r e v i s i o n . . .

}

Listing 2: Iteration over all revisions of all articles

/ / Get a r t i c l e wi th t i t l e ” Automobi le ”
Page article = wiki .getPage (” Automobi le ”) ;
i n t id = article .getPageId () ;
/ / Get a l l r e v i s i o n s f o r t h e a r t i c l e
Collection<Timestamp> revisionTimeStamps = revApi .getRevisionTimestamps (id) ;
f o r (Timestamp t :revisionTimeStamps) {

Revision rev = revApi .getRevision (id , t) ;
/ / p r o c e s s r e v i s i o n . . .

}

Listing 3: Accessing the revisions of a specific article

/ / Meta d a t a p r o v i d e d by t h e Rev i s ionAPI
StringBuffer s = new StringBuffer () ;
s .append (” The a r t i c l e has ”+revApi .getNumberOfRevisions (pageId) +” r e v i s i o n s .\ n ”) ;
s .append (” I t has ”+revApi .getNumberOfUniqueContributors (pageId) +” un iq ue c o n t r i b u t o r s .\ n ”) ;
s .append (revApi .getNumberOfUniqueContributors (pageId , t r u e) + ” a r e r e g i s t e r e d u s e r s .\ n ”) ;
/ / Meta d a t a p r o v i d e d by t h e R e v i s i o n o b j e c t
s .append ((rev .isMinor () ? ” Minor ” : ” Major ”) +” r e v i s i o n by : ”+rev .getContributorID ()) ;
s .append (”\nComment : ”+rev .getComment ()) ;

Listing 4: Accessing the meta data of a revision

References
Si-Chi Chin, W. Nick Street, Padmini Srinivasan, and

David Eichmann. 2010. Detecting wikipedia vandal-
ism with active learning and statistical language mod-
els. In Proceedings of the 4th workshop on Informa-
tion credibility, WICOW ’10, pages 3–10.

Kenneth W. Church and Robert L. Mercer. 1993. Intro-
duction to the special issue on computational linguis-
tics using large corpora. Computational Linguistics,
19(1):1–24.

Olena Medelyan, David Milne, Catherine Legg, and
Ian H. Witten. 2009. Mining meaning from wikipedia.
Int. J. Hum.-Comput. Stud., 67:716–754, September.

D. Milne and I. H. Witten. 2009. An open-source toolkit
for mining Wikipedia. In Proc. New Zealand Com-
puter Science Research Student Conf., volume 9.

Rani Nelken and Elif Yamangil. 2008. Mining
wikipedia’s article revision history for training com-
putational linguistics algorithms. In Proceedings of
the AAAI Workshop on Wikipedia and Artificial Intel-
ligence: An Evolving Synergy (WikiAI), WikiAI08.

Elif Yamangil and Rani Nelken. 2008. Mining wikipedia
revision histories for improving sentence compres-
sion. In Proceedings of ACL-08: HLT, Short Papers,
pages 137–140, Columbus, Ohio, June. Association
for Computational Linguistics.

Mark Yatskar, Bo Pang, Cristian Danescu-Niculescu-
Mizil, and Lillian Lee. 2010. For the sake of simplic-
ity: unsupervised extraction of lexical simplifications
from wikipedia. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics, HLT ’10, pages 365–368.

Fabio Massimo Zanzotto and Marco Pennacchiotti.
2010. Expanding textual entailment corpora from
wikipedia using co-training. In Proceedings of the
COLING-Workshop on The People’s Web Meets NLP:
Collaboratively Constructed Semantic Resources.

Honglei Zeng, Maher Alhossaini, Li Ding, Richard Fikes,
and Deborah L. McGuinness. 2006. Computing trust
from revision history. In Proceedings of the 2006 In-
ternational Conference on Privacy, Security and Trust.

Torsten Zesch and Iryna Gurevych. 2010. The more the
better? Assessing the influence of wikipedia’s growth
on semantic relatedness measures. In Proceedings of
the Conference on Language Resources and Evalua-
tion (LREC), Valletta, Malta.

Torsten Zesch, Christof Mueller, and Iryna Gurevych.
2008. Extracting Lexical Semantic Knowledge from
Wikipedia and Wiktionary. In Proceedings of the
Conference on Language Resources and Evaluation
(LREC).

102

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 103–108,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

An Efficient Indexer for Large N-Gram Corpora

Hakan Ceylan
Department of Computer Science

University of North Texas
Denton, TX 76203
hakan@unt.edu

Rada Mihalcea
Department of Computer Science

University of North Texas
Denton, TX 76203

rada@cs.unt.edu

Abstract

We introduce a new publicly available tool
that implements efficient indexing and re-
trieval of large N-gram datasets, such as the
Web1T 5-gram corpus. Our tool indexes the
entire Web1T dataset with an index size of
only 100 MB and performs a retrieval of any
N-gram with a single disk access. With an
increased index size of 420 MB and dupli-
cate data, it also allows users to issue wild
card queries provided that the wild cards in the
query are contiguous. Furthermore, we also
implement some of the smoothing algorithms
that are designed specifically for large datasets
and are shown to yield better language mod-
els than the traditional ones on the Web1T 5-
gram corpus (Yuret, 2008). We demonstrate
the effectiveness of our tool and the smooth-
ing algorithms on the English Lexical Substi-
tution task by a simple implementation that
gives considerable improvement over a basic
language model.

1 Introduction

The goal of statistical language modeling is to cap-
ture the properties of a language through a proba-
bility distribution so that the probabilities of word
sequences can be estimated. Since the probability
distribution is built from a corpus of the language
by computing the frequencies of the N-grams found
in the corpus, the data sparsity is always an issue
with the language models. Hence, as it is the case
with many statistical models used in Natural Lan-
guage Processing (NLP), the models give a much
better performance with larger data sets.

However the large data sets, such as the Web1T
5-Gram corpus of (Brants and Franz, 2006), present

a major challenge. The language models built from
these sets cannot fit in memory, hence efficient ac-
cessing of the N-gram frequencies becomes an is-
sue. Trivial methods such as linear or binary search
over the entire dataset in order to access a single
N-gram prove inefficient, as even a binary search
over a single file of 10,000,000 records, which is
the case of the Web1T corpus, requires in the worst
casedlog2(10, 000, 000)e = 24 accesses to the disk
drive.

Since the access to N-grams is costly for these
large data sets, the implementation of further im-
provements such as smoothing algorithms becomes
impractical. In this paper, we overcome this problem
by implementing a novel, publicly available tool1

that employs an indexing strategy that reduces the
access time to any N-gram in the Web1T corpus to a
single disk access. We also make a second contribu-
tion by implementing some of the smoothing models
that take into account the size of the dataset, and are
shown to yield up to 31% perplexity reduction on the
Brown corpus (Yuret, 2008). Our implementation is
space efficient, and provides a fast access to both the
N-gram frequencies, as well as their smoothed prob-
abilities.

2 Related Work

Language modeling toolkits are used extensively for
speech processing, machine translation, and many
other NLP applications. The two of the most pop-
ular toolkits that are also freely available are the
CMU Statistical Language Modeling (SLM) Toolkit
(Clarkson and Rosenfeld, 1997), and theSRI Lan-
guage Modeling Toolkit(Stolcke, 2002). However,

1Our tool can be freely downloaded from the download sec-
tion under http://lit.csci.unt.edu

103

even though these tools represent a great resource
for building language models and applying them to
various problems, they are not designed for very
large corpora, such as the Web1T 5-gram corpus
(Brants and Franz, 2006), hence they do not provide
efficient implementations to access these data sets.

Furthermore, (Yuret, 2008) has recently shown
that the widely popular smoothing algorithms for
language models such asKneser-Ney(Kneser and
Ney, 1995),Witten-Bell(Witten and Bell, 1991), or
Absolute Discountingdo not realize the full poten-
tials of very large corpora, which often come with
missing counts. The reason for the missing counts
is due to the omission of low frequency N-grams in
the corpus. (Yuret, 2008) shows that with a modified
version of Kneser-Ney smoothing algorithm, named
as the Dirichlet-Kneser-Ney, a 31% reduction in per-
plexity can be obtained on the Brown corpus.

A tool similar to ours that uses a hashing tech-
nique in order to provide a fast access to the Web1T
corpus is presented in detail in (Hawker et al., 2007).
The tool provides access to queries with wild card
symbols, and the performance of the tool on106

queries on a 2.66 GHz processor with 1.5 GBytes
of memory is given approximately as one hour. An-
other tool,Web1T5-Easy, described in (Evert, 2010),
provides indexing of the Web1T corpus via rela-
tional database tables implemented in an SQLite en-
gine. It allows interactive searches on the corpus as
well as collocation discovery. The indexing time of
this tool is reported to be two weeks, while the non-
cached retrieval time is given to be in order of a few
seconds. Other tools that implement a binary search
algorithm as a simpler, yet less efficient method are
also given in (Giuliano et al., 2007; Yuret, 2007).

3 The Web1T 5-gram Corpus

The Web1T 5-gram corpus (Brants and Franz, 2006)
consists of sequences of words (N-grams) and their
associated counts extracted from a Web corpus of
approximately one trillion words. The length of each
sequence,N , ranges from1 to 5, and the size of the
entire corpus is approximately 88GB (25GB in com-
pressed form). The unigrams form the vocabulary
of the corpus and are stored in a single file which
includes around 13 million tokens and their associ-
ated counts. The remaining N-grams are stored sep-
arately across multiple files in lexicographic order.
For example, there are 977,069,902 distinct trigrams
in the dataset, and they are stored consecutively in
98 files in lexicographic order. Furthermore, each

N-gram file contains 10,000,000 N-grams except the
last one, which contains less. It is also important to
note that N-grams with counts less than 40 are ex-
cluded from the dataset forN = 2, 3, 4, 5, and the
tokens with less than 200 are excluded from the un-
igrams.

4 The Indexer

4.1 B+-trees

We used a B+-tree structure for indexing. A B+-
tree is essentially a balanced search tree where each
node has several children. Indexing large files us-
ing B+ trees is a popular technique implemented
by most database systems today as the underlying
structure for efficient range queries. Although many
variations of B+-trees exist, we use the definition for
primary indexing given in (Salzberg, 1988). There-
fore we assume that the data, which is composed of
records, is only stored in the leaves of the tree and
the internal nodes store only the keys.

The data in the leaves of a B+-tree is grouped
into buckets, where the size of a bucket is deter-
mined by a bucket factor parameter,bkfr. Therefore
at any given time, each bucket can hold a number of
records in the range[1, bkfr]. Similarly, the num-
ber of keys that each internal node can hold is deter-
mined by theorderparameter,v. By definition, each
internal node except the root can have any number of
keys in the range[v, 2v], and the root must have at
least one key. Finally, an internal node withk keys
hask + 1 children.

4.2 Mapping Unigrams to Integer Keys

A key in a B+-tree is a lookup value for a record,
and a record in our case is an N-gram together with
its count. Therefore each line of an N-gram file in
the Web1T dataset makes up a record. Since each
N-gram is distinct, it is possible to use the N-gram
itself as a key. However in order to reduce the stor-
age requirements and make the comparisons faster
during a lookup, we map each unigram to an inte-
ger, and form the keys of the records using the inte-
ger values instead of the tokens themselves.2

To map unigrams to integers, we use the unigrams
sorted in lexicographic order and assign an integer
value to each unigram starting from 1. In other
words, if we let the m-tupleU = (t1, t2, ..., tm) rep-
resent all the unigrams sorted in lexicographic order,

2This method does not give optimal storage, for which one
should implement a compression Huffman coding scheme.

104

then for a unigramti, i gives its key value. The key
of trigram ”ti tj tk” is simply given as ”i j k.” Thus,
the comparison of two keys can be done in a similar
fashion to the comparison of two N-grams; we first
compare the first integer of each key, and in case of
equality, we compare the second integers, and so on.
We stop the comparison as soon as an inequality is
found. If all the comparisons result in equality then
the two keys (N-grams) are equal.

4.3 Searching for a Record

We construct a B+-tree for each N-gram file in the
dataset forN = 2, 3, 4, 5, and keep the key of the
first N-gram for each file in memory. When a query
q is issued, we first find the file that containsq by
comparing the key ofq to the keys in memory. Since
this is an in-memory operation, it can be simply
done by performing a binary search. Once the cor-
rect file is found, we then search the B+-tree con-
structed for that file for the N-gramq by using its
key.

As is the case with any binary search tree, a search
in a B+-tree starts at the root level and ends in the
leaves. If we letri and pj represent a key and a
pointer to the child of an internal node respectively,
for i = 1, 2, ..., k and j = 1, 2, ..., k + 1, then to
search an internal node, including the root, for a key
q, we first find the keyrm that satisfies one of the
following:

• (q < rm) ∧ (m = 1)

• (rm−1 ≤ q) ∧ (rm > q) for 1 < m ≤ k

• (q > rm) ∧ (m = k)

If one of the first two cases is satisfied, the search
continues on the child node found by followingpm,
whereas if the last condition is satisfied, the pointer
pm+1 is followed. Since the keys in an internal node
are sorted, a binary search can be performed to find
rm. Finally, when a leaf node is reached, the entire
bucket is read into memory first, then a record with
a key value ofq is searched.

4.4 Constructing a B+-tree

The construction of a B+-tree is performed through
successive record insertions.3 Given a record, we

3Note that this may cause efficiency issues for very large
files as memory might become full during the construction pro-
cess, hence in practice, the file is usually sorted prior to index-
ing.

first compute its key, find the leaf node it is supposed
to be in, and insert it if the bucket is not full. Other-
wise, the leaf node is split into two nodes, each con-
tainingdbkfr/2e, andbbkfr/2c+1 records, and the
first key of the node containing the larger key values
is placed into the parent internal node together with
the node’s pointer. The insertion of a key to an in-
ternal node is similar, only this time both split nodes
containv values, and the middle key value is sent up
to the parent node.

Note that not all the internal nodes of a B+-tree
have to be kept on the disk, and read from there each
time we do a search. In practice, all but the last two
levels of a B+-tree are placed in memory. The rea-
son for this is the high branching factor of the B+-
trees together with their effective storage utilization.
It has been shown in (Yao, 1978) that the nodes of a
high-order B+-tree areln2 ≈ 69% full on average.

However, note that the tree will be fixed in our
case, i.e., once it is constructed we will not be in-
serting any other N-gram records. Therefore we do
not need to worry about the 69% space utilization,
but instead try to make each bucket, and each in-
ternal node full. Thus, with abkfr = 1250, and
v = 100, an N-gram file with 10,000,000 records
would have 8,000 leaf nodes on level 3, 40 inter-
nal nodes on level 2, and the root node on level 1.
Furthermore, let us assume that integers, disk and
memory pointers all hold 8 bytes of space. There-
fore a 5-gram key would require 40 bytes, and a full
internal node in level 2 would require(200x40) +
(201x8) = 9, 608 bytes. Thus the level 2 would re-
quire 9, 608x40 ≈ 384 Kbytes, and level 1 would
require(40∗40)+(41∗8) = 1, 928 bytes. Hence, a
Web1T 5-gram file, which has an average size of 286
MB can be indexed with approximately 386 Kbytes.
There are 118 5-gram files in the Web1T dataset, so
we would need386x118 ≈ 46 MBytes of memory
space in order to index all of them. A similar calcu-
lation for 4-grams, trigrams, and bigrams for which
the bucket factor values are selected as 1600, 2000,
and 2500 respectively, shows that the entire Web1T
corpus, except unigrams, can be indexed with ap-
proximately 100 MBytes, all of which can be kept
in memory, thereby reducing the disk access to only
one. As a final note, in order to compute a key
for a given N-gram quickly, we keep the unigrams
in memory, and use a hashing scheme for mapping
tokens to integers, which additionally require 178
Mbytes of memory space.

The choice of the bucket factor and the inter-

105

nal node order parameters depend on the hard-disk
speed, and the available memory.4. Recall that even
to fetch a single N-gram record from the disk, the en-
tire bucket needs to be read. Therefore as the bucket
factor parameter is reduced, the size of the index will
grow, but the access time would be faster as long as
the index could be entirely fit in memory. On the
other hand, with a too large bucket factor, although
the index can be made smaller, thereby reducing the
memory requirements, the access time may be un-
acceptable for the application. Note that a random
reading of a bucket of records from the hard-disk
requires the disk head to first go to the location of
the first record, and then do a sequential read.5 As-
suming a hard-disk having an average transfer rate
of 100 MBytes, once the disk head finds the correct
location, a 40 bytes N-gram record can be read in
4x10−7 seconds. Thus, assuming a seek time around
8-10 ms, even with a bucket factor of 1,000, it can be
seen that the seek time is still the dominating factor.
Therefore, as the bucket size gets smaller than 1,000,
even though the index size will grow, there would be
almost no speed up in the access time, which justi-
fies our parameter choices.

4.5 Handling Wild Card Queries

Having described the indexing scheme, and how to
search for a single N-gram record, we now turn our
attention to queries including one or more wild card
symbols, which in our case is the underscore char-
acter ” ” , as it does not exist among the unigram
tokens of the Web1T dataset. We manually add the
wild card symbol to our mapping of tokens to inte-
gers, and map it to the integer0, so that a search for a
query with a wild card symbol would be unsuccess-
ful but would point to the first record in the file that
replaces the wild card symbol with a real token as
the key for the wild card symbol is guaranteed to be
the smallest. Having found the first record we per-
form a sequential read until the last read record does
not match the query. The reason this strategy works
is because the N-grams are sorted in lexicographic
order in the data set, and also when we map unigram
tokens to integers, we preserve their order, i.e., the
first token in the lexicographically sorted unigram
list is assigned the value 1, the second is assigned

4We used a 7200 RPM disk-drive with an average read seek
time of 8.5 ms, write seek time of 10.0 ms, and a data transfer
time up to 3 GBytes per second.

5A rotational latency should also be taken into account be-
fore the sequential reading can be done.

2, and so forth. For example, for a given queryOur
Honorable , the record that would be pointed at the
end of search in the trigram file3gm-0041is the N-
gramOur Honorable Court 186, which is the first
N-gram in the data set that starts with the bigram
Our Honorable.

Note however that the methodology that is de-
scribed to handle the queries with wild card sym-
bols will only work if the wild card symbols are
the last tokens of the query and they are contigu-
ous. For example a query such asOur Court will
not work as N-grams satisfying this query are not
stored contiguously in the data set. Therefore in or-
der to handle such queries, we need to store addi-
tional copies of the N-grams sorted in different or-
ders. When the last occurrence of the contiguous
wild card symbols is in positionp of a query N-gram
for p = 0, 1, ..., N − 1, then the N-grams sorted lex-
icographically starting from position(p + 1)modN
needs to be searched. A lexicographical sort for a
positionp, for 0 ≤ p ≤ (N − 1) is performed by
moving all the tokens in positions0...(p − 1) to the
end for each N-gram in the data set. Thus, for all
the bigrams in the data set, we need one extra copy
sorted in position 1, for all the trigrams, we need
two extra copies; one sorted in position 1, and an-
other sorted in position 2, and so forth. Hence, in
order to handle the contiguous wild card queries in
any position, in addition to the 88 GBytes of origi-
nal Web1T data, we need an extra disk space of 265
GBytes. Furthermore, the indexing cost of the du-
plicate data is an additional 320 MBytes. Thus, the
total disk cost of the system will be approximately
353 GBytes plus the index size of 420 MBytes, and
since we keep the entire index in memory, the final
memory cost of the system will be 420 MBytes +
178 MBytes = 598 MBytes.

4.6 Performance

Given that today’s commodity hardware comes with
at least 4 GBytes of memory and 1 TBytes of hard-
disk space, the requirements of our tool are rea-
sonable. Furthermore, our tool is implemented in
a client-server architecture, and it allows multiple
clients to submit multiple queries to the server over
a network. The server can be queried with an N-
gram query either for its count in the corpus, or
its smoothed probability with a given smoothing
method. The queries with wild cards can ask for
the retrieval of all the N-grams satisfying a query, or
only for the total count so the network overhead can

106

be avoided depending on the application needs.
Our program requires about one day of offline

processing due to resorting the entire data a few
times. Note that some of the files in the corpus
need to be sorted as many as four times. For the
sorting process, the files are first individually sorted,
and then a k-way merge is performed. In our im-
plementation, we used a min heap structure for this
purpose, and k is always chosen as the number of
files for a given N. The index construction however
is relatively fast. It takes about an hour to construct
the index for the 5-grams. Once the offline process-
ing is done, it only takes a few minutes to start the
server, and from that point the online performance
of our tool is very fast. It takes about 1-2 seconds to
process 1000 randomly picked 5-gram queries (with
no wild card symbols), which may or may not exist
in the corpus. For the queries asking for the fre-
quencies only, our tool implements a small caching
mechanism that takes the temporal locality into ac-
count. The mechanism is very useful for wild card
queries involving stop words, such as”the ” , and
”of the ” which occur frequently, and take a long
time to process due to the sequential read of a large
number of records from the data set.

5 Lexical Substitution

In this section we demonstrate the effectiveness of
our tool by using it on the the English Lexical Sub-
stitution task, which was first introduced in SemEval
2007 (McCarthy and Navigli, 2007). The task re-
quires both the human annotators and the participat-
ing systems to replace a target word in a given sen-
tence with the most appropriate alternatives. The de-
scription of the tasks, the data sets, the performance
of the participating systems as well as a post analy-
sis of the results is given in (McCarthy and Navigli,
2009).

Although the task includes three subtasks, in this
evaluation we are only concerned with one of them,
namely thebestsubtask. The best subtask asks the
systems and the annotators to provide only one sub-
stitute for the target words – the most appropriate
one. Two separate datasets were provided with this
task: a trial dataset was first provided in order for
the participants to get familiar with the task and train
their systems. The trial data used a lexical sample of
30 words with 10 instances each. The systems were
then tested on a larger test data, which used a lexical
sample of 171 words each again having 10 instances.

Our methodology for this task is very simple; we

Model Precision Mod Precision
No Smoothing 10.13 14.78
Absolute Discounting 11.05 16.75
KN with Missing Counts 11.19 16.75
Dirichlet KN 10.98 15.76

Table 1: Results on the trial data

Model Precision Mod Precision
No Smoothing 9.01 14.15
Absolute Discounting 11.64 18.62
KN with Missing Counts 11.61 18.54
Dirichlet KN 11.03 17.48
Best Baseline 9.95 15.28
Best SEMEVAL System 12.90 20.65

Table 2: Results on the test data

replace the target word with an alternative from a list
of candidates, and find the probability of the context
with the new word using a language model. The can-
didate that gives the highest probability is provided
as the system’s best guess. The list of candidates is
obtained from two different lexical sources, Word-
Net (Fellbaum, 1998) and Roget’s Thesaurus (The-
saurus.com, 2007). We retrieve all the synonyms
for all the different senses of the word from both re-
sources and combine them. We did not consider any
lexical relations other than synonymy, and similarly
we did not consider any words at a further semantic
distance.

We start with a simple language model that cal-
culates the probability of the context of a word,
and then continue with three smoothing algorithms
discussed in (Yuret, 2008), namelyAbsolute Dis-
counting, Kneser-Ney with Missing Counts, and the
Dirichlet-Kneser-Ney Discounting. Note that all
three are interpolated models, i.e., they do not just
back-off to a lower order probability when an N-
gram is not found, but rather use the higher and
lower order probabilities all the time in a weighted
fashion.

The results on the trial dataset are shown in Ta-
ble 1, and the results on the test dataset are shown
in Table 2. In all the experiments we use the trigram
models, i.e., we keepN fixed to 3. Since our sys-
tem makes a guess for all the target words in the set,
our precision and recall scores, as well as the mod
precision and the mod recall scores are the same,
so only one from each is shown in the table. Note
that the highest achievable score for this task is not
100%, but is restricted by the frequency of the best
substitute, and it is given as 46.15%. The highest
scoring participating system achieved 12.9%, which

107

gave a 2.95% improvement over the baseline (Yuret,
2008; McCarthy and Navigli, 2009); the scores ob-
tained by the best SEMEVAL system as well as the
best baseline calculated using the synonyms for the
first synset in WordNet are also shown in Table 2.

On both the trial and the test data, we see that the
interpolated smoothing algorithms consistently im-
prove over the naive language modeling, which is
an encouraging result. Perhaps a surprising result
for us was the performance of the Dirichlet-Kneser-
Ney Smoothing Algorithm, which is shown to give
minimum perplexity on the Brown corpus out of the
given models. This might suggest that the parame-
ters of the smoothing algorithms need adjustments
for each task.

It is important to note that this evaluation is meant
as a simple proof of concept to demonstrate the use-
fulness of our indexing tool. We thus used a very
simple approach for lexical substitution, and did not
attempt to integrate several lexical resources and
more sophisticated algorithms, as some of the best
scoring systems did. Despite this, the performance
of our system exceeds the best baseline, and is better
than five out of the eight participating systems (see
(McCarthy and Navigli, 2007)).

6 Conclusions

In this paper we described a new publicly avail-
able tool that provides fast access to large N-gram
datasets with modest hardware requirements. In
addition to providing access to individual N-gram
records, our tool also handles queries with wild card
symbols, provided that the wild cards in the query
are contiguous. Furthermore, the tool also imple-
ments smoothing algorithms that try to overcome
the missing counts that are typical to N-gram cor-
pora due to the omission of low frequencies. We
tested our tool on the English Lexical Substitution
task, and showed that the smoothing algorithms give
an improvement over simple language modeling.

Acknowledgments

This material is based in part upon work sup-
ported by the National Science Foundation CA-
REER award #0747340 and IIS awards #0917170
and #1018613. Any opinions, findings, and conclu-
sions or recommendations expressed in this material
are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

T. Brants and A. Franz. 2006. Web 1T 5-gram corpus
version 1.Linguistic Data Consortium.

P. Clarkson and R. Rosenfeld. 1997. Statistical language
modeling using the cmu-cambridge toolkit. InPro-
ceedings of ESCA Eurospeech, pages 2707–2710.

S. Evert. 2010. Google web 1t 5-grams made easy (but
not for the computer). InProceedings of the NAACL
HLT 2010 Sixth Web as Corpus Workshop, WAC-6 ’10,
pages 32–40.

C. Fellbaum, editor. 1998.WordNet: An Electronic Lex-
ical Database. MIT Press, Cambridge, MA.

C. Giuliano, A. Gliozzo, and C. Strapparava. 2007. Fbk-
irst: lexical substitution task exploiting domain and
syntagmatic coherence. InSemEval ’07: Proceedings
of the 4th International Workshop on Semantic Evalu-
ations, pages 145–148.

T. Hawker, M. Gardiner, and A. Bennetts. 2007. Practi-
cal queries of a massive n-gram database. InProceed-
ings of the Australasian Language Technology Work-
shop 2007, pages 40–48, Melbourne, Australia.

R. Kneser and H. Ney. 1995. Improved backing-off for
n-gram language modeling. InAcoustics, Speech, and
Signal Processing, 1995. ICASSP-95., 1995 Interna-
tional Conference on, volume 1, pages 181–184 vol.1.

D. McCarthy and R. Navigli. 2007. Semeval-2007 task
10: English lexical substitution task. InSemEval ’07:
Proceedings of the 4th International Workshop on Se-
mantic Evaluations, pages 48–53.

D. McCarthy and R. Navigli. 2009. The english lexical
substitution task. Language Resources and Evalua-
tion, 43:139–159.

B. Salzberg. 1988. File structures: an analytic ap-
proach. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA.

A. Stolcke. 2002. SRILM – an extensible language mod-
eling toolkit. In Proceedings of ICSLP, volume 2,
pages 901–904, Denver, USA.

Thesaurus.com. 2007. Rogets new millennium the-
saurus, first edition (v1.3.1).

I. H. Witten and T. C. Bell. 1991. The zero-frequency
problem: Estimating the probabilities of novel events
in adaptive text compression.IEEE Transactions on
Information Theory, 37(4):1085–1094.

A. Chi-Chih Yao. 1978. On random 2-3 trees.Acta Inf.,
9:159–170.

D. Yuret. 2007. Ku: word sense disambiguation by sub-
stitution. InSemEval ’07: Proceedings of the 4th In-
ternational Workshop on Semantic Evaluations, pages
207–213.

D. Yuret. 2008. Smoothing a tera-word language model.
In HLT ’08: Proceedings of the 46th Annual Meet-
ing of the Association for Computational Linguistics
on Human Language Technologies, pages 141–144.

108

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 109–114,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

SystemT: A Declarative Information Extraction System

Yunyao Li
IBM Research - Almaden

650 Harry Road
San Jose, CA 95120

yunyaoli@us.ibm.com

Frederick R. Reiss
IBM Research - Almaden

650 Harry Road
San Jose, CA 95120

frreiss@us.ibm.com

Laura Chiticariu
IBM Research - Almaden

650 Harry Road
San Jose, CA 95120

chiti@us.ibm.com

Abstract
Emerging text-intensive enterprise applica-
tions such as social analytics and semantic
search pose new challenges of scalability and
usability to Information Extraction (IE) sys-
tems. This paper presents SystemT, a declar-
ative IE system that addresses these challenges
and has been deployed in a wide range of en-
terprise applications. SystemT facilitates the
development of high quality complex annota-
tors by providing a highly expressive language
and an advanced development environment.
It also includes a cost-based optimizer and a
high-performance, flexible runtime with mini-
mum memory footprint. We present SystemT
as a useful resource that is freely available,
and as an opportunity to promote research in
building scalable and usable IE systems.

1 Introduction

Information extraction (IE) refers to the extraction
of structured information from text documents. In
recent years, text analytics have become the driv-
ing force for many emerging enterprise applications
such as compliance and data redaction. In addition,
the inclusion of text has also been increasingly im-
portant for many traditional enterprise applications
such as business intelligence. Not surprisingly, the
use of information extraction has dramatically in-
creased within the enterprise over the years. While
the traditional requirement of extraction quality re-
mains critical, enterprise applications pose several
two challenges to IE systems:

1.Scalability: Enterprise applications operate
over large volumes of data, often orders of

magnitude larger than classical IE corpora. An
IE system should be able to operate at those
scales without compromising its execution ef-
ficiency or memory consumption.

2.Usability: Building an accurate IE system is
an inherently labor intensive process. There-
fore, the usability of an enterprise IE system in
terms of ease of development and maintenance
is crucial for ensuring healthy product cycle
and timely handling of customer complains.

Traditionally, IE systems have been built from in-
dividual extraction components consisting of rules
or machine learning models. These individual com-
ponents are then connected procedurally in a pro-
gramming language such as C++, Perl or Java. Such
procedural logic towards IE cannot meet the increas-
ing scalability and usability requirements in the en-
terprise (Doan et al., 2006; Chiticariu et al., 2010a).

Three decades ago, the database community faced
similar scalability and expressivity challenges in
accessing structured information. The community
addressed these problems by introducing a rela-
tional algebra formalism and an associated declar-
ative query language SQL. Borrowing ideas from
the database community, several systems (Doan and
others, 2008; Bohannon and others, 2008; Jain et al.,
2009; Krishnamurthy et al., 2008; Wang et al., 2010)
have been built in recent years taking an alternative
declarative approach to information extraction. In-
stead of using procedural logic to implement the ex-
traction task, declarative IE systems separate the de-
scription of what to extract from how to extract it,
allowing the IE developer to build complex extrac-

109

Development Environment

Optimizer

Rules
(XQL)

Execution
Engine

Sample
Documents

Runtime
Environment

Runtime
Environment

Input
Document

Stream

Annotated
Document

Stream

Plan
(Algebra)

User
Interface

Pub
lis

h

Figure 1: Overview of SystemT

tion programs without worrying about performance
considerations.

In this demonstration, we showcase one such
declarative IE system called SystemT, designed
to address the scalability and usability challenges.
We illustrate how SystemT, currently deployed in
a multitude of real-world applications and com-
mercial products, can be used to develop and
maintain IE annotators for enterprise applica-
tions. A free version of SystemT is available at
http://www.alphaworks.ibm.com/tech/systemt.

2 Overview of SystemT
Figure 1 depicts the architecture of SystemT. The sys-
tem consists of two major components: the Development
Environment and the Runtime Environment. The Sys-
temT Development Environment supports the iterative
process of constructing and refining rules for information
extraction. The rules are specified in a declarative lan-
guage called AQL (F.Reiss et al., 2008). The Develop-
ment Environment provides facilities for executing rules
over a given corpus of representative documents and vi-
sualizing the results of the execution. Once a developer
is satisfied with the results that her rules produce on these
documents, she can publish her annotator.

Publishing an annotator is a two-step process. First,
given an AQL annotator, there can be many possible
graphs of operators, or execution plans, each of which
faithfully implements the semantics of the annotator.
Some of the execution plans are much more efficient than
others. The SystemT Optimizer explores the space of
the possible execution plans to choose the most efficient
one. This execution plan is then given to the SystemT
Runtime to instantiate the corresponding physical oper-
ators. Once the physical operators are instantiated, the

create view Phone as

extract regex /\d{3}-\d{4}/ on D.text as number

from Document D;

create view Person as

extract dictionary ‘firstNames.dict’ on D.text as name

from Document D;

create view PersonPhoneAll as

select CombineSpans(P.name, Ph.number) as match

from Person P, Phone Ph

where FollowsTok(P.name, Ph.number, 0, 5);

create view PersonPhone as

select R.name as name

from PersonPhoneAll R

consolidate on R.name;

output view PersonPhone;

Figure 2: An AQL program for a PersonPhone task.

SystemT Runtime feeds one document at a time through
the graph of physical operators and outputs a stream of
annotated documents.

The decoupling of the Development and Runtime en-
vironments is essential for the flexibility of the system. It
facilitates the incorporating of various sophisticated tools
to enable annotator development without sacrificing run-
time performance. Furthermore, the separation permits
the SystemT Runtime to be embedded into larger appli-
cations with minimum memory footprint. Next, we dis-
cuss individual components of SystemT in more details
(Sections 3 – 6), and summarize our experience with the
system in a variety of enterprise applications (Section 7).

3 The Extraction Language

In SystemT, developers express an information extrac-
tion program using a language called AQL. AQL is a
declarative relational language similar in syntax to the
database language SQL, which was chosen as a basis for
our language due to its expressivity and familiarity. An
AQL program (or an AQL annotator) consists of a set of
AQL rules.

In this section, we describe the AQL language and
its underlying algebraic operators. In Section 4, we ex-
plain how the SystemT optimizer explores a large space
of possible execution plans for an AQL annotator and
chooses one that is most efficient.

3.1 AQL

Figure 2 illustrates a (very) simplistic annotator of rela-
tionships between persons and their phone number. At a
high-level, the annotator identifies person names using a
simple dictionary of first names, and phone numbers us-
ing a regular expression. It then identifies pairs of Person
and Phone annotations, where the latter follows the

110

former within 0 to 5 tokens, and marks the corre-
sponding region of text as a PersonPhoneAll annota-
tion. The final output PersonPhone is constructed by
removing overlapping PersonPhoneAll annotations.

AQL operates over a simple relational data model
with three data types: span, tuple, and view. In this
data model, a span is a region of text within a doc-
ument identified by its “begin” and “end” positions,
while a tuple is a list of spans of fixed size. A view
is a set of tuples. As can be seen from Figure 2,
each AQL rule defines a view. As such, a view is the
basic building block in AQL: it consists of a logical
description of a set of tuples in terms of the docu-
ment text, or the content of other views. The input
to the annotator is a special view called Document
containing a single tuple with the document text.
The AQL annotator tags some views as output views,
which specify the annotation types that are the final
results of the annotator.

The example in Figure 2 illustrates two of the
basic constructs of AQL. The extract statement
specifies basic character-level extraction primitives,
such as regular expressions or dictionaries (i.e.,
gazetteers), that are applied directly to the docu-
ment, or a region thereof. The select statement
is similar to the corresponding SQL statement, but
contains an additional consolidate on clause
for resolving overlapping annotations, along with an
extensive collection of text-specific predicates.

To keep rules compact, AQL also allows a short-
hand pattern notation similar to the syntax of the
CPSL grammar standard (Appelt and Onyshkevych,
1998). For example, the PersonPhoneAll view
in Figure 2 can also be expressed as shown below.
Internally, SystemT translates each of these extract
pattern statements into one or more select and ex-
tract statements.
create view PersonPhoneAll as
extract pattern
<P.name> <Token>{0,5} <Ph.number>
from Person P, Phone Ph;

SystemT has built-in multilingual support in-
cluding tokenization, part of speech and gazetteer
matching for over 20 languages using IBM Lan-
guageWare. Annotator developers can utilize the
multilingual support via AQL without having to con-
figure or manage any additional resources. In ad-
dition, AQL allows user-defined functions in a re-

firstNames.dict

DocumentInput Tuple

…

I’ve seen John
and Martin, …

Output Tuple 2 Span 2Document

Span 1Output Tuple 1 Document

Dictionary

Person

(‘Anna’, ‘John’, ‘Martin’, …)

Figure 3: Dictionary Extraction Operator

stricted context in order to support operations such
as validation or normalization. More details on AQL
can be found in the AQL manual (Chiticariu et al.,
2010b).

3.2 Algebraic Operators in SystemT

SystemT executes AQL rules using graphs of op-
erators. These operators are based on an algebraic
formalism that is similar to the relational algebra
formalism, but with extensions for text processing.
Each operator in the algebra implements a single
basic atomic IE operation, producing and consum-
ing sets of tuples (i.e., views).

Fig. 3 illustrates the dictionary extraction operator
in the algebra, which performs character-level dic-
tionary matching. A full description of the 12 differ-
ent operators of the algebra can be found in (F.Reiss
et al., 2008). Three of the operators are listed below.

• The Extract operator (E) performs character-
level operations such as regular expression and
dictionary matching over text, producing one tu-
ple for each match.

• The Select operator (σ) takes as input a set of
tuples and a predicate to apply to the tuples, and
outputs all tuples that satisfy the predicate.

• The Join operator (◃▹) takes as input two sets of
tuples and a predicate to apply to pairs of tuples.
It outputs all pairs satisfying the predicate.

Other operators include PartOfSpeech for part-
of-speech detection, Consolidate for removing
overlapping annotations, Block and Group for
grouping together similar annotations occurring
within close proximity to each other, as well as ex-
pressing more general types of aggregation, Sort for
sorting, and Union and Minus for expressing set
union and set difference, respectively.

111

Person Phone

Plan BPlan A
Find matches of Person, then
discard matches that are not

followed by a Phone

⋈

ε

σ

dict

Find matches of Person and Phone, then identify
pairs that are within 0 to 5 tokens of each other

Plan C
Find matches of Phone, then
discard matches that are not

followed by a Person

ε

σ

regex

Figure 4: Execution strategies for PersonPhoneAll in
Fig. 2

4 The Optimizer

Grammar-based IE engines such as (Boguraev,
2003; Cunningham et al., 2000) place rigid restric-
tions on the order in which rules can be executed.
Such systems that implement the CPSL standard or
extensions of it must use a finite state transducer to
evaluate each level of the cascade with one or more
left to right passes over the entire input token stream.
In contrast, SystemT uses a declarative approach
based on rules that specify what patterns to extract,
as opposed to how to extract them. In a declarative
IE system such as SystemT the specification of an
annotator is completely separate from its implemen-
tation. In particular, the system does not place ex-
plicit constraints on the order of rule evaluation, nor
does it require that intermediate results of an anno-
tator collapse to a fixed-size sequence.

As shown in Fig. 1, the SystemT engine does
not execute AQL directly; instead, the SystemT
Optimizer compiles AQL into a graph of operators.
Given a collection of AQL views, the optimizer gen-
erates a large number of different operator graphs,
all of which faithfully implement the semantics of
the original views. Even though these graphs always
produce the same results, the execution strategies
that they represent can have very different perfor-
mance characteristics. The optimizer incorporates
a cost model which, given an operator graph, esti-
mates the CPU time required to execute the graph
over an average document in the corpus. This cost
model allows the optimizer to estimate the cost of
each potential execution strategy and to choose the
one with the fastest predicted running time.

Fig. 4 presents three possible execution strategies
for the PersonPhoneAll rule in Fig. 2. If the opti-
mizer estimates that the evaluation cost of Person is

much lower than that of Phone, then it can determine
that Plan B has the lowest evaluation cost among
the three, because Plan B only evaluates Phone in
the “right” neighborhood for each instance of Per-
son. More details of our algorithms for enumerating
plans can be found in (F.Reiss et al., 2008).

The optimizer in SystemT chooses the best exe-
cution plan from a large number of different algebra
graphs available. Depending on the execution plan
generated by the optimizer, SystemT may evaluate
views out of order, or it may skip evaluating some
views entirely. It may share work among views or
combine multiple equivalent views together. Even
within the context of a single view, the system can
choose among several different execution strategies
without affecting the semantics of the annotator.
This decoupling is possible because of the declar-
ative approach in SystemT, where the AQL rules
specify only what patterns to extract and not how to
extract them. Notice that many of these strategies
cannot be implemented using a transducer. In fact,
we have formally proven that within this large search
space, there generally exists an execution strategy
that implements the rule semantics far more effi-
ciently than the fastest transducer could (Chiticariu
et al., 2010b). This approach also allows for greater
rule expressivity, because the rule language is not
constrained by the need to compile to a finite state
transducer, as in traditional CPSL-based systems.

5 The Runtime

The SystemT Runtime is a compact, small memory
footprint, high-performance Java-based runtime en-
gine designed to be embedded in a larger system.
The runtime engine works in two steps. First, it
instantiates the physical operators in the compiled
operator graph generated by the optimizer. Second,
once the first step has been completed, the runtime
feeds documents through the operator graph one at a
time, producing annotations.

SystemT exposes a generic Java API for the inte-
gration of its runtime environment with other appli-
cations. Furthermore, SystemT provides two spe-
cific instantiations of the Java API: a UIMA API and
a Jaql function that allow the SystemT runtime to
be seamlessly embedded in applications using the
UIMA analytics framework (UIMA, 2010), or de-
ployed in a Hadoop-based environment. The latter

112

allows SystemT to be embedded as a Map job in a
map-reduce framework, thus enabling the system to
scale up and process large volumes of documents in
parallel.

5.1 Memory Consumption
Managing memory consumption is very important
in information extraction systems. Extracting struc-
tured information from unstructured text requires
generating and traversing large in-memory data
structures, and the size of these structures deter-
mines how large a document the system can process
with a given amount of memory.

Conventional rule-based IE systems cannot
garbage-collect their main-memory data structures
because the custom code embedded inside rules can
change these structures in arbitrary ways. As a re-
sult, the memory footprint of the rule engine grows
continuously throughout processing a given docu-
ment.

In SystemT, the AQL view definitions clearly
specify the data dependencies between rules. When
generating an execution plan for an AQL annota-
tor, the optimizer generates information about when
it is safe to discard a given set of intermediate re-
sults. The SystemT Runtime uses this information
to implement garbage collection based on reference-
counting. This garbage collection significantly re-
duces the system’s peak memory consumption, al-
lowing SystemT to handle much larger documents
than conventional IE systems.

6 The Development Environment

The SystemT Development Environment assists a
developer in the iterative process of developing,
testing, debugging and refining AQL rules. Be-
sides standard editor features present in any well-
respected IDE for programming languages such as
syntax highlighting, the Development Environment
also provides facilities for visualizing the results of
executing the rules over a sample document collec-
tion as well as explaining in detail the provenance of
any output annotation as the sequence of rules that
have been applied in generating that output.

7 Evaluation

As discussed in Section 1, our goal in building Sys-
temT was to address the scalability and usability

Application Type Type of Platform
brand management server-side
business insights server-side
client-side mashups client-side
compliance server-side
search (email, web, patent) server-side
security server-side
server-side mashups server-side

Table 1: Types of applications using SystemT

challenges posed by enterprise applications. As
such, our evaluation focuses on these two dimen-
sions.

7.1 Scalability
Table 1 presents a diverse set of enterprise applica-
tions currently using SystemT. SystemT has been
deployed in both client-side applications with strict
memory constraints, as well as on applications on
the cloud, where it can process petabytes of data
in parallel. The focus on scalability in the design
of SystemT is essential for its flexible execution
model. First of all, efficient execution plans are
generated automatically by the SystemT Optimizer
based on sample document collections. This en-
sures that the same annotator can be executed effi-
ciently for different types of document collections.
In fact, our previous experimental study shows that
the execution plan generated by the SystemT opti-
mizer can be 20 times or more faster than a manu-
ally constructed plan (F.Reiss et al., 2008). Further-
more, the Runtime Environment of SystemT results
in compact memory footprint and allows SystemT
to be embedded in applications with strict memory
requirements as small as 10MB.

In our recent study over several document col-
lections of different sizes, we found that for the
same set of extraction tasks, the SystemT through-
put is at least an order of magnitude higher than
that of a state-of-the-art grammar-based IE system,
with much lower memory footprint (Chiticariu et al.,
2010b). The high throughput and low memory foot-
print of SystemT allows it to satisfy the scalability
requirement of enterprise applications.

7.2 Usability
Table 2 lists different types of annotators built us-
ing SystemT for a wide range of domains. Most,

113

Domain Sample Annotators Built
blog Sentiment, InformalReview

email ConferenceCall, Signature, Agenda, DrivingDirection, PersonPhone, PersonAddress, PersonEmailAddress

financial Merger, Acquisition, JointVenture, EarningsAnnouncement, AnalystEarningsEstimate, DirectorsOfficers, CorporateActions

generic Person, Location, Organization, PhoneNumber, EmailAddress, URL, Time, Date

healthcare Disease, Drug, ChemicalCompound

web Homepage, Geography, Title, Heading

Table 2: List of Sample Annotators Built Using SystemT for Different Domains

if not all, of these annotators are already deployed
in commercial products. The emphasis on usability
in the design of SystemT has been critical for its
successful deployment in various domains. First of
all, the declarative approach taken by SystemT al-
lows developers to build complex annotators without
worrying about performance. Secondly, the expres-
siveness of the AQL language has greatly eased the
burden of annotator developers when building com-
plex annotators, as complex semantics such as dupli-
cate elimination and aggregation can be expressed in
a concise fashion (Chiticariu et al., 2010b). Finally,
the Development Environment further facilitates an-
notator development, where the clean semantics of
AQL can be exploited to automatically construct ex-
planations of incorrect results to help a developer in
identifying specific parts of the annotator responsi-
ble for a given mistake. SystemT has been suc-
cessfully used by enterprise application developers
in building high quality complex annotators, without
requiring extensive training or background in natural
language processing.

8 Demonstration

This demonstration will present the core function-
alities of SystemT. In particular, we shall demon-
strate the iterative process of building and debug-
ging an annotator in the Development Environment.
We will then showcase the execution plan automati-
cally generated by the Optimizer based on a sample
document collection, and present the output of the
Runtime Environment using the execution plan. In
our demonstration we will first make use of a simple
annotator, as the one shown in Fig. 2, to illustrate
the main constructs of AQL. We will then showcase
the generic state-of-the-art SystemT Named Enti-
ties Annotator Library (Chiticariu et al., 2010c) to
illustrate the quality of annotators that can be built
in our system.

References
D. E. Appelt and B. Onyshkevych. 1998. The common

pattern specification language. In TIPSTER workshop.
B. Boguraev. 2003. Annotation-based finite state pro-

cessing in a large-scale nlp arhitecture. In RANLP.
P. Bohannon et al. 2008. Purple SOX Extraction Man-

agement System. SIGMOD Record, 37(4):21–27.
L. Chiticariu, Y. Li, S. Raghavan, and F. Reiss. 2010a.

Enterprise information extraction: Recent develop-
ments and open challenges. In SIGMOD.

Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li,
Sriram Raghavan, Frederick R. Reiss, and Shivaku-
mar Vaithyanathan. 2010b. Systemt: an algebraic ap-
proach to declarative information extraction. ACL.

Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao
Li, Frederick Reiss, and Shivakumar Vaithyanathan.
2010c. Domain adaptation of rule-based annotators
for named-entity recognition tasks. EMNLP.

H. Cunningham, D. Maynard, and V. Tablan. 2000.
JAPE: a Java Annotation Patterns Engine (Second Edi-
tion). Research Memorandum CS–00–10, Department
of Computer Science, University of Sheffield.

A. Doan et al. 2008. Information extraction challenges
in managing unstructured data. SIGMOD Record,
37(4):14–20.

A. Doan, R. Ramakrishnan, and S. Vaithyanathan. 2006.
Managing Information Extraction: State of the Art and
Research Directions. In SIGMOD.

F.Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and
S. Vaithyanathan. 2008. An algebraic approach to
rule-based information extraction. In ICDE.

A. Jain, P. Ipeirotis, and L. Gravano. 2009. Building
query optimizers for information extraction: the sqout
project. SIGMOD Rec., 37:28–34.

R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss,
S. Vaithyanathan, and H. Zhu. 2008. SystemT: a sys-
tem for declarative information extraction. SIGMOD
Record, 37(4):7–13.

D. Z. Wang, E. Michelakis, M. J. Franklin, M. Garo-
falakis, and J. M. Hellerstein. 2010. Probabilistic
declarative information extraction. In ICDE.

114

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 115–120,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

SciSumm: A Multi-Document Summarization System for Scientific Articles

Nitin Agarwal
Language Technologies Institute

Carnegie Mellon University
nitina@cs.cmu.edu

Ravi Shankar Reddy
Language Technologies Resource Center

IIIT-Hyderabad, India
krs reddy@students.iiit.ac.in

Kiran Gvr
Language Technologies Resource Center

IIIT-Hyderabad, India
kiran gvr@students.iiit.ac.in

Carolyn Penstein Rosé
Language Technologies Institute

Carnegie Mellon University
cprose@cs.cmu.edu

Abstract

In this demo, we present SciSumm, an inter-
active multi-document summarization system
for scientific articles. The document collec-
tion to be summarized is a list of papers cited
together within the same source article, oth-
erwise known as a co-citation. At the heart
of the approach is a topic based clustering of
fragments extracted from each article based on
queries generated from the context surround-
ing the co-cited list of papers. This analy-
sis enables the generation of an overview of
common themes from the co-cited papers that
relate to the context in which the co-citation
was found. SciSumm is currently built over
the 2008 ACL Anthology, however the gen-
eralizable nature of the summarization tech-
niques and the extensible architecture makes it
possible to use the system with other corpora
where a citation network is available. Evalu-
ation results on the same corpus demonstrate
that our system performs better than an exist-
ing widely used multi-document summariza-
tion system (MEAD).

1 Introduction

We present an interactive multi-document summa-
rization system called SciSumm that summarizes
document collections that are composed of lists of
papers cited together within the same source arti-
cle, otherwise known as a co-citation. The inter-
active nature of the summarization approach makes
this demo session ideal for its presentation.

When users interact with SciSumm, they request
summaries in context as they read, and that context

determines the focus of the summary generated for
a set of related scientific articles. This behaviour is
different from some other non-interactive summa-
rization systems that might appear as a black box
and might not tailor the result to the specific infor-
mation needs of the users in context. SciSumm cap-
tures a user’s contextual needs when a user clicks on
a co-citation. Using the context of the co-citation in
the source article, we generate a query that allows
us to create a summary in a query-oriented fash-
ion. The extracted portions of the co-cited articles
are then assembled into clusters that represent the
main themes of the articles that relate to the context
in which they were cited. Our evaluation demon-
strates that SciSumm achieves higher quality sum-
maries than a state-of-the-art multidocument sum-
marization system (Radev, 2004).

The rest of the paper is organized as follows. We
first describe the design goals for SciSumm in 2 to
motivate the need for the system and its usefulness.
The end-to-end summarization pipeline has been de-
scribed in Section 3. Section 4 presents an evalua-
tion of summaries generated from the system. We
present an overview of relevant literature in Section
5. We end the paper with conclusions and some in-
teresting further research directions in Section 6.

2 Design Goals

Consider that as a researcher reads a scientific arti-
cle, she/he encounters numerous citations, most of
them citing the foundational and seminal work that
is important in that scientific domain. The text sur-
rounding these citations is a valuable resource as
it allows the author to make a statement about her

115

viewpoint towards the cited articles. However, to re-
searchers who are new to the field, or sometimes just
as a side-effect of not being completely up-to-date
with related work in a domain, these citations may
pose a challenge to readers. A system that could
generate a small summary of the collection of cited
articles that is constructed specifically to relate to
the claims made by the author citing them would be
incredibly useful. It would also help the researcher
determine if the cited work is relevant for her own
research.

As an example of such a co-citation consider the
following citation sentence:

Various machine learning approaches have been
proposed for chunking (Ramshaw and Marcus,
1995; Tjong Kim Sang, 2000a; Tjong Kim Sang et
al. , 2000; Tjong Kim Sang, 2000b; Sassano and
Utsuro, 2000; van Halteren, 2000).

Now imagine the reader trying to determine about
widely used machine learning approaches for noun
phrase chunking. He would probably be required
to go through these cited papers to understand what
is similar and different in the variety of chunking
approaches. Instead of going through these individ-
ual papers, it would be quicker if the user could get
the summary of the topics in all those papers that
talk about the usage of machine learning methods
in chunking. SciSumm aims to automatically dis-
cover these points of comparison between the co-
cited papers by taking into consideration the con-
textual needs of a user. When the user clicks on a
co-citation in context, the system uses the text sur-
rounding that co-citation as evidence of the informa-
tion need.

3 System Overview

A high level overview of our system’s architecture
is presented in Figure 1. The system provides a web
based interface for viewing and summarizing re-
search articles in the ACL Anthology corpus, 2008.
The summarization proceeds in three main stages as
follows:

• A user may retrieve a collection of articles
of interest by entering a query. SciSumm re-
sponds by returning a list of relevant articles,
including the title and a snippet based sum-
mary. For this SciSumm uses standard retrieval

from a Lucene index.

• A user can use the title, snippet summary and
author information to find an article of inter-
est. The actual article is rendered in HTML af-
ter the user clicks on one of the search results.
The co-citations in the article are highlighted in
bold and italics to mark them as points of inter-
est for the user.

• If a user clicks on one, SciSumm responds by
generating a query from the local context of the
co-citation. That query is then used to select
relevant portions of the co-cited articles, which
are then used to generate the summary.

An example of a summary for a particular topic is
displayed in Figure 2. This figure shows one of
the clusters generated for the citation sentence “Var-
ious machine learning approaches have been pro-
posed for chunking (Ramshaw and Marcus, 1995;
Tjong Kim Sang, 2000a; Tjong Kim Sang et al. ,
2000; Tjong Kim Sang, 2000b; Sassano and Utsuro,
2000; van Halteren, 2000)”. The cluster has a la-
bel Chunk, Tag, Word and contains fragments from
two of the papers discussing this topic. A ranked
list of such clusters is generated, which allows for
swift navigation between topics of interest for a user
(Figure 3). This summary is tremendously useful as
it informs the user of the different perspectives of
co-cited authors towards a shared problem (in this
case ”Chunking”). More specifically, it informs the
user as to how different or similar approaches are
that were used for this research problem (which is
”Chunking”).

3.1 System Description

SciSumm has four primary modules that are central
to the functionality of the system, as displayed in
Figure 1. First, the Text Tiling module takes care
of obtaining tiles of text relevant to the citation con-
text. Next, the clustering module is used to generate
labelled clusters using the text tiles extracted from
the co-cited papers. The clusters are ordered accord-
ing to relevance with respect to the generated query.
This is accomplished by the Ranking Module.

In the following sections, we discuss each of the
main modules in detail.

116

Figure 1: SciSumm summarization pipeline

3.2 Texttiling
The Text Tiling module uses the TextTiling algo-
rithm (Hearst, 1997) for segmenting the text of each
article. We have used text tiles as the basic unit
for our summary since individual sentences are too
short to stand on their own. This happens as a side-
effect of the length of scientific articles. Sentences
picked from different parts of several articles assem-
bled together would make an incoherent summary.
Once computed, text tiles are used to expand on the
content viewed within the context associated with a
co-citation. The intuition is that an embedded co-
citation in a text tile is connected with the topic dis-
tribution of its context. Thus, we can use a computa-
tion of similarity between tiles and the context of the
co-citation to rank clusters generated using Frequent
Term based text clustering.

3.3 Frequent Term Based Clustering
The clustering module employs Frequent Term
Based Clustering (Beil et al., 2002). For each co-
citation, we use this clustering technique to cluster
all the of the extracted text tiles generated by seg-
menting each of the co-cited papers. We settled on
this clustering approach for the following reasons:

• Text tile contents coming from different papers
constitute a sparse vector space, and thus the
centroid based approaches would not work very
well for integrating content across papers.

• Frequent Term based clustering is extremely
fast in execution time as well as and relatively

efficient in terms of space requirements.

• A frequent term set is generated for each clus-
ter, which gives a comprehensible description
that can be used to label the cluster.

Frequent Term Based text clustering uses a group
of frequently co-occurring terms called a frequent
term set. We use a measure of entropy to rank these
frequent term sets. Frequent term sets provide a
clean clustering that is determined by specifying the
number of overlapping documents containing more
than one frequent term set. The algorithm uses the
first k term sets if all the documents in the document
collection are clustered. To discover all the possi-
ble candidates for clustering, i.e., term sets, we used
the Apriori algorithm (Agrawal et al., 1994), which
identifies the sets of terms that are both relatively
frequent and highly correlated with one another.

3.4 Cluster Ranking
The ranking module uses cosine similarity between
the query and the centroid of each cluster to rank all
the clusters generated by the clustering module. The
context of a co-citation is restricted to the text of the
segment in which the co-citation is found. In this
way we attempt to leverage the expert knowledge of
the author as it is encoded in the local context of the
co-citation.

4 Evaluation

We have taken great care in the design of the evalu-
ation for the SciSumm summarization system. In a

117

Figure 2: Example of a summary generated by our system. We can see that the clusters are cross cutting across
different papers, thus giving the user a multi-document summary.

typical evaluation of a multi-document summariza-
tion system, gold standard summaries are created by
hand and then compared against fixed length gen-
erated summaries. It was necessary to prepare our
own evaluation corpus, consisting of gold standard
summaries created for a randomly selected set of co-
citations because such an evaluation corpus does not
exist for this task.

4.1 Experimental Setup

An important target user population for multi-
document summarization of scientific articles is
graduate students. Hence to get a measure of how
well the summarization system is performing, we
asked 2 graduate students who have been working
in the computational linguistics community to create
gold standard summaries of a fixed length (8 sen-
tences ∼ 200 words) for 10 randomly selected co-
citations. We obtained two different gold standard
summaries for each co-citation (i.e., 20 gold stan-
dard summaries total). Our evaluation is designed
to measure the quality of the content selection. In
future work, we will evaluate the usability of the
SciSumm system using a task based evaluation.

In the absence of any other multi-document sum-
marization system in the domain of scientific ar-
ticle summarization, we used a widely used and
freely available multi-document summarization sys-
tem called MEAD (Radev, 2004) as our baseline.
MEAD uses centroid based summarization to cre-
ate informative clusters of topics. We use the de-
fault configuration of MEAD in which MEAD uses

length, position and centroid for ranking each sen-
tence. We did not use query focussed summarization
with MEAD. We evaluate its performance with the
same gold standard summaries we use to evaluate
SciSumm. For generating a summary from our sys-
tem we used sentences from the tiles that are clus-
tered in the top ranked cluster. Once all of the ex-
tracts included in that entire cluster are exhausted,
we move on to the next highly ranked cluster. In this
way we prepare a summary comprising of 8 highly
relevant sentences.

4.2 Results

For measuring performance of the two summariza-
tion systems (SciSumm and MEAD), we compute
the ROUGE metric based on the 2 * 10 gold standard
summaries that were manually created. ROUGE has
been traditionally used to compute the performance
based on the N-gram overlap (ROUGE-N) between
the summaries generated by the system and the tar-
get gold standard summaries. For our evaluation
we used two different versions of the ROUGE met-
ric, namely ROUGE-1 and ROUGE-2, which corre-
spond to measures of the unigram and bigram over-
lap respectively. We computed four metrics in order
to get a complete picture of how SciSumm performs
in relation to the baseline, namely ROUGE-1 F-
measure, ROUGE-1 Recall, ROUGE-2 F-measure,
and ROUGE-2 Recall.

From the results presented in Figure 4 and 5, we
can see that our system performs well on average in
comparison to the baseline. Especially important is

118

Figure 3: Clusters generated in response to a user click on the co-citation. The list of clusters in the left pane gives a
bird-eye view of the topics which are present in the co-cited papers

Table 1: Average ROUGE results. * represents improve-
ment significant at p < .05, † at p < .01.

Metric MEAD SciSumm
ROUGE-1 F-measure 0.3680 0.5123 †
ROUGE-1 Recall 0.4168 0.5018
ROUGE-1 Precision 0.3424 0.5349 †
ROUGE-2 F-measure 0.1598 0.3303 *
ROUGE-2 Recall 0.1786 0.3227 *
ROUGE-2 Precision 0.1481 0.3450 †

the performance of the system on recall measures,
which shows the most dramatic advantage over the
baseline. To measure the statistical significance of
this result, we carried out a Student T-Test, the re-
sults of which are presented in the results section
in Table 1. It is apparent from the p-values gener-
ated by T-Test that our system performs significantly
better than MEAD on three of the metrics on which
both the systems were evaluated using (p < 0.05)
as the criterion for statistical significance. This sup-
ports the view that summaries perceived as higher in
value are generated using a query focused technique,
where the query is generated automatically from the
context of the co-citation.

5 Previous Work

Surprisingly, not many approaches to the problem of
summarization of scientific articles have been pro-
posed in the past. Qazvinian et al. (2008) present
a summarization approach that can be seen as the
converse of what we are working to achieve. Rather
than summarizing multiple papers cited in the same
source article, they summarize different viewpoints
expressed towards the same paper from different pa-
pers that cite it. Nanba et al. (1999) argue in their

work that a co-citation frequently implies a consis-
tent viewpoint towards the cited articles. Another
approach that uses bibliographic coupling has been
used for gathering different viewpoints from which
to summarize a document (Kaplan et al., 2008). In
our work we make use of this insight by generating
a query to focus our multi-document summary from
the text closest to the citation.

6 Conclusion And Future Work

In this demo, we present SciSumm, which is an in-
teractive multi-document summarization system for
scientific articles. Our evaluation shows that the
SciSumm approach to content selection outperforms
another widely used multi-document summarization
system for this summarization task.

Our long term goal is to expand the capabilities
of SciSumm to generate literature surveys of larger
document collections from less focused queries.
This more challenging task would require more con-
trol over filtering and ranking in order to avoid gen-
erating summaries that lack focus. To this end, a
future improvement that we plan to use is a vari-
ant on MMR (Maximum Marginal Relevance) (Car-
bonell et al., 1998), which can be used to optimize
the diversity of selected text tiles as well as the rel-
evance based ordering of clusters, i.e., so that more
diverse sets of extracts from the co-cited articles will
be placed at the ready fingertips of users.

Another important direction is to refine the inter-
action design through task-based user studies. As
we collect more feedback from students and re-
searchers through this process, we will used the in-
sights gained to achieve a more robust and effective
implementation.

119

Figure 4: ROUGE-1 Recall Figure 5: ROUGE-2 Recall

7 Acknowledgements

This research was supported in part by NSF grant
EEC-064848 and ONR grant N00014-10-1-0277.

References

Agrawal R. and Srikant R. 1994. Fast Algorithm for
Mining Association Rules In Proceedings of the 20th
VLDB Conference Santiago, Chile, 1994

Baxendale, P. 1958. Machine-made index for technical
literature - an experiment. IBM Journal of Research
and Development

Beil F., Ester M. and Xu X 2002. Frequent-Term based
Text Clustering In Proceedings of SIGKDD ’02 Ed-
monton, Alberta, Canada

Carbonell J. and Goldstein J. 1998. The Use of MMR,
Diversity-Based Reranking for Reordering Documents
and Producing Summaries In Research and Develop-
ment in Information Retrieval, pages 335–336

Councill I. G. , Giles C. L. and Kan M. 2008. ParsCit:
An open-source CRF reference string parsing pack-
age INTERNATIONAL LANGUAGE RESOURCES
AND EVALUATION European Language Resources
Association

Edmundson, H.P. 1969. New methods in automatic ex-
tracting. Journal of ACM.

Hearst M.A. 1997 TextTiling: Segmenting text into
multi-paragraph subtopic passages In proceedings of
LREC 2004, Lisbon, Portugal, May 2004

Joseph M. T. and Radev D. R. 2007. Citation analysis,
centrality, and the ACL Anthology

Kupiec J. , Pedersen J. , Chen F. 1995. A training doc-
ument summarizer. In Proceedings SIGIR ’95, pages
68-73, New York, NY, USA. 28(1):114–133.

Luhn, H. P. 1958. IBM Journal of Research Develop-
ment.

Mani I. , Bloedorn E. 1997. Multi-Document Summa-
rization by graph search and matching In AAAI/IAAI,
pages 622-628. [15, 16].

Nanba H. , Okumura M. 1999. Towards Multi-paper
Summarization Using Reference Information In Pro-
ceedings of IJCAI-99, pages 926–931 .

Paice CD. 1990. Constructing Literature Abstracts by
Computer: Techniques and Prospects Information
Processing and Management Vol. 26, No.1, pp, 171-
186, 1990

Qazvinian V. , Radev D.R 2008. Scientific Paper
summarization using Citation Summary Networks In
Proceedings of the 22nd International Conference on
Computational Linguistics, pages 689–696 Manch-
ester, August 2008

Radev D. R . , Jing H. and Budzikowska M. 2000.
Centroid-based summarization of multiple documents:
sentence extraction, utility based evaluation, and user
studies In NAACL-ANLP 2000 Workshop on Auto-
matic summarization, pages 21-30, Morristown, NJ,
USA. [12, 16, 17].

Radev, Dragomir. 2004. MEAD - a platform for mul-
tidocument multilingual text summarization. In pro-
ceedings of LREC 2004, Lisbon, Portugal, May 2004.

Teufel S. , Moens M. 2002. Summarizing Scientific
Articles - Experiments with Relevance and Rhetorical
Status In Journal of Computational Linguistics, MIT
Press.

Hal Daume III , Marcu D. 2006. Bayesian query-
focussed summarization. In Proceedings of the Con-
ference of the Association for Computational Linguis-
tics, ACL.

Eisenstein J , Barzilay R. 2008. Bayesian unsupervised
topic segmentation In EMNLP-SIGDAT.

Barzilay R , Lee L. 2004. Catching the drift: Probabilis-
tic content models, with applications to generation and
summarization In Proceedings of 3rd Asian Semantic
Web Conference (ASWC 2008), pp.182-188,.

Kaplan D , Tokunaga T. 2008. Sighting citation sights:
A collective-intelligence approach for automatic sum-
marization of research papers using C-sites In HLT-
NAACL.

120

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 121–126,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

Clairlib: A Toolkit for Natural Language Processing, Information Retrieval,
and Network Analysis

Amjad Abu-Jbara
EECS Department

University of Michigan
Ann Arbor, MI, USA

amjbara@umich.edu

Dragomir Radev
EECS Department and
School of Information
University of Michigan
Ann Arbor, MI, USA
radev@umich.edu

Abstract

In this paper we present Clairlib, an open-
source toolkit for Natural Language Process-
ing, Information Retrieval, and Network Anal-
ysis. Clairlib provides an integrated frame-
work intended to simplify a number of generic
tasks within and across those three areas. It
has a command-line interface, a graphical in-
terface, and a documented API. Clairlib is
compatible with all the common platforms and
operating systems. In addition to its own func-
tionality, it provides interfaces to external soft-
ware and corpora. Clairlib comes with a com-
prehensive documentation and a rich set of tu-
torials and visual demos.

1 Introduction

The development of software packages and code li-
braries that implement algorithms and perform tasks
in scientific areas is of great advantage for both re-
searchers and educators. The availability of these
tools saves the researchers a lot of the time and the
effort needed to implement the new approaches they
propose and conduct experiments to verify their hy-
potheses. Educators also find these tools useful in
class demonstrations and for setting up practical pro-
gramming assignments and projects for their stu-
dents.

A large number of systems have been developed
over the years to solve problems and perform tasks
in Natural Language Processing, Information Re-
trieval, or Network Analysis. Many of these sys-
tems perform specific tasks such as parsing, Graph
Partitioning, co-reference resolution, web crawling
etc. Some other systems are frameworks for per-
forming generic tasks in one area of focus such as

NLTK (Bird and Loper, 2004) and GATE (Cun-
ningham et al., 2002) for Natural Language Pro-
cessing; Pajek (Batagelj and Mrvar, 2003) and
GUESS (Adar, 2006) for Network Analysis and Vi-
sualization; and Lemur1 for Language Modeling and
Information Retrieval.

This paper presents Clairlib, an open-source
toolkit that contains a suit of modules for generic
tasks in Natural Language Processing (NLP), Infor-
mation Retrieval (IR), and Network Analysis (NA).
While many systems have been developed to address
tasks or subtasks in one of these areas as we have
just mentioned, Clairlib provides one integrated en-
vironment that addresses tasks in the three areas.
This makes it useful for a wide range of applications
within and across the three domains.

Clairlib is designed to meet the needs of re-
searchers and educators with varying purposes and
backgrounds. For this purpose, Clairlib provides
three different interfaces to its functionality: a
graphical interface, a command-line interface, and
an application programming interface (API).

Clairlib is developed and maintained by the Com-
putational Linguistics and Information Retrieval
(CLAIR) group at the University of Michigan. The
first version of Clairlib was released in the year
2007. It has been heavily developed since then until
it witnessed a qualitative leap by adding the Graphi-
cal Interface and many new features to the latest ver-
sion that we are presenting here.

Clairlib core modules are written in Perl. The
GUI was written in Java. The Perl back-end and the
Java front-end are efficiently tied together through a
communication module. Clairlib is compatible with

1http://www.lemurproject.org/

121

all the common platforms and operating systems.
The only requirements are a Perl interpreter and Java
Runtime Environment (JRE).

Clairlib has been used in several research projects
to implement systems and conduct experiments. It
also has been used in several academic courses.

The rest of this paper is organized as follows. In
Section 2, we describe the structure of Clairlib. In
Section 3, we present its functionality. Section 4
presents some usage examples. We conclude in Sec-
tion 5.

2 System Overview

Clairlib consists of three main components: the core
library, the command-line interface, and the graph-
ical user interface. The three components were de-
signed and connected together in a manner that aims
to achieve simplicity, integration, and ease of use. In
the following subsections, we briefly describe each
of the three components.

2.1 Modules

The core of Clairlib is a collection of more than 100
modules organized in a shallow hierarchy, each of
which performs a specific task or implements a cer-
tain algorithm. A set of core modules define the data
structures and perform the basic processing tasks.
For example, Clair::Document defines a data struc-
ture for holding textual data in various formats, and
performs the basic text processing tasks such as tok-
enization, stemming, tag stripping, etc.

Another set of modules perform more specific
tasks in the three areas of focus (NLP, IR, and NA).
For example, Clair::Bio::GIN::Interaction is de-
voted to protein-protein interaction extraction from
biomedical text.

A third set contains modules that interface Clair-
lib to external tools. For example, Clair::Utils::Parse
provides an interface to Charniak parser (Charniak,
2000), Stanford parser (Klein and Manning, 2003),
and Chunklink2.

Each module has a well-defined API. The API is
oriented to developers to help them write applica-
tions and build systems on top of Clairlib modules;
and to researchers to help them write applications
and setup custom experiments for their research.

2http://ilk.uvt.nl/team/sabine/chunklink/README.html

2.2 Command-line Interface
The command-line interface provides an easy access
to many of the tasks that Clairlib modules imple-
ment. It provides more than 50 different commands.
Each command is documented and demonstrated in
one or more tutorials. The function of each com-
mand can be customized by passing arguments with
the command. For example, the command

partition.pl -graph graph.net -method GirvanNewman -n 4

uses the GrivanNewman algorithm to divide a
given graph into 4 partitions.

2.3 Graphical User Interface
The graphical user interface (GUI) is an impor-
tant feature that has been recently added to Clairlib
and constituted a quantum leap in its development.
The main purpose of the GUI is to make the rich
set of Clairlib functionalities easier to access by a
larger number of users from various levels and back-
grounds especially students and users with limited or
no programming experience.

It is also intended to help students do their assign-
ments, projects, and research experiments in an in-
teractive environment. We believe that visual tools
facilitate understanding and make learning a more
enjoyable experience for many students. Focusing
on this purpose, the GUI is tuned for simplicity and
ease of use more than high computational efficiency.
Therefore, while it is suitable for small and medium
scale projects, it is not guaranteed to work efficiently
for large projects that involve large datasets and re-
quire heavy processing. The command-line inter-
face is a better choice for large projects.

The GUI consists of three components: the Net-
work Editor/Visualizer/Analyzer, the Text Proces-
sor, and the Corpus Processor. The Network com-
ponent allows the user to 1) build a new network
using a set of drawing and editing tools, 2) open
existing networks stored in files in several different
formats, 3) visualize a network and interact with it,
4) compute different statistics for a network such as
diameter, clustering coefficient, degree distribution,
etc., and 5) perform several operations on a network
such as random walk, label propagation, partition-
ing, etc. This component uses the open source li-
brary, JUNG3 to visualize networks. Figure 1 shows

3http://jung.sourceforge.net/

122

Figure 1: A screenshot for the network visualization component of Clairlib

a screenshot for the Network Visualizer.

The Text Processing component allows users to
process textual data published on the internet or im-
ported from a file stored on the disk. It can process
data in plain, html, or PDF format. Most of the text
processing capabilities implemented in Clairlib core
library are available through this component. Fig-
ure 2 shows a screenshot of the text processing com-
ponent.

The Corpus Processing component allows users
to build a corpus of textual data out of a collection
of files in plain, HTML, or PDF format; or by crawl-
ing a website. Several tasks could be performed on
a corpus such as indexing, querying, summarization,
information extraction, hyperlink network construc-
tion, etc.

Although these components can be run indepen-
dently, they are very integrated and designed to eas-
ily interact with each other. For example, a user can
crawl a website using the Corpus component, then
switch to the Text Processing component to extract
the text from the web documents and stem all the
words, then switch back to the Corpus component
to build a document similarity graph. The graph can
then be taken to the Network component to be visu-
alized and analyzed.

2.4 Documentation

Clairlib comes with an extensive documentation.
The documentation contains the installation infor-
mation for different platforms, a description of all
Clairlib components and modules, and a lot of usage
examples. In addition to this documentation, Clair-
lib provides three other resources:

API Reference

The API Reference provides a complete descrip-
tion of each module in the library. It describes each
subroutine, the task it performs, the arguments it
takes, the value it returns, etc. This reference is use-
ful for developers who want to use Clairlib modules
in their own applications and systems. The API Ref-
erence is published on the internet.

Tutorials

Tutorials teach users how to use Clairlib by ex-
amples. Each tutorial addresses a specific task and
provides a set of instructions to complete the task
using Clairlib command-line tools or its API.

Visual Demos

Visual demos target the users of the graphical in-
terface. The demos visually show how to start the
GUI and how to use its components to perform sev-
eral tasks.

123

Figure 2: A screenshot for the text processing component of Clairlib

3 Functionality

Clairlib provides modules and tools for a broad spec-
trum of tasks. Most of the functionalities are native
to Clairlib. Some functionalities, however, are im-
ported from other open-source packages or external
software. This section lists the main functionalities
categorized by their areas.

3.1 Natural Language Processing
NLP functionalities include Tokenization, Sen-
tence Segmentation, Stemming, HTML Tags Strip-
ping, Syntactic Parsing, Dependency Parsing,
Part-of-Speech Tagging, Document Classification,
LexRank, Summarization, Synthetic Corpus Gen-
eration, N-grams Extraction, XML Parsing, XML
Tree Building, Text Similarity, Political Text Analy-
sis, and Protein Name Tagging.

3.2 Information Retrieval
IR functionalities include Web Crawling, Indexing,
TF-IDF, PageRank, Phrase Based Retrieval, Fuzzy
OR Queries, Latent Semantic Indexing, Web Search,
Automatic Link Extraction, and Protein-Protein In-
teraction Extraction.

3.3 Network Analysis
Network Analysis functionalities include Network
Statistics, Random Network Generation, Network
Visualization, Network Partitioning, Community

Finding, Random Walks, Flow Networks, Signed
Networks, and Semi-supervised Graph-based Clas-
sification. Network Statistics include Centralities,
Clustering Coefficient, Shortest Paths, Diameter,
Triangles, Triplets, etc.

Some of these functionalities are implemented us-
ing several approaches. For example, Clairlib have
implementations for 5 graph partitioning algorithms.
This makes Clairlib a useful tool for conducting ex-
periments for comparative studies.

4 Uses of Clairlib

The diverse set of domains that Clairlib covers and
the different types of interfaces it provides make it
suitable for use in many contexts. In this section, we
highlight some of its uses.

Education
Clairlib contains visual tools that instructors can use
to do class demonstrations to help their students un-
derstand the basic concepts and the algorithms they
face during their study. For example, the random
walk simulator can be used to teach the students how
random walk works by showing a sample network
and then walk randomly step-by-step through it and
show the students how the probabilities change after
each step.

It can also be used to create assignments of vary-
ing levels of difficulty and different scopes. Instruc-

124

tors may ask their students to do experiments with a
dataset using Clairlib, write applications that use the
API, extend an existing module, or contribute new
modules to Clairlib. One example could be to ask
the students to a build a simple information retrieval
system that indexes a collection of documents and
executes search queries on it.

Clairlib has been used to create assignments and
projects in NLP and IR classes at the University of
Michigan and Columbia University. The experience
was positive for both the instructors and the stu-
dents. The instructors were able to design assign-
ments that cover several aspects of the course and
can be done in a reasonable amount of time. The stu-
dents used the API to accomplish their assignments
and projects. This helped them focus on the impor-
tant concepts rather than diving into fine program-
ming details.

Research

Clairlib contains implementations for many algo-
rithms and approaches that solve common problems.
It also comes with a number of corpora and anno-
tated datasets. This makes it a good resource for re-
searchers to build systems and conduct experiments.

Clairlib was successfully used in several research
projects. Examples include Political Text Analy-
sis (Hassan et al., 2008), Scientific Paper Summa-
rization (Qazvinian and Radev, 2009), Blog Net-
works Analysis (Hassan et al., 2009), Protein In-
teraction Extraction (Ozgur and Radev, 2009),
and Citation-Based Summarization (Abu-Jbara and
Radev, 2011).

4.1 Examples

In this subsection, we present some examples where
Clairlib has been used.

Example: Protein-Protein Interaction
Extraction

This is an example of a project that builds an
information extraction system and uses Clairlib as
its main processing component (Ozgur and Radev,
2009). This system is now part of a larger bioinfor-
matics project, NCIBI.

The system uses Clairlib to process a biomedical
article: 1) splits it into sentences using the segmen-
tation module, 2) parses each sentence using the in-

terface to the Stanford Dependency Parser, 3) tags
the protein names, 4) extracts protein-protein inter-
actions using a specific Clairlib module devoted to
this task, and then 5) it builds a protein interaction
network in which nodes are proteins and edges rep-
resent interaction relations. Figure 3 shows an ex-
ample protein interaction network extracted from the
abstracts of a collection of biomedical articles from
PubMed. This network is then analyzed to compute
node centralities and the basic network statistics.

Example: Scientific Paper Summarization Using
Citation Networks

This is an example of a research work that
used Clairlib to implement an approach and con-
duct experiments to support the research hypothe-
sis. Qazvinian and Radev (2009) used Clairlib to
implement their method for citation-based summa-
rization. Given a set of sentences that cite a paper,
they use Clairlib to 1) construct a cosine similarity
network out of these sentences, 2) find communities
of similar sentences using Clairlib community find-
ing module, 3) run Clairlib LexRank module to rank
the sentences, 4) extract the sentence with the high-
est rank from each community, and finally 5) return
the set of extracted sentences as a summary para-
graph.

Example: Text Classification
This is an example of a teaching assignment that

was used in an introductory course on information
retrieval at the University of Michigan. Students
were given the 20-newsgroups corpus (a large set
of news articles labeled by their topic and split into
training and testing sets) and were asked to use
Clairlib API to: 1) stem the text of the documents,
2) convert each document into a feature vector based
on word frequencies, 2) train a multi-class Percep-
tron or Naive Bayes classifier on the documents in
the training set, and finally 3) classify the documents
in the testing set using the trained classifier.

5 Conclusions

Clairlib is a broad-coverage toolkit for Natural Lan-
guage Processing, Information Retrieval, and Net-
work Analysis. It provides a simple, integrated, in-
teractive, and extensible framework for education
and research uses. It provides an API, a command-

125

Figure 3: Clairlib used to construct and analyze a protein network extracted from biomedical articles

line interface, and graphical user interface for the
convenience of users with varying purposes and
backgrounds. Clairlib is well-documented, easy to
learn, and simple to use. It has been tested for vari-
ous types of tasks in various environments.

Clairlib is an open source project and we welcome
all the contributions. Readers who are interested in
contributing to Clairlib are encouraged to contact the
authors.

Acknowledgements

We would like to thank Mark Hodges, Anthony
Fader, Mark Joseph, Joshua Gerrish, Mark Schaller,
Jonathan dePeri, Bryan Gibson, Chen Huang, Arzu-
can Ozgur, and Prem Ganeshkumar who contributed
to the development of Clairlib.

This work was supported in part by grants
R01-LM008106 and U54-DA021519 from the US
National Institutes of Health, U54 DA021519,
IDM 0329043, DHB 0527513, 0534323, and
0527513 from the National Science Foundation, and
W911NF-09-C-0141 from IARPA.

References

R. Gaizauskas, P. J. Rodgers and K. Humphreys 2001.
Visual Tools for Natural Language Processing. Jour-
nal of Visual Languages and Computing, Volume 12,
Issue 4, Pages 375-412.

Arzucan Ozgor and Dragomir Radev 2009. Supervised
classification for extracting biomedical events. Pro-
ceedings of the BioNLP’09 Workshop Shared Task on
Event Extraction at NAACL-HLT, Boulder, Colorado,
USA, pages 111-114

Ahmed Hassan, Dragomir R. Radev, Junghoo Cho, Am-
ruta Joshi. 2009. Content Based Recommendation
and Summarization in the Blogosphere. ICWSM-
2009.

Vahed Qazvinian, Dragomir Radev. 2008. Scientific
Paper Summarization Using Citation Summary Net-
works. COLING 2008.

Ahmed Hassan, Anthony Fader, Michael Crespin, Kevin
Quinn, Burt Monroe, Michael Colaresi and Dragomir
Radev. 2008. Tracking the Dynamic Evolution of Par-
ticipants Salience in a Discussion. COLING 2008.

Eugene Charniak. 2000. A Maximum-Entropy-Inspired
Parser. Proceedings of NAACL-2000.

Dan Klein and Christopher Manning. 2003. Accurate
Unlexicalized Parsing. Proceedings of ACL-2003.

Amjad Abu-Jbara and Dragomir Radev 2011. Coher-
ent Citation-based Summarization of Scientific Papers
Proceedings of ACL-2011.

H. Cunningham and D. Maynard and K. Bontcheva and
V. Tablan 2002. GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and
Applications Proceedings of ACL-2002, Philadelphia.

Steven Bird and Edward Loper. 2004. NLTK: The Natu-
ral Language Toolkit Proceedings of ACL-2004.

V. Batagelj and A. Mrvar 2003. Pajek - Analysis and
Visualization of Large Networks Springer, Berlin.

Eytan Adar. 2006. GUESS: A Language and Interface
for Graph Exploration CHI 2006.

126

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 127–132,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

C-Feel-It: A Sentiment Analyzer for Micro-blogs
Aditya Joshi1 Balamurali A R2 Pushpak Bhattacharyya1 Rajat Mohanty 3

1Dept. of Computer Science and Engineering, IIT Bombay, Mumbai
2 IITB-Monash Research Academy, IIT Bombay, Mumbai

3 AOL India (R&D), Bangalore
India

{adityaj,balamurali,pb}@cse.iitb.ac.in r.mohanty@teamaol.com

Abstract

Social networking and micro-blogging sites
are stores of opinion-bearing content created
by human users. We describe C-Feel-It, a sys-
tem which can tap opinion content in posts
(called tweets) from the micro-blogging web-
site, Twitter. This web-based system catego-
rizes tweets pertaining to a search string as
positive, negative or objective and gives an ag-
gregate sentiment score that represents a senti-
ment snapshot for a search string. We present
a qualitative evaluation of this system based
on a human-annotated tweet corpus.

1 Introduction

A major contribution of Web 2.0 is the explosive rise
of user-generated content. The content has been a
by-product of a class of Internet-based applications
that allow users to interact with each other on the
web. These applications which are highly accessible
and scalable represent a class of media called social
media. Some of the currently popular social media
sites are Facebook (www.facebook.com), Myspace
(www.myspace.com), Twitter (www.Twitter.com)
etc. User-generated content on the social media rep-
resents the views of the users and hence, may be
opinion-bearing. Sales and marketing arms of busi-
ness organizations can leverage on this information
to know more about their customer base. In addi-
tion, prospective customers of a product/service can
get to know what other users have to say about the
product/service and make an informed decision.

C-Feel-It is a web-based system which
predicts sentiment in micro-blogs on
Twitter (called tweets). (Screencast at:
http://www.youtube.com/user/cfeelit/) C-Feel-
It uses a rule-based system to classify tweets as
positive, negative or objective using inputs from
four sentiment-based knowledge repositories. A

weighted-majority voting principle is used to predict
sentiment of a tweet. An overall sentiment score for
the search string is assigned based on the results of
predictions for the tweets fetched. This score which
is represented as a percentage value gives a live
snapshot of the sentiment of users about the topic.

The rest of the paper is organized as follows: Sec-
tion 2 gives background study of Twitter and related
work in the context of sentiment analysis for Twitter.
The system architecture is explained in section 3. A
qualitative evaluation of our system based on anno-
tated data is described in section 4. Section 5 sum-
marizes the paper and points to future work.

2 Background study

Twitter is a micro-blogging website and ranks sec-
ond among the present social media websites (Prelo-
vac, 2010). A micro-blog allows users to exchange
small elements of content such as short sentences,
individual pages, or video links (Kaplan and Haen-
lein, 2010). More about Twitter can be found here 1.

In Twitter, a micro-blogging post is called a
tweet which can be upto 140 characters in length.
Since the length is constrained, the language used in
tweets is highly unstructured. Misspellings, slangs,
contractions and abbreviations are commonly used
in tweets. The following example highlights these
problems in a typical tweet:

‘Big brother doing sian massey no favours.
Let her ref. She’s good at it you know#lifesapitch’

We choose Twitter as the data source because
of the sheer quantity of data generated and its fast
reachability across masses. Additionally, Twitter al-
lows information to flow freely and instantaneously
unlike FaceBook or MySpace. These aspects of

1http://support.twitter.com/groups/31-twitter-basics

127

Twitter makes it a source for getting a live snapshot
of the things happenings on the web.

In the context of sentiment classification of tweets
Alec et al. (2009a) describes a distant supervision-
based approach for sentiment classification. The
training data for this purpose is created following a
semi-supervised approach that exploits emoticons in
tweets. In their successive work, Alec et al. (2009b)
additionally use hashtags in tweets to create train-
ing data. Topic-dependent clustering is performed
on this data and classifiers corresponding to each are
modeled. This approach is found to perform better
than a single classifier alone.

We believe that the models trained on data cre-
ated using semi-supervised approaches cannot clas-
sify all variants of tweets. Hence, we follow a rule-
based approach for predicting sentiment of a tweet.
An approach like ours provides a generic way of
solving sentiment classification problems in micro-
blogs.

3 Architecture

keyword (s)

Tweet

fetcher

Tweet

Sentiment

Predictor

C-Feel-It

Sentiment

score

Tweet

Sentiment

Collaborator

score

Figure 1: Overall Architecture

The overall architecture of C-Feel-It is shown in
Figure 1. C-Feel-It is divided into three parts: Tweet
Fetcher, Tweet Sentiment Predictor and Tweet
Sentiment Collaborator. All predictions are pos-
itive, negative or objective/neutral. C-Feel-It offers
two implementations of a rule-based sentiment pre-
diction system. We refer to them as version 1 and
2. The two versions differ in the Tweet Sentiment
Predictor module. This section describes different
modules of C-Feel-It and is organized as follows. In
subsections 3.1, 3.2 & 3.3, we describe the three

functional blocks of C-FeeL-It. In subsection 3.4,
we explain how four lexical resources are mapped
to the desired output labels. Finally, subsection 3.5
gives implementation details of C-Feel-It.
Input to C-Feel-It is a search string and a version
number. The versions are described in detail in sub-
section 3.2.
Output given by C-Feel-It is two-level: tweet-wise
prediction and overall prediction. For tweet-wise
prediction, sentiment prediction by each of the re-
sources is returned. On the other hand, overall pre-
diction combines sentiment from all tweets to return
the percentage of positive, negative and objective
content retrieved for the search string.

3.1 Tweet Fetcher
Tweet fetcher obtains tweets pertaining to a search
string entered by a user. To do so, we use live feeds
from Twitter using an API 2. The parameters passed
to the API ensure that system receives the latest 50
tweets about the keyword in English. This API re-
turns results in XML format which we parse using a
Java SAX parser.

3.2 Tweet Sentiment Predictor
Tweet sentiment predictor predicts sentiment for
a single tweet. The architecture of Tweet Senti-
ment Predictor is shown in Figure 2 and can be di-
vided into three fundamental blocks: Preprocessor,
Emoticon-based Sentiment Predictor, Lexicon-based
Sentiment Predictor (refer Figure 3 & 4). The first
two blocks are same for both the versions of C-Feel-
It. The two versions differ in the working of the
Lexicon-based Sentiment Predictor.

Preprocessor
The noisy nature of tweets is a classical challenge
that any system working on tweets needs to en-
counter. Preprocessor deals with obtaining clean
tweets. We do not deploy any spelling correction
module. However, the preprocessor handles exten-
sions and contractions found in tweets as follows.

Handling extensions: Extensions like ‘besssssst’
are common in tweets. However, to look up re-
sources, it is essential that these words are normal-
ized to their dictionary equivalent. We replace con-
secutive occurrences of the same letter (if more than

2http://search.Twitter.com/search.atom

128

Lexicon-based

sentiment

predictor

Word extension

handler

Tweet

if no emoticon

Sentiment

prediction

Chat lingo

normalization

Emoticon-based

sentiment

predictor

Tweet Preprocessing

Sentiment

prediction

Figure 2: Tweet Sentiment Predictor: Version 1 and 2

three occurrences of the same letter) with a single
letter and replace the word.
An important issue here is that extensions are in fact
strong indicators of sentiment. Hence, we replace an
extended word by two occurences of the contracted
word. This gives a higher weight to the extended
word and retains its contribution to the sentiment of
the tweet.

Chat lingo normalization: Words used in
chat/Internet language that are common in tweets are
not present in the lexical resources. We use a dictio-
nary downloaded from http://chat.reichards.net/ . A
chat word is replaced by its dictionary equivalent.

Emoticon-based Sentiment Predictor

Emoticons are visual representations of emo-
tions frequently used in the user-generated con-
tent on the Internet. We observe that in most
cases, emoticons pinpoint the sentiment of a
tweet. We use an emoticon mapping from
http://chat.reichards.net/smiley.shtml. An emoticon
is mapped to an output label: positive or negative. A
tweet containing one of these emoticons that can be
mapped to the desired output labels directly. While
we understand that this heuristic does not work in
case of sarcastic tweets, it does provide a benefit in
most cases.

Lexicon-based Sentiment Predictor

For a tweet, the Lexicon-based Sentiment Predic-
tor gives a prediction each for four resources. In
addition, it returns one prediction which combines
the four predictions by weighting them on the ba-

Tweet

Lexical

Resource

Get

sentiment prediction

For all words

Return output label

corresponding to

majority of words

Sentiment

Prediction

Figure 3: Lexicon-based Sentiment Predictor: C-Feel-It
Version 1

sis of their accuracies. We remove stop words 3

from the tweet and stem the words using Lovins
stemmer (Lovins, 1968). Negation in tweets is han-
dled by inverting sentiment of words after a negat-
ing word. The words ‘no’, ‘never’, ‘not’ are consid-
ered negating words and a context window of three
words after a negative words is considered for in-
version. The two versions of C-Feel-It vary in their
Lexicon-based Sentiment Predictor. Figure 3 shows
the Lexicon-based Sentiment Predictor for version
1. For each word in the tweet, it gets the predic-
tion from a lexical resource. We use the intuition
that a positive tweet has positive words outnumber-
ing other words, a negative tweet has negative words
outnumbering other words and an objective tweet
has objective words outnumbering other words.
Figure 4 shows the Lexicon-based Sentiment Predic-
tor for version 2. As opposed to the earlier version,
version 2 gets prediction from the lexical resource
for some words in the tweet. This is because certain
parts-of-speech have been found to be better indi-
cators of sentiment (Pang and Lee, 2004). A tweet
is annotated with parts-of-speech tags and the POS
bi-tags (i.e. a pattern of two consecutive POS) are
marked. The words corresponding to a set of opti-
mal POS bi-tags are retained and only these words
used for lookup. The prediction for a tweet uses
majority vote-based approach as for version 1. The
optimal POS bi-tags have been derived experimen-
tally by using top 10% features on information gain-
based-pruning classifier on polarity dataset by (Pang
and Lee, 2005). We used Stanford POS tagger(Tou,

3http://www.ranks.nl/resources/stopwords.html

129

2000) for tagging the tweets.
Note: The dataset we use to find optimal POS

bi-tags consists of movie reviews. We understand
that POS bi-tags hence derived may not be universal
across domains.

Tweet

Lexical

Resource

Get

sentiment

prediction

For all words

POS tag

the

tweet

Retain

words

correspond

Return output

label

correspondin

g to majority

of words

Sentiment

Prediction

correspond

ing to

select POS

bi-tags

Figure 4: Lexicon-based Sentiment Predictor: C-Feel-It
Version 2

3.3 Tweet Sentiment Collaborator
Based on predictions of individual tweets, the Tweet
Sentiment Collaborator gives overall prediction
with respect to a keyword in form of percentage
of positive, negative and objective content. This
is on the basis of predictions by each resource by
weighting them according to their accuracies. These
weights have been assigned to each resource based
on experimental results. For each resource, the
following scores are determined.

posscore[r] =

m∑
i=1

piwpi

negscore[r] =

m∑
i=1

niwni

objscore[r] =

m∑
i=1

oiwoi

where

posscore[r] = Positive score for search string r
negscore[r] = Negative score for search string r
objscore[r] = Objective score for search string r

m = Number of resources used for prediction
pi, ni, oi = Positive,negative & objective count of tweet

predicted respectively using resource i
wpi, wni, ooi = Weights for respective classes derived

for each resource i

We normalize these scores to get the final positive, neg-
ative and objective pertaining to search string r. These
scores are represented in form of percentage.

3.4 Resources
Sentiment-based lexical resources annotate
words/concepts with polarity. The completeness
of these resources individually remains a question.
To achieve greater coverage, we use four different
sentiment-based lexical resources for C-Feel-It. They are
described as follows.

1. SentiWordNet (Esuli and Sebastiani, 2006) assigns
three scores to synsets of WordNet: positive score,
negative score and objective score. When a word is
looked up, the label corresponding to maximum of
the three scores is returned. For multiple synsets of
a word, the output label returned by majority of the
synsets becomes the prediction of the resource.

2. Subjectivity lexicon (Wiebe et al., 2004) is a re-
source that annotates words with tags like parts-of-
speech, prior polarity, magnitude of prior polarity
(weak/strong), etc. The prior polarity can be posi-
tive, negative or neutral. For prediction using this
resource, we use this prior polarity.

3. Inquirer (Stone et al., 1966) is a list of words
marked as positive, negative and neutral. We use
these labels to use Inquirer resource for our predic-
tion.

4. Taboada (Taboada and Grieve, 2004) is a word-list
that gives a count of collocations with positive and
negative seed words. A word closer to a positive
seed word is predicted to be positive and vice versa.

3.5 Implementation Details
The system is implemented in JSP (JDK 1.6) using Net-
Beans IDE 6.9.1. For the purpose of tweet annotation,
an internal interface was written in PHP 5 with MySQL
5.0.51a-3ubuntu5.7 for storage.

4 System Analysis

4.1 Evaluation Data
For the purpose of evaluation, a total of 7000 tweets
were downloaded by using popular trending topics of
20 domains (like books, movies, electronic gadget, etc.)
as keywords for searching tweets. In order to download
the tweets, we used the API provided by Twitter 4 that
crawls latest tweets pertaining to keywords.

Human annotators assigned to a tweet one out of 4
classes: positive, negative, objective and objective-spam.

4http://search.twitter.com/search.atom?

130

A tweet is assigned to objective-spam category if it con-
tains promotional links or incoherent text which was pos-
sibly not created by a human user. Apart from these nom-
inal class labels, we also assigned the positive/negative
tweets scores ranging from +2 to -2 with +2 being the
most positive and -2 being the most negative score re-
spectively. If the tweet belongs to the objective category,
a value of zero is assigned as the score.

The spam category has been included in the annotation
as a future goal of modeling a spam detection layer prior
to the sentiment detection. However, the current version
of C-Feel-It does not have a spam detection module and
hence for evaluation purpose, we use only the data be-
longing to classes other than objective-spam.

4.2 Qualitative Analysis
In this section, we perform a qualitative evaluation of ac-
tual results returned by C-Feel-It. The errors described
in this section are in addition to the errors due to mis-
spellings and informal language. These erroneous results
have been obtained from both version 1 and 2. They
have been classified into eleven categories and explained
henceforth.

4.2.1 Sarcastic Tweets
Tweet: Hoge, Jaws, and Palantonio are brilliant to-

gether talking X’s and O’s on ESPN right now.
Label by C-Feel-It: Positive
Label by human annotator: Negative

The sarcasm in the above tweet lies in the use of a pos-
itive word ’brilliant’ followed by a rather trivial action of
’talking Xs and Os’. The positive word leads to the pre-
diction by C-Feel-It where in fact, it is a negative tweet
for the human annotator.

4.2.2 Lack of Sense Understanding
Tweet: If your tooth hurts drink some pain killers and

place a warm/hot tea bag like chamomile on your tooth
and hold it. it will relieve the pain
Label by C-Feel-It: Negative

This tweet is objective in nature. The words ’pain’,
’killers’, etc. in the tweet give an indication to C-Feel-It
that the tweet is negative. This misguided implication is
because of multiple senses of these words (for example,
’pain’ can also be used in the sentence ’symptoms of the
disease are body pain and irritation in the throat’ where
it is non-sentiment-bearing). The lack of understanding
of word senses and being unable to distinguish between
them leads to this error.

4.2.3 Lack of Entity Specificity
Tweet: Casablanca and a lunch comprising of rice

and fish: a good sunday
Keyword: Casablanca

Label by C-Feel-It: Positive
Label by human annotator: Objective

In the above tweet, the human annotator understood
that though the tweet contains the keyword ’Casablanca’,
it is not Casablanca about which sentiment is expressed.
The system finds a positive word ’good’ and marks the
tweet as positive. This error arises because the system
cannot find out which sentence/parts of sentence is ex-
pressing opinion about the target entity.

4.2.4 Coverage of Resources
Tweet: I’m done with this bullshit. You’re the psycho

not me.
Label by SentiWordNet: Negative
Label by Taboada/Inquirer: Objective
Label by human annotator: Negative

On manual verification, it was observed that an entry
for the emotion-bearing word ’bullshit’ is present in Sen-
tiWordNet while Inquirer and Taboada resource do not
have them. This shows that the coverage of the lexical
resource affects the performance of a system and may in-
troduce errors.

4.2.5 Absence of Named Entity Recognition
Tweet: @user I don’t think I need to guess, but ok,

close encounters of the third kind? Lol
Entity: Close encounters of the third kind
Label by C-Feel-It: Positive

The words comprising the name of the film ’Close en-
counters of the third kind’ are also looked up. Inability to
identify the named entity leads the system into this trap.

4.2.6 Requirement of World Knowledge
Tweet: The soccer world cup boasts an audience twice

that of the Summer Olympics.
Label by C-Feel-It: Negative

To judge the opinion of this tweet, one requires an un-
derstanding of the fact that larger the audience, more fa-
vorable it is for a sports tournament. This world knowl-
edge is important for a system that aims to handle tweets
like these.

4.2.7 Mixed Emotion Tweets
Tweet: oh but that last kiss tells me it’s goodbye, just

like nothing happened last night. but if i had one chance,
i’d do it all over again
Label by C-Feel-It: Positive

The tweet contains emotions of positive as well as neg-
ative variety and it would in fact be difficult for a human
as well to identify the polarity. The mixed nature of the
tweet leads to this error by the system.

4.2.8 Lack of Context
Tweet: I’ll have to say it’s a tie between Little Women

or To kill a Mockingbird

131

Label by C-Feel-It: Negative
Label by human user: Positive

The tweet has a sentiment which will possibly be clear
in the context of the conversation. Going by the tweet
alone, while one understands that an comparative opinion
is being expressed, it is not possible to tag it as positive
or negative.

4.2.9 Concatenated Words
Tweet: To Kill a Mockingbird is a #goodbook.

Label by C-Feel-It: Negative
The tweet has a hashtag containing concatenated

words ’goodbook’ which get overlooked as out-of-
dictionary words and hence, are not used for sentiment
prediction. The sentiment of ’good’ is not detected.

4.2.10 Interjections
Tweet: Oooh. Apocalypse Now is on bluray now.

Label by C-Feel-It: Objective
Label by human user: Positive

The extended interjection ’Oooh’ is an indicator of
sentiment. Since it does not have a direct prior polar-
ity, it is not present in any of the resources. However, this
interjection is an important carrier of sentiment.

4.2.11 Comparatives
Tweet: The more years I spend at Colbert Heights..the

more disgusted I get by the people there. I’m soooo ready
to graduate.
Label by C-Feel-It: Positive
Label by human user: Negative

The comparatives in the sentence expressed by ’..more
disgusted I get..’ have to be handled as a special case
because ’more’ is an intensification of the negative senti-
ment expressed by the word ’disgusted’.

5 Summary & Future Work
In this paper, we described a system which categorizes
live tweets related to a keyword as positive, negative
and objective based on the predictions of four sentiment-
based resources. We also presented a qualitative evalua-
tion of our system pointing out the areas of improvement
for the current system.
A sentiment analyzer of this kind can be tuned to take in-
puts from different sources on the internet (for example,
wall posts on facebook). In order to improve the qual-
ity of sentiment prediction, we propose two additions.
Firstly, while we use simple heuristics to handle exten-
sions of words in tweets, a deeper study is required to
decipher the pragmatics involved. Secondly, a spam de-
tection module that eliminates promotional tweets before
performing sentiment detection may be added to the cur-
rent system. Our goal with respect to this system is to de-
ploy it for predicting share market values of firms based

on sentiment on social networks with respect to related
entitites.

Acknowledgement
We thank Akshat Malu and Subhabrata Mukherjee, IIT
Bombay for their assistance during generation of evalua-
tion data.

References
Go Alec, Huang Lei, and Bhayani Richa. 2009a. Twit-

ter sentiment classification using distant supervision.
Technical report, Standford University.

Go Alec, Bhayani Richa, Raghunathan Karthik, and
Huang Lei. 2009b. May.

Andrea Esuli and Fabrizio Sebastiani. 2006. SentiWord-
Net: A publicly available lexical resource for opinion
mining. In Proceedings of LREC-06, Genova, Italy.

Andreas M. Kaplan and Michael Haenlein. 2010. The
early bird catches the news: Nine things you should
know about micro-blogging. Business Horizons,
54(2):05 – 113.

Julie B. Lovins. 1968. Development of a Stemming Al-
gorithm. June.

Bo Pang and Lillian Lee. 2004. A sentimental edu-
cation: sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd Annual Meeting on Association for Compu-
tational Linguistics, ACL ’04, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of ACL-05.

Vladimir Prelovac. 2010. Top social media sites. Web,
May.

Philip J. Stone, Dexter C. Dunphy, Marshall S. Smith,
and Daniel M. Ogilvie. 1966. The General Inquirer:
A Computer Approach to Content Analysis. MIT
Press.

Maite Taboada and Jack Grieve. 2004. Analyzing Ap-
praisal Automatically. In Proceedings of the AAAI
Spring Symposium on Exploring Attitude and Affect in
Text: Theories and Applications, pages 158–161, Stan-
ford, US.

2000. Enriching the knowledge sources used in a maxi-
mum entropy part-of-speech tagger, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Janyce Wiebe, Theresa Wilson, Rebecca Bruce, Matthew
Bell, and Melanie Martin. 2004. Learning subjec-
tive language. Computional Linguistics, 30:277–308,
September.

132

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 133–138,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

IMASS: An Intelligent Microblog Analysis and Summarization System

Jui-Yu Weng Cheng-Lun Yang Bo-Nian Chen Yen-Kai Wang Shou-De Lin
Department of Computer Science and Information Engineering

National Taiwan University

{r98922060,r99944042,f92025,b97081,sdlin}@csie.ntu.edu.tw

Abstract

This paper presents a system to summarize

a Microblog post and its responses with the

goal to provide readers a more constructive

and concise set of information for efficient

digestion. We introduce a novel two-phase

summarization scheme. In the first phase,

the post plus its responses are classified in-

to four categories based on the intention,

interrogation, sharing, discussion and chat.

For each type of post, in the second phase,

we exploit different strategies, including

opinion analysis, response pair identifica-

tion, and response relevancy detection, to

summarize and highlight critical informa-

tion to display. This system provides an al-

ternative thinking about machine-

summarization: by utilizing AI approaches,

computers are capable of constructing dee-

per and more user-friendly abstraction.

1 Introduction

As Microblog services such as Twitter have be-

come increasingly popular, it is critical to re-

consider the applicability of the existing NLP

technologies on this new media sources. Take

summarization for example, a Microblog user

usually has to browse through tens or even hun-

dreds of posts together with their responses daily,

therefore it can be beneficial if there is an intelli-

gent tool assisting summarizing those information.

Automatic text summarization (ATS) has been

investigated for over fifty years, but the majority of

the existing techniques might not be appropriate

for Microblog write-ups. For instance, a popular

kind of approaches for summarization tries to iden-

tify a subset of information, usually in sentence

form, from longer pieces of writings as summary

(Das and Martins, 2007). Such extraction-based

methods can hardly be applied to Microblog texts

because many posts/responses contain only one

sentence.
Below we first describe some special characte-

ristics that deviates the Microblog summarization

task from general text summarization.

a. The number of sentences is limited, and sen-

tences are usually too short and casual to con-

tain sufficient structural information or cue

phrases. Unlike normal blogs, there is a strict

limitation on the number of characters for each

post (e.g. 140 characters for Twitter and Plurk

maximum). Microblog messages cannot be

treated as complete documents so that we can-

not take advantage of the structural information.

Furthermore, users tend to regard Microblog as

a chatting board. They write casually with

slangs, jargons, and incorrect grammar.

b. Microblog posts can serve several different

purposes. At least three different types of posts

are observed in Microblogs, expressing feeling,

sharing information, and asking questions.

Structured language is not the only means to

achieve those goals. For example, people

sometimes use attachment, as links or files, for

sharing, and utilize emoticons and pre-defined

qualifiers to express their feelings. The diver-

sity of content differ Microblogs from general

news articles. Consequently, using one mold to

fit all types of Microblog posts is not sufficient.

Different summarization schemes for posts

with different purposes are preferred.
c. Posts and responses in Microblogs are more

similar to a multi-persons dialogue corpus. One

of the main purposes of a Microblog is to serve

as the fast but not instant communication

channel among multiple users. Due to the free-

chatting, multi-user characteristics, the topic of

a post/response thread can drift quickly. Some-

times, the topic of discussion at the end of the

thread is totally unrelated to that of the post.

133

This paper introduces a framework that summariz-

es a post with its responses. Motivated by the ab-

ovementioned characteristics of Microblogs, we

plan to use a two-phase summarization scheme to

develop different summarization strategies for dif-

ferent type of posts (see Figure 1). In the first

phase, a post will be automatically classified into

several categories including interrogation, discus-

sion, sharing and chat based on the intention of the

users. In the second phase, the system chooses dif-

ferent summarization components for different

types of posts.

The novelties of this system are listed below.

1. Strategically, we propose an underlying 2-phase

framework for summarizing Microblog posts.

The system can be accessed online at

http://mslab.csie.ntu.edu.tw/~fishyz/plurk/.

2. Tactically, we argue that it is possible to inte-

grate post-intention classification, opinion anal-

ysis, response relevancy and response-pair

mining to create an intelligent summarization

framework for Microblog posts and responses.

We also found that the content features are not

as useful as the temporal or positional features

for text mining in Microblog.

3. Our work provides an alternative thinking about

ATS. It is possible to go beyond the literal

meaning of summarization to exploit advanced

text mining methods to improve the quality and

usability of a summarization system.

2 Summarization Framework and Expe-

riments

Below we discuss our two-phase summarization

framework and the experiment results on each in-

dividual component. Note that our experiments

were tested on the Plurk dataset, which is one of

the most popular micro-blogging platforms in Asia.

Our observation is that Microblog posts can

have different purposes. We divide them into four

categories, Interrogation, Sharing, Discussion, and

Chat.

The Interrogation posts are questions asked in

public with the hope to obtain some useful answers

from friends or other users. However, it is very

common that some repliers do not provide mea-

ningful answers. The responses might serve the

purpose for clarification or, even worse, have noth-

ing to do with the question. Hence we believe the

most appropriate summarization process for this

kind of posts is to find out which replies really re-

spond to the question. We created a response re-

levance detection component to serve as its

summarization mechanism.

The Sharing posts are very frequently observed

in Microblog as Microbloggers like to share inter-

esting websites, pictures, and videos with their

friends. Other people usually write down their

comments or feelings on the shared subjects in the

responses. To summarize such posts, we obtain the

statistics on how many people have positive, neu-

tral, and negative attitude toward the shared sub-

jects. We introduce the opinion analysis

component that provides the analysis on whether

the information shared is recommended by the res-

pondents.

We also observe that some posts contain charac-

teristics of both Interrogation and Sharing. The

users may share a hyperlink and ask for others’

opinions at the same time. We create a category

named Discussion for these posts, and apply both

response ranking and opinion analysis engines on

this type of posts.
Finally, there are posts which simply act as the

solicitation for further chat. For example, one user
writes “so sad…” and another replies “what hap-
pened”. We name this type of posts/responses as
Chat. This kind of posts can sometimes involve
multiple persons and the topic may gradually drift
to a different one. We believe the plausible sum-
marization strategy is to group different messages
based on their topics. Therefore for Chat posts, we
designed a response pair identification system to
accomplish such goal. We group the related res-
ponses together for display, and the number of
groups represents the number of different topics in
this thread.

Figure 1 shows the flow of our summarization

Figure 1. System architecture

134

framework. When an input post with responses

comes in, the system first determines its intention,

based on which the system adopts proper strategies

for summarization. Below we discuss the technical

parts of each sub-system with experiment results.

2.1 Post Intention Classification

This stage aims to classify each post into four cat-

egories, Interrogation, Sharing, Discussion, and

Chat. One tricky issue is that the Discussion label

is essentially a combination of interrogation and

sharing labels. Therefore, simply treating it as an

independent label and use a typical multi-label

learning method can hurt the performance. We ob-

tain 76.7% (10-fold cross validation) in accuracy

by training a four-class classifier using the 6-gram

character language model. To improve the perfor-

mance, we design a decision-tree based framework

that utilizes both manually-designed rules and dis-

criminant classification engine (see Figure 2). The

system first checks whether the posts contains

URLs or pointers to files, then uses a binary clas-

sifier to determine whether the post is interrogative.

For the experiment, we manually annotate 6000

posts consisting of 1840 interrogation, 2002 shar-

ing, 1905 chat, and 254 discussion posts. We train

a 6-gram language model as the binary interroga-

tion classifier. Then we integrate the classifier into

our system and test on 6000 posts to obtain a test-

ing accuracy of 82.8%, which is significantly bet-

ter than 76.7% with multi-class classification.

2.2 Opinion Analysis

Opinion analysis is used to evaluate public prefe-

rence on the shared subject. The system classifies

responses into 3 categories, positive, negative, and

neutral.

Here we design a two-level classification

framework using Naïve-Bayes classifiers which

takes advantage of the learned 6-gram language

model probabilities as features. First of all, we

train a binary classifier to determine if a post or a

reply is opinionative. This step is called the subjec-

tivity test. If the answer is yes, we then use another

binary classifier to decide if the opinion is positive

or negative. The second step is called the polarity

test.

For subjectivity test, we manually annotate 3244

posts, in which half is subjective and half is objec-

tive. The 10-fold cross validation shows average

accuracy of 70.5%.

For polarity test, we exploit the built-in emoti-

cons in Plurk to automatically extract posts with

positive and negative opinions. We collect 10,000

positive and 10,000 negative posts as training data

to train a language model of Naïve Bayes classifier,

and evaluate on manually annotated data of 3121

posts, with 1624 positive and 1497 negative to ob-

tain accuracy of 0.722.

2.3 Response Pair Identification

Conversation in micro-blogs tends to diverge into

multiple topics as the number of responses grows.

Sometimes such divergence may result in res-

ponses that are irrelevant to the original post, thus

creating problems for summarization. Furthermore,

because the messages are usually short, it is diffi-

cult to identify the main topics of these dialogue-

like responses using only keywords in the content

for summarization. Alternatively, we introduce a

subcomponent to identify Response Pairs in micro-

blogs. A Response Pair is a pair of responses that

the latter specifically responds to the former. Based

on those pairs we can then form clusters of mes-

sages to indicate different group of topics and mes-

Figure 2. The post classification procedure

Feature Description Weight

Backward Refe-

rencing

Latter response content

contains former respond-

er’s display name

0.055

Forward Refe-

rencing of user

name

Former response contains

latter response’s author’s

user name

0.018

Response position

difference

Number of responses in

between responses
0.13

Content similarity Contents’ cosine similari-

ty using n-gram models.

0.025

Response time

difference

Time difference between

responses in seconds

0.012

Table 1. Feature set with their description and weights

135

sages.

Looking at the content of micro-blogs, we ob-

serve that related responses are usually adjacent to

each other as users tend to closely follow whether

their messages are responded and reply to the res-

ponses from others quickly. Therefore besides con-

tent features, we decide to add the temporal and

ordering features (See Table 1) to train a classifier

that takes a pair of messages as inputs and return

whether they are related. By identifying the re-

sponse pairs, our summarization system is able to

group the responses into different topic clusters

and display the clusters separately. We believe

such functionality can assist users to digest long

Microblog discussions.

For experiment, the model is trained using

LIBSVM (Chang and Lin, 2001) (RBF kernel)

with 6000 response pairs, half of the training set

positive and half negative. The positive data can be

obtained automatically based on Plurk’s built in

annotation feature. Responses with @user_name

string in the content are matched with earlier res-

ponses by the author, user_name. Based on the

learned weights of the features, we observe that

content feature is not very useful in determining

the response pairs. In a Microblog dialogue, res-

pondents usually do not repeat the question nor

duplicate the keywords. We also have noticed that

there is high correlation between the responses re-

latedness and the number of other responses be-

tween them. For example, users are less likely to

respond to a response if there have been many rep-

lies about this response already. Statistical analy-

sis on positive training data shows that the average

number of responses between related responses is

2.3.

We train the classifier using 6000 automatically-

extracted pairs of both positive and negative in-

stances. We manually annotated 1600 pairs of data

for testing. The experiment result reaches 80.52%

accuracy in identifying response pairs. The base-

line model which uses only content similarity fea-

ture reaches only 45% in accuracy.

2.4 Response Relevance Detection

For interrogative posts, we think the best summary

is to find out the relevent responses as potential

answers.

 We introduce a response relevancy detection

component for the problem. Similar to previous

components, we exploit a supervised learning ap-

proach and the features’ weights, learned by

LIBSVM with RBF kernel, are shown in Table 2.

Temporal and Positional Features

A common assertion is that the earlier responses

have higher probability to be the answers of the

question. Based on the learned weights, it is not

surprising that most important feature is the posi-

tion of the response in the response hierarchy.

Another interesting finding by our system is that

meaningful replies do not come right away. Res-

ponses posted within ten seconds are usually for

chatting/clarification or ads from robots.

Content Features

We use the length of the message, the cosine simi-

larity of the post and the responses, and the occur-

rence of the interrogative words in response

sentences as content features.

Because the interrogation posts in Plurk are rela-

tively few, we manually find a total of 382 positive

and 403 negative pairs for training and use 10-fold

cross validation for evaluation.

We implement the component using LIBSVM

(RBF Kernel) classifier. The baseline is to always

select the first response as the only relevant answer.

The results show that the accuracy of baseline

reaches 67.4%, far beyond that of our system

73.5%.

3 System Demonstration

In this section, we show some snapshots of our

summarization system with real examples using

Plurk dataset. Our demo system is designed as a

Feature Weight

Response position 0.170

Response time difference 0.008

Response length 0.003

Occurrence of interrogative

words

0.023

Content similarity 0.023

Table 2. Feature set and their weights

Figure 3. The IMASS interface

136

search engine (see Figure 3). Given a query term,

our system first returns several posts containing the

query string under the search bar. When one of the

posts is selected, it will generate a summary ac-

cording to the detected intention and show it in a

pop-up frame. We have recorded a video demon-

strating our system. The video can be viewed at

http://imss-acl11-demo.co.cc/.

For interrogative posts, we perform the response

relevancy detection. The summary contains the

question and relevant answers. Figure 4 is an ex-

ample of summary of an interrogative post. We can

see that responses other than the first and the last

responses are filtered because they are less relevant

to the question.

 For sharing posts, the summary consists of two

parts. A pie chart that states the percentage of each

opinion group is displayed. Then the system picks

three responses from the majority group or one re-

sponse from each group if there is no significant

difference. Figure 5 is an example that most

friends of the user dfrag give positive feedback to

the shared video link.

For discussion posts, we combine the response

relevancy detection subsystem and the opinion

analysis sub-system for summarization. The former

first eliminates the responses that are not likely to

be the answer of the post. The latter then generates

a summary for the post and relevant responses. The

result is similar to sharing posts.

For chat posts, we apply the response pair iden-

tification component to generate the summary. In

the example, Figure 6, the original Plurk post is

about one topic while the responses diverge to one

or more unrelated topics. Our system clearly sepa-

rates the responses into multiple groups. This re-

presentation helps the users to quickly catch up

with the discussion flow. The users no longer have

to read interleaving responses from different topics

and guess which topic group a response is referring

to.

Figure 4. An example of interrogative post.

Figure 6. An Example of chat post

Figure 5. An example of sharing post.

137

4 Related Work

We have not seen many researches focusing on the

issues of Microblog summarization. We found on-

ly one work that discusses about the issues of

summarization for Microblogs (Sharifi et al., 2010).

Their goal, however, is very different from ours as

they try to summarize multiple posts and do not

consider the responses. They propose the Phrase

Reinforcement Algorithm to find the most com-

monly used phrase that encompasses the topic

phrase, and use these phrases to compose the

summary. They are essentially trying to solve a

multi-document summarization problem while our

problem is more similar to short dialog summariza-

tion because the dialogue nature of Microblogs is

one of the most challenging part that we tried to

overcome.

In dialogue summarization, many researchers

have pointed out the importance of detecting re-

sponse pairs in a conversation. Zechner (2001) per-

forms an in depth analysis and evaluation in the

area of open domain spoken dialogue summariza-

tion. He uses decision tree classifier with lexical

features like POS tags to identify questions and

applies heuristic rules like maximum distance be-

tween speakers to extract answers. Shrestha and

McKeown (2004) propose a supervised learning

method to detect question-answer pairs in Email

conversations. Zhou and Hovy (2005) concen-

trates on summarizing dialogue-style technical in-

ternet relay chats using supervised learning

methods. Zhou further clusters chat logs into sev-

eral topics and then extract some essential response

pairs to form summaries. Liu et al. (2006) propose

to identify question paragraph via analyzing each

participant’s status, and then use cosine measure to

select answer paragraphs for online news dataset.

The major differences between our components

and the systems proposed by others lie in the selec-

tion of features. Due to the intrinsic difference be-

tween the writing styles of Microblog and other

online sources, our experiments show that the con-

tent feature is not as useful as the position and

temporal features.

5 Conclusion

In terms of length and writing styles, Microblogs

possess very different characteristics than other

online information sources such as web blogs and

news articles. It is therefore not surprising that dif-

ferent strategies are needed to process Microblog

messages. Our system uses an effective strategy to

summarize the post/response by first determine the

intention and then perform different analysis de-

pending on the post types. Conceptually, this work

intends to convey an alternative thinking about

machine-summarization. By utilizing text mining

and analysis techniques, computers are capable of

providing more intelligent summarization than in-

formation condensation.

Acknowledgements

This work was supported by National Science

Council, National Taiwan University and Intel

Corporation under Grants NSC99-2911-I-002-001,

99R70600, and 10R80800.

References

Chih-Chung Chang and Chih-Jen Lin. 2001. LIBSVM :

a library for support vector machines. Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Dipanjan Das and André F.T. Martins. 2007. A Survey

on Automatic Text Summarization. Literature Survey

for the Language and Statistics II Course. CMU.

Chuanhan Liu, Yongcheng Wang, and Fei Zheng. 2006.

Automatic Text Summarization for Dialogue Style.

In Proceedings of the IEEE International Conference

on Information Acquisition. 274-278

Beaux Sharifi, Mark A. Hutton, and Jugal Kalita. 2010.

Summarizing Microblogs Automatically. In Proceed-

ings of the Human Language Technologies: The

2010 Annual Conference of the North American

Chapter of the Association for Computational Lin-

guistics (NAACL-HLT). 685-688

Lokesh Shrestha and Kathleen McKeown. 2004. Detec-

tion of Question-Answer Pairs in Email Conversa-

tions. In Proceedings of the 23rd International

Conference on Computational Linguistics (COLING

2010).

Klaus Zechner. 2001. Automatic Generation of Concise

Summaries of Spoken Dialogues in Unrestricted

Domains. In Proceedings of the 24th ACM-SIGIR

International Conference on Research and Develop-

ment in Information Retrieval. 199-207.

Liang Zhou and Eduard Hovy. 2005. Digesting virtual

geek culture: The summarization of technical internet

relay chats, in Proceedings of the 43rd Annual Meet-

ing of the Association for Computational Linguistics

(ACL 2005). 298-305.

138

Proceedings of the ACL-HLT 2011 System Demonstrations, pages 139–144,
Portland, Oregon, USA, 21 June 2011. c©2011 Association for Computational Linguistics

 An Interface for Rapid Natural Language
Processing Development in UIMA

Balaji R. Soundrarajan, Thomas Ginter, Scott L. DuVall

VA Salt Lake City Health Care System and University of Utah
balaji@cs.utah.edu, {thomas.ginter, scott.duvall}@utah.edu

Abstract

This demonstration presents the Annotation
Librarian, an application programming inter-
face that supports rapid development of natu-
ral language processing (NLP) projects built
in Apache Unstructured Information Man-
agement Architecture (UIMA). The flexibility
of UIMA to support all types of unstructured
data – images, audio, and text – increases the
complexity of some of the most common NLP
development tasks. The Annotation Librarian
interface handles these common functions and
allows the creation and management of anno-
tations by mirroring Java methods used to
manipulate Strings. The familiar syntax and
NLP-centric design allows developers to
adopt and rapidly develop NLP algorithms in
UIMA. The general functionality of the inter-
face is described in relation to the use cases
that necessitated its creation.

1 Introduction

In the days when public libraries were the center of
information exchange, the job of the librarian was
to serve as an interface between the complex li-
brary system and the average user. The librarian
made it possible for one to access specific sources
of information without memorizing the Dewey
Decimal System or flipping through the card cata-
log. Analogous to the great librarians of yesteryear,
the Annotation Librarian serves the average Java
developer in the creation and management of anno-
tations within natural language processing (NLP)
projects built using the open source Apache Un-
structured Information Management Architecture
(UIMA)1.

Many NLP tasks are performed in processing
steps that build upon one another. Systems de-
signed in this fashion are called pipelines because

1 Apache UIMA is available from http://uima.apache.org/

text is processed and then passed from one step to
the next like water flowing through a pipe. Each
step in the pipeline adds structured data on top of
the text called annotations. An annotation can be
as simple as a classification of a span of text or
complex with attributes and mappings to coded
values. As pipeline systems have caught on, the
ability to standardize functionality in and even
across pipelines has emerged. UIMA provides a
powerful infrastructure for the storage, transport,
and retrieval of document and annotation
knowledge accumulated in NLP pipeline systems
(Ferrucci 2004). UIMA provides tools that allow
testing and visualizing system results, integration
with Eclipse2, and use of standard XML descrip-
tion files for maintainability and interoperability.
Because UIMA provides the underlying data mod-
el for storing meta-data and annotations with doc-
ument text and the interface for interacting
between processing steps, it has become a popular
platform for the development of reusable NLP sys-
tems (D’Avolio 2010, Coden 2009, Savova 2008).
The most notable example of UIMA capabilities is
Watson, the question-answering system that com-
peted and won two Jeopardy! matches against the
all-time-winning human champions (Ferrucci
2010).

In addition to its successful implementations in
NLP, UIMA supports all types of unstructured in-
formation – video, audio, images, etc – and so all
UIMA constructs generalize beyond text. While
handling multiple data types increases the utility of
the framework, developers new to UIMA may feel
they need to understand the entire framework be-
fore being able to distinguish and focus solely on
text. The Annotation Librarian aids both novice
and experienced UIMA developers by providing
intuitive and NLP-centric functionality.

2 Eclipse Development Platform is available from
http://www.eclipse.org

139

2 System Overview

The Annotation Librarian was developed as an in-
terface that synthesizes many of the most frequent
annotation management tasks encountered in NLP
system development and presents them in a man-
ner easily accessed for those familiar with general
Java development methods. It provides conven-
ience methods that mirror Java String manipula-
tion, allowing developers to seamlessly combine
document text and annotations with the same
commands familiar to anyone who has parsed a
String or written a regular expression. Advanced
functionality allows developers to examine spatial
relationships among annotations and perform an-
notation pattern matching. In this demonstration,
we present the general functionality of the Annota-
tion Librarian in the context of the health care re-
search projects that necessitated the creation of the
interface.

The interface does not replace the need for NLP
algorithms – developers have a plethora of patterns
and decision rules, symbolic grammars, and ma-
chine learning techniques to create annotations.
The Annotation Toolkit, though, provides a con-
venient way for developers to use existing annota-
tions in their algorithms. This feeds the pipeline
workflow that allows more complex annotations to
be built in later processing steps using the annota-
tions created in earlier steps.

The Annotation Librarian was developed and
modified in response to four research projects in
the health care domain that relied on NLP extrac-
tion of concepts from clinical text. The diversity of
the different tasks in each of these use cases al-
lowed the interface to include functionality com-
mon to different types of NLP system
development. Interface functionality will be de-
scribed as groups of related methods in the context
of the four research projects and cover pattern
matching, span overlap, relative position, annota-
tion modification, and retrieval. All projects re-
ceived Institutional Review Board approval for
data use and only synthetic documents, not real
patient records, are shown in the examples present-
ed in this paper.

3 Pattern Matching

Name entity recognition and semantic classifica-
tion tasks often require advanced concept identifi-

cation techniques. Identifying mentions of pre-
scriptions in a document using regular expressions,
for example, would require hundreds of thousands
of patterns for names of medicines and have to ac-
count for misspelling, abbreviations, and acro-
nyms. Regular expressions are commonly used to
solve simple NLP tasks, though, and can be uti-
lized as part of a more complex information extrac-
tion strategy, such as understanding the context in
which a term is used in the text (Garvin 2011,
McCrae 2008, Frenz 2007, Chapman 2001). Negex
(Chapman 2001) is an algorithm for identifying
words before or after a term that suggest, for ex-
ample, that a particular symptom is not present in a
patient: “the patient has no fever.” Other methods
for understanding the context around terms include
the use of an inclusion and exclusion list (Akbar
2009), temporal locality search (Grouin 2009),
window search (Li 2009), and combinations of the
above techniques (Hamon 2009).

The Annotation Librarian allows patterns to be
built using existing annotations along with docu-
ment text. This functionality combines the power
of finding concepts that require complex means
with the simplicity of regular expressions. The syn-
tax mirrors that of the Java Pattern3 and Matcher4
classes, but allows for an extended regular expres-
sion grammar to identify Annotations. Pattern
matching is accomplished in three phases: the in-
put pattern is compiled, the document and annota-
tions are analyzed for matches, and matches are
returned along with span information.

A project identifying positive microbiology cul-
tures will illustrate the use of pattern matching
with the Annotation Librarian. Clinicians order
microbiology cultures to determine whether a pa-
tient has a bacterial infection and which antibiotics
would be most effective at treating the infection.
Susceptibility is the measure of whether an antibi-
otic can effectively treat an organism or whether
the organism is resistant to it.

A sample of microbiology report text is shown
in Figure 1 and visualized annotations for the same
sample are shown in Figure 2.

3 Documented at
http://download.oracle.com/javase/6/docs/api/java/util/regex/
Pattern.html
4 Documented at
http://download.oracle.com/javase/6/docs/api/java/util/regex/
Matcher.html

140

Figure 1: Microbiology Report Text

Figure 2: Annotated Report

To demonstrate pattern matching in this sample,

the simple pattern of a drug annotation followed by
an equals sign and then by a susceptibility annota-
tion will be used.

3.1 Pattern Compilation

The pattern matching process begins when a new
instance of an AnnotationPattern is created from
the static compile method. AnnotationPattern is
analogous to the Java Pattern3 class.

AnnotationPattern susceptibilityPattern =
 AnnotationPattern.compile(“pattern”);

The method takes advantage of the UIMA im-
plementation of annotations. Each annotation is an
instance of a class that inherits from the UIMA
class Annotation5. UIMA allows developers to cre-
ate new types of annotations (in this example Or-
ganism, Antibiotic, and Susceptibility) that become
Java classes.

5 Documented at http://uima.apache.org/d/uimaj-
2.3.1/api/index.html

The compile method input string pattern uses
XML tags to represent Annotation classes and tag
attributes to denote the name of method calls and
return values in the format of:

<AnnotationClass methodName=“expected value” />

When the extra constraint of matching on some
method return values is not needed, the tag attrib-
ute is left blank. Portions of the pattern that are not
contained in XML tags are compiled as Java regu-
lar expressions. For our example, the input pattern
would be:

<Antibiotic /> = <Susceptibility />

or further constrained as:

<Antibiotic getMedName=“ciprofloxacin” /> =
<Susceptibility getValue=“S” />

which would only match if the particular medica-
tion (ciprofloxacin) and susceptibility (S) matched
as well.

The pattern is converted into a finite state ma-
chine (FSM) in a process described by Fegaras
(2005). With our pattern, a four-state FSM would
be generated. To arrive in State 1, an Antibiotic
annotation must match. To arrive in State 2, a
regular expression for “=” must match. The Final
State is reached when a matching Susceptibility
annotation is found. Any other input would result
in a transition back to the Start State.

Figure 3: FSM for Antibiotic Susceptibility

3.2 Match Analysis

The second phase of pattern matching processes
the document text and annotation set to determine
if any matches can be found. This phase is trig-
gered by a call to the static matcher method that
returns a new instance of an AnnotationMatcher
object. AnnotationMatcher is analogous to the Java
Matcher4 class.

AnnotationMatcher suscMatcher =
 susceptibilityPattern.matcher(cas);

This phase just checks to ensure that each anno-
tation type has at least one instance in the docu-
ment. Otherwise, a pattern match is not possible.
Here, the cas parameter refers to the UIMA

141

Common Analysis Structure, the object containing
the document and annotation information.

3.3 Finding Matches

The final phase of pattern matching involves a call
to the AnnotationMatcher find method. This call
results in a FSM traversal at the starting position
parameter. Duplicate match candidates starting at
the same point are pooled in each state. The candi-
date pool in each state is traversed with a binary
search algorithm, which reduces overall traversal
time. Note the following example in which a rela-
tionship is created through a new user-defined An-
notation class type.

int position = 0 ;
while(suscMatcher.find(position))
{

AntibioticSusceptibility annotation =
 new AntibioticSusceptibility(cas) ;
annotation.setBegin(suscMatcher.start()) ;

 annotation.setEnd(suscMatcher.end()) ;
 annotation.addToIndexes() ;
 position = matcher.end() ;
}//while

Similar to the Java Matcher4 find method, the

first match is found from the starting position. The
start and end positions are also set within the An-
notationMatcher instance object, which facilitates
the creation of new annotations that span the com-
plete pattern. The Annotation Librarian pattern
matching functionality allows the inclusion of an-
notations, which provides an added level of power
beyond regular expressions on text data only.

4 Retrieval

The retrieval methods allow developers to interact
with annotations and metadata. This set of methods
includes the ability to get the file name and path of
the document, get all annotations in the document,
and get all annotations of just a particular type.

getDocumentPath()
getAllAnnotations()
getAllAnnotationsOfType(int type)

Ejection fraction is a heart health measurement. An
NLP system was developed to identify the ejection frac-
tion from echocardiogram reports. In this project, the
Annotation Librarian facilitated the extraction of specif-
ic annotation types (the section the concept was found
in) in order to discover relevant concept-value pairs.

In Figure 4, ejection fraction annotations are shown
in red and quantitative and qualitative values in blue.

Because “systolic function” can be used to report ejec-
tion fraction, but only when referring to the left side of
the heart, it was important to retrieve the section annota-
tions and check the header.

Figure 4: Annotated Echocardiogram Report

5 Annotation Modification

The annotation modification methods allow previ-
ous annotations to be altered by trimming
whitespace and removing punctuation. While these
are trivial tasks performed on Java Strings, an an-
notation is just a pointer to the text. Updating the
annotation with the correct character span requires
understanding of UIMA functions and can intro-
duce errors if not done carefully. The Annotation
Librarian ensures accuracy by handling these tasks
with straightforward programmatic calls.

trim(Annotation annotation)
removePunctuation(Annotation annotation)

Identifying the organisms from the microbiolo-
gy reports relied on splitting template text. The
project described in Section 3 for pattern matching
utilized the Annotation Librarian functionality to
clean up spurious characters and whitespace in-
cluded in annotations.

6 Span Overlap

This set of methods describes how annotations re-
late to each other spatially by answering questions
such as: Does one annotation completely contain
the other? Do the annotations overlap in the text?
Do they both cover the same span of text?

overlaps(Annotation a1, Annotation a2)
contains(Annotation a1, Annotation a2)
coversSameSpan(Annotation a1, Annotation a2)

142

In a system built for identifying medications in
discharge summaries, the brand and generic names
would often both be listed. Name entity recogni-
tion would end up mapping at multiple granulari-
ties – brand name only, generic name only, brand
and generic name combinations, and even name
and dose combinations. The span overlap methods
were used to identify and combine overlapping
names. Figure 5 shows the annotations that were
found and resolved using span overlaps.

Figure 5: Medication Extraction Use Case

7 Relative Position

The relative position methods allow developers to
access annotations based on their position in the
text to each other. These methods can determine
the next or previous adjacent annotation or the text
that exists between two annotations. Often, a task
required determining which concepts were found
in the same sentence or finding all concepts in a
certain section. Methods in this set provide func-
tionality to find annotations that covering the span
of another annotations or all annotations contained
within the span of another annotation.

getContainingAnnotations(Annotation a1)
getNextClosest(Annotation a1)
getPreviousClosest(Annotation a1)
getTextBetween(Annotation a1, Annotation a2)

As part of a project to determine coreference in dis-
ease outbreak reports, the ability to determine relative
position facilitated coreference resolution. It was also
necessary to determine relationships between certain
types of annotations from the window of the text. The
Annotation Librarian simplified the task of determining
co-location by providing the functionality within a sin-
gle method call. Text between two Annotation objects
was similarly identified with a single method call.

Figure 6: Disease Outbreak Reports Use Case

8 Conclusion

The Annotation Librarian was developed and mod-
ified over a number of different NLP use cases.
Because of the diversity of tasks in each of these
use cases, the toolkit includes functionality com-
mon to various types of NLP system development.
It includes over two-dozen functions that were
used more than one hundred times in each of the
four systems listed above. Use of this interface re-
duced the amount of repeated code; it simplified
common tasks, and provided an intuitive interface
for NLP-centric annotation management without
requiring the presence of an NLP developer who
has intimate knowledge of the UIMA data struc-
ture. The extended capability provided by the pat-
tern matching methods allows system developers
to capitalize on the pipeline approach to NLP de-
velopment in determining patterns. The ability to
use annotations along with text significantly in-
creases the types of patterns that can be identified
without complex regular expressions.

9 Future Plans

The Annotation Librarian has been enhanced over
the course of a number of biomedical NLP use
cases and we plan to continue to enhance the inter-
face as new use cases arise. Some planned en-
hancements include performance improvements
and expanding the AnnotationPattern input pattern
syntax to include regular expressions for method
return values and annotation class names. We plan
to provide additional functionality such as pattern
frequency counts.

We see the ability for the Annotation Librarian
to help identify patterns through active learning or

143

unsupervised techniques. In this way, relationships
between annotations could be inferred based on
those existing in the document set. Such function-
ality would also provide the ability for more intel-
ligent analysis of future document sets or
observation systems by allowing previously identi-
fied relationships to be utilized in other use cases.

Acknowledgments

This work was supported using resources and facil-
ities at the VA Salt Lake City Health Care System
with funding support from the VA Informatics and
Computing Infrastructure (VINCI), VA HSR HIR
08-204 and the Consortium for Healthcare Infor-
matics Research (CHIR), VA HSR HIR 08-374.
Views expressed are those of the authors and not
necessarily those of the Department of Veterans
Affairs.

References

Annin Coden, Guergana K. Savova, Igor L. Sominsky,
Michael A. Tanenblatt, James J. Masanz, Karin
Schuler, James W. Cooper, Wei Guan, Piet C. de
Groen. 2009. Automatically extracting cancer dis-
ease characteristics from pathology reports into a
Disease Knowledge Representation Model. J Bio-
med Inform. 2009 Oct;42(5):937-49.

Christopher M. Frenz. 2007. Deafness mutation min-

ing using regular expression based pattern match-
ing. BMC Med Inform Decis Mak. 2007 Oct
25;7:32.

Cyril Grouin, Louise Deléger, and Pierre Zweigen-

baum. 2009. COKAINE, A Simple Rule-based
Medication Extraction System. i2b2 Workshop in
conjunction with the AMIA Annual Symposium,
San Francisco, CA; November 13, 2009.

David Ferrucci and Adam Lally. 2004. UIMA: An Ar-

chitectural Approach to Unstructured Information
Processing in the Corporate Research Environment.
Natural Langage Engineering 10(3–4): 327–348.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll,

James Fan, David Gondek, Aditya A. Kalyanpur,
Adam Lally, J. William Murdock, Eric Nyberg,
John Prager, Nico Schlaefer, and Chris Welty.
2010. Building Watson: An Overview of the
DeepQA Project. AI Magazine. Vol 31. No 3.

Guergana K. Savova, Karin Kipper-Schuler, James D.

Buntrock, Christopher G. Chute. 2008. UIMA-

based clinical information extraction system. LREC
2008: Towards enhanced interoperability for large
HLT systems: UIMA for NLP.

Jennifer H. Garvin, Brett R. South, Dan Bolton, Shuy-
ing Shen, Scott L. DuVall, Bruce Bray, Paul Hei-
denreich, Matthew H. Samore, and Mary K.
Goldstein. 2011. Automated Extraction of Ejection
Fraction (EF) for Heart Failure (HF) from VA
Echocardiogram Reports. Department of Veterans
Affairs Health Services Research and Development
National Meeting. 2011 Feb 16.

John McCrae, Nigel Collier. 2008. Synonym set ex-

traction from the biomedical literature by lexical
pattern discovery. BMC Bioinformatics. 2008 Mar
24;9:159.

Leonard W. D'Avolio, Thien M. Nguyen, Wildon R.

Farwell, Yong Chen, Felicia Fitzmeyer, Owen M.
Harris, Louis D. Fiore. 2010. Evaluation of a gen-
eralizable approach to clinical information retrieval
using the automated retrieval console (ARC). J Am
Med Inform Assoc. 2010 Jul-Aug;17(4):375-82.

Leonidas Fegaras. 2005. Converting a Regular Ex-

pression into a Deterministic Finite Automaton.
http://lambda.uta.edu/cse5317/notes/node9.html.
Pulled February 2011.

Saiful Akbar, Thomas Brox Røst, Laura Slaughter,

and Øystein Nytrø. 2009. Extracting Medication In-
formation from Patient Discharge Summaries. i2b2
Workshop in conjunction with the AMIA Annual
Symposium, San Francisco, CA; November 13,
2009.

Thierry Hamon and Natalia Grabar. 2009 . Concurrent

linguistic annotations for identifying medication
names and the related information in discharge
summaries. i2b2 Workshop in conjunction with the
AMIA Annual Symposium, San Francisco, CA;
November 13, 2009.

Wendy W. Chapman, Will Bridewell, Paul Hanbury,

Gregory F. Cooper, and Bruce G. Buchanan. 2001.
A Simple Algorithm for Identifying Negated Find-
ings and Diseases in Discharge Summaries. Chap-
man WW, Bridewell W, Hanbury P, Cooper GF,
Buchanan BG. J Biomed Inform. 2001
Oct;34(5):301-10.

Zuofeng Li, Yonggang Cao, Lamont Antieau,

Shashank Agarwal, Qing Zhang, and Hong Yu.
2009. Extracting Medication Information from Pa-
tient Discharge Summaries. i2b2 Workshop in con-
junction with the AMIA Annual Symposium, San
Francisco, CA; November 13, 2009.

144

Author Index

Abu-Jbara, Amjad, 121
Agarwal, Nitin, 115
Alabau, Vicent, 68
AR, Balamurali, 127

Bandyopadhyay, Sivaji, 50
Bär, Daniel, 74
Bechet, Frederic, 86
Benotti, Luciana, 62
Berman, Alexander, 92
Bhattacharyya, Pushpak, 127

Casacuberta, Francisco, 68
Ceylan, Hakan, 103
Chang, Jason S., 26
Chen, Bo-Nian, 133
Chen, Mei-hua, 26
Chiticariu, Laura, 109

Das, Amitava, 50
Denis, Alexandre, 62
DuVall, Scott, 139

Engkoo Team, Microsoft, 44
Erbs, Nicolai, 74
Erdogmus, Deniz, 38

Favre, Benoit, 86
Ferschke, Oliver, 97
Fried-Oken, Melanie, 38

Garcı́a-Varea, Ismael, 68
Garner, Philip N., 80
Ginter, Thomas, 139
Goyal, Vishal, 1
Gurevych, Iryna, 74, 97
GVR, Kiran, 115

Hao, Yanfen, 14
Hild, Kenneth, 38

Huang, Chung-chi, 26
Huang, Shih-ting, 26

Joshi, Aditya, 127

Kiefer, Bernd, 7

Larsson, Staffan, 92
Le Roux, Joseph, 86
Leiva, Luis A., 68
Li, Cheng-Te, 32
Li, Yunyao, 109
Lin, Shou-De, 32, 133
Liu, Xiaohua, 44

Mihalcea, Rada, 103
Mohanty, Rajat, 127

Nanchen, Alexandre, 80
Nasr, Alexis, 86
Neumann, Günter, 20
Nezamfar, Hooman, 38

Oken, Barry, 38
Orhan, Umut, 38
Ortiz-Martı́nez, Daniel, 68

Popescu-Belis, Andrei, 80
Purwar, Shalini, 38

Radev, Dragomir, 121
Reddy, Ravi Shankar, 115
Reiss, Frederick, 109
Rey, Jean-Francois, 86
Roark, Brian, 38
Rosé, Carolyn Penstein, 115

Schäfer, Ulrich, 7
Schmeier, Sven, 20
Scott, Matthew R., 44
Singh Lehal, Gurpreet, 1

145

Soundrarajan, Balaji, 139
Spurk, Christian, 7
Steffen, Jörg, 7
Stymne, Sara, 56

Tseng, Chien-Lin, 32

Veale, Tony, 14
Villing, Jessica, 92

Wang, Chien-Yuan, 32
Wang, Rui, 7
Wang, Yen-Kai, 133
Weng, Jui-Yu, 133

Yang, Cheng-Lun, 133
Yazdani, Majid, 80

Zesch, Torsten, 74, 97
Zhou, Ming, 44

	Program
	Hindi to Punjabi Machine Translation System
	The ACL Anthology Searchbench
	Exploiting Readymades in Linguistic Creativity: A System Demonstration of the Jigsaw Bard
	A Mobile Touchable Application for Online Topic Graph Extraction and Exploration of Web Content
	EdIt: A Broad-Coverage Grammar Checker Using Pattern Grammar
	MemeTube: A Sentiment-based Audiovisual System for Analyzing and Displaying Microblog Messages
	An ERP-based Brain-Computer Interface for text entry using Rapid Serial Visual Presentation and Language Modeling
	Engkoo: Mining the Web for Language Learning
	Dr Sentiment Knows Everything!
	Blast: A Tool for Error Analysis of Machine Translation Output
	Prototyping virtual instructors from human-human corpora
	An Interactive Machine Translation System with Online Learning
	Wikulu: An Extensible Architecture for Integrating Natural Language Processing Techniques with Wikis
	A Speech-based Just-in-Time Retrieval System using Semantic Search
	MACAON An NLP Tool Suite for Processing Word Lattices
	Multimodal Menu-based Dialogue with Speech Cursor in DICO II+
	Wikipedia Revision Toolkit: Efficiently Accessing Wikipedia’s Edit History
	An Efficient Indexer for Large N-Gram Corpora
	SystemT: A Declarative Information Extraction System
	SciSumm: A Multi-Document Summarization System for Scientific Articles
	Clairlib: A Toolkit for Natural Language Processing, Information Retrieval, and Network Analysis
	C-Feel-It: A Sentiment Analyzer for Micro-blogs
	IMASS: An Intelligent Microblog Analysis and Summarization System
	An Interface for Rapid Natural Language Processing Development in UIMA

