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Abstract achieve this. Reinforcement Learning (RL) is an at-

tractive framework for optimising a sequence of de-

Surface realisation decisions in language gen-  ¢isjons given incomplete knowledge of the environ-
eration can be sensitive to a language model, ment or best strategy to follow (Rieser et al., 2010;

but also to decisions of content selection. We
therefore propose the joint optimisation of Janarthanam and Lemon, 2010). HRL has the ad-

content selection and surface realisation using ~ ditional advantage of scaling to large and complex
Hierarchical Reinforcement Learning (HRL). problems (Dethlefs and Cuayahuitl, 2010). Since
To this end, we suggest a novel reward func-  an HRL agent will ultimately learn the behaviour
tion that is induced from human data and is it is rewarded for, the reward function is arguably
especially suited for surface realisation. Itis  the agent's most crucial component. Previous work
based on a generation space in the form of  ,q therefore suggested to learn a reward function
a Hidden Markov Model (HMM). Results in from human data as in the PARADISE framework
terms of task success and human-likeness sug- .

gest that our unified approach performs better ~ (Walker et al., 1997). Since PARADISE-based re-
than greedy or random baselines. ward functions typically rely on objective metrics,
they are not ideally suited for surface realisation,
which is more dependend on linguistic phenomena,
e.g. frequency, consistency, and variation. However,
Surface realisation decisions in a Natural Languadiguistic and psychological studies (cited above)
Generation (NLG) system are often made accorcgshow that such phenomena are indeed worth mod-
ing to a language model of the domain (Langkildeelling in an NLG system. The contribution of this
and Knight, 1998; Bangalore and Rambow, 200Qpaper is therefore to induce a reward function from
Oh and Rudnicky, 2000; White, 2004; Belz, 2008)human data, specifically suited for surface genera-
However, there are other linguistic phenomena, sudton. To this end, we train HMMs (Rabiner, 1989)
as alignment (Pickering and Garrod, 2004), consi$n a corpus of grammatical word sequences and use
tency (Halliday and Hasan, 1976), and variationthem to inform the agent’s learning process. In addi-
which influence people’s assessment of discourdg®n, we suggest to optimise surface realisation and
(Levelt and Kelter, 1982) and generated output (Beleontent selection decisions in a joint, rather than iso-
and Reiter, 2006; Foster and Oberlander, 2006Mated, fashion. Results show that our combined ap-
Also, in dialogue the most likely surface form mayproach generates more successful and human-like
not always be appropriate, because it does not caitterances than a greedy or random baseline. This is
respond to the user’s information need, the user ielated to Angeli et al. (2010), who also address in-
confused, or the most likely sequence is infelicitouserdependent decision making, but do not use an opt-
with respect to the dialogue history. In such cases, iinisation framework. Since language models in our
is important to optimise surface realisation in a uniapproach can be obtained for any domain for which
fied fashion with content selection. We suggest toorpus data is available, it generalises to new do-
use Hierarchical Reinforcement Learning (HRL) tanains with limited effort and reduced development

1 Introduction
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Utterance

: . the one-to-many relationship arising between a se-
string="turn around and go out”, time="20:54:55’ y P 9

Utterance type mantic f_orm (frqm t_he content se_Iectlon stage) and
content="orientation,destination’ [straight, path,edition] its possible realisations. Semantic forms of instruc-
navigationlevel="low’ [high] tions have an average 660 surface realisations,

User L _ . including syntactic and lexical variation, and deci-
userreaction="performdesiredaction . f larity. Wi fer to th t of alt
[perform.undesiredaction, wait, requesielp] s_mns 0 ) gra_nu arnty. vvere _er 0 the S_’e Oiet ema'
userposition="ontrack’ [off_track] tive realisations of a semantic form as its ‘generatlon

space’. In surface realisation, we aim to optimise the
F!gure 1: Exgmplg annotation: alternative values for at,5qeoff between alignment and consistency (Picker-
tributes are given in square brackets, ing and Garrod, 2004; Halliday and Hasan, 1976) on

the one hand, and variation (to improve text quality
time. For related work on using graphical model§nd readability) on the other hand (Belz and Reiter,
for language generation, see e.g., Barzilay and Le¥)06; Foster and Oberlander, 2006) ia(g50 dis-
(2002), who use lattices, or Mairesse et al. (2010Jfibution. We evaluate the learnt surface realisation

who use dynamic Bayesian networks. decisions in terms of similarity with human data.
_ Note that while we treat content selection and
2 Generation Spaces surface realisation as separate NLG tasks, their op-

We are concerned with the generation of navigatiotﬂm'Saltlon is achieved jointly. This is due to a

instructions in a virtual 3D world as in the GIVE trlae dmég?r?gcziﬁigntgf ;gg;%snzséh;o;rgxsrg'
scenario (Koller et al., 2010). In this task, two peo-IO ' b

ple engage in a ‘treasure hunt’, where one par,[iCIr_nised solely with respect to a language model tend

. to favour frequent and short sequences, these can

pant navigates the other through the world, presswg:;e inappropriate according to the user’s information
a sequence of buttons and completing the task b pprop 9

obtaining a trophy. The GIVE-2 corpus (Gargett e[Yeed (because they are unfamiliar with the naviga-

al., 2010) provides transcripts of such dialogues iHOﬂ task, or are confused or lost). In such situa-

English and German. For this paper, we Complet_lons, it is important to treat content selection and

. . .. surface realisation as a unified whole. Decisions of
mented the English dialogues of the corpus with ) ) . .
set of semantic annotatiohsan example of which oth tasks are inextricably linked and we will show
in Section 5.2 that their joint optimisation leads to

is given in Figure 1. This example also exempli- : o :
. . etter results than an isolated optimisation as in, for
fies the type of utterances we generate. The input {0

. . : example, a two-stage model.
the system consists of semantic variables compara-
ble to the annotated values, the output correspon

to strings of words. We use HRL to optimise deci-%S NLG Using HRL and HMMs

sions of content selection (‘what to say’) and HMMs3.1  Hierarchical Reinforcement Learning
for decisions of surface realisation (‘how to say it’).

.. The i flan neration n imisa-
Content selectioninvolves whether to use a low-, or e idea oflanguage generation as an optimisa

tion problemis as follows: given a set of genera-

high-level navigatiqn S t ratg 9y- The former COnSiStﬁon states, a set of actions, and an objective reward
of a sequence of primitive instructions (‘go Stralght,’function a,n optimal genera’ttion strategy maximises

‘turn left’), the latter represents contractions of se-

. ) ‘ he objective function by choosing the actions lead-
guences of low-level instructions (‘head to the ne .
, . ) . "Ing to the highest reward for every reached state.
room’). Content selection also involves choosing

. . . . h ri h m’s knowl
level of detail for the instruction corresponding to%uc states describe the system’s knowledge about

the user’s information need. We evaluate the Iearrt&1e generation task (e.g. (':ont'ent selection, naviga-
St|(.)n gtrategy, surface reallsatl_qq). The acU_on set
describes the system’s capabilities (e‘gse high
éevel navigation strategy’‘use imperative mood’
e?c.). The reward function assigns a numeric value

The annotations are available on request. for each action taken. In this way, language gen-

For surface realisation we use HMMs to inform
the HRL agent’s learning process. Here we addre
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Figure 2: Hierarchy of learning agents (left), where shaatpents use an HMM-based reward function. The top three
layers are responsible for content selection (CS) deasionl use HRL. The shaded agents in the bottom use HRL
with an HMM-based reward function and joint optimisationcmintent selection and surface realisation (SR). They
provide the observation sequence to the HMMs. The HMMs sregeneration spaces for surface realisation. An
example HMM, representing the generation space of ‘destimanstructions, is shown on the right.

CS+SR

(HMMs) (HRL+HMMs)

SR

eration can be seen as a finite sequence of stat8s2 Hidden Markov Models for NLG

actions and reward§sg, ag, 71, S1, a1, ...y Tt—1, St } _ _ _
where the goal is to find an optimal strategy autol N€ idea of representing the generation space of

matically. To do this we use RL with a divide-and-& Surface realiser as an HMM can be roughly de-

conquer approach to optimise a hierarchy of generdned as the converse of POS tagging, where an in-
tion policies rather than a single policy. The hierarPUt String of words is mapped onto a hidden se-
chy of RL agents consists df levels andV models duence of POS tags. Our scenario is as follows:
per level, denoted a&/?, wherej € {0,... N — 1} given a set of (specialised) semantic symbols (e.g.,
andi € {0,...L — 1}]_ Each agent 7of 1[he hierar- actor’, ‘process’, ‘destination’$, what is the most
chy is defined as a Semi-Markov Decision Procesk€ly sequence of words corresponding to the sym-
(SMDP) consisting of a 4-tuple S, A%, T, R > bols? Figure 2 provides a graphic illustration of this
]7 ]7 ]7 9 * . .

i i . i idea. We treat states as representing words, and se-
5; 1 alset of ste_ltesAj 'S a set pf actions/j Is uences of stateg...i,, as representing phrases or
a transition function that determines the next stat8 " .

sentences. An observation sequengeo,, consists

s’ from the current state and the performed ac- - . . .
tion a, and R§ is a reward function that specifieso‘c‘h’lf'.nlte set Of_ serr)antl(_: sy.mb10I‘s _spec_:lflc, tf) the n-
the reward that an agent receives for taking an ag[r_uct!orf typ(,:z (‘|.e.,. de’stlnatlon, direction’, ‘orien
tion a in states lasting 7 time steps. The random tation’, ‘path, ‘straight’). Each symbol has an ob-

variable r represents the number of time steps thgervatlon likelihoodb; (o), which gives the proba-

agent takes to complete a subtask. Actions can é:!ty of o dbser\(lngo n Stzteg.lif[ tme?. IThe ttrgn-.
either primitive or composite. The former yield sin->'tion and emission probabiiities are learnt during

ini ing the Baum-Welch algorithm. To de-
le rewards, the latter correspond to SMDPs anttﬁammg using
g P Ign an HMM from the corpus data, we used the

yield cumulative discounted rewards. The goal of . . .
each SMDP is to find an optimal policy that max-ABfL algorithm (van_Z_aanen, 2.000.)’ which allgns
trings based on Minimum Edit Distance, and in-

imises the reward for each visited state, according .
uces a context-free grammar from the aligned ex-

*i() — . Q*i(s,a), whereQ*(s,
59 are Mi¥ae ) Q75(s:0) @j'(s.a) amples. Subsequently, we constructed the HMMs

specifies the expected cumulative reward for execuﬁ,—om the CFGs, one for each instruction type, and
ing actiona in states and then following policyr*. ’ '

. . . trained them on the annotated data.
We use HSMQ-Learning (Dietterich, 1999) to learn

a hierarchy of generation policies. T . L . .
Utterances typically contain five to ten semantic categorie
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3.3 An HMM-based Reward Function Induced discourse history, and status of groundin@ue to
from Human Data space constraints, please see Dethlefs et al. (2011)
for the full state-action space. We distinguish prim-

Due to its unique function in an RL framework, we. . : i . .
. . itive actions (corresponding to single generation de-
suggest to induce a reward function for surface re-

alisation from human data. To this end, we creatgiSionS). and composit_e actions  (corresponding to
and train HMMs to represent the generation spac%eneratlon subtasks (Fig. 2)).

of a particular surface realisation task. We then use Experiments and Results

the forward probability, derived from the Forward

algorithm, of an observation sequence to inform the.1 The Simulated Environment

agent's learning process. The simulated environment contains two kinds of
) 0 for reaching the goal state uncertajnties: (1) uncertainty regarding the s_tate of
. . . the environment, and (2) uncertainty concerning the
+1 for adesired semantic choice or . .
maintaining an equal distribution USEI'S reaction to a system utterance. The first as-
of alignment and variation pect is represented by a set of contextual variables
r= -2 for executing actiom and remain-  describing the environment, and user behavioGr.
ing in the same state= s’ Altogether, this leads td15 thousand different con-
P(wo...w,) for forreaching a goal state corres- . . . .
ponding to word sequenaey..w, t€Xtual configurations, which are estimated from
-1 otherwise. data (cf. Section 2). The uncertainty regarding
the user’s reaction to an utterance is represented by
Whenever the agent has generated a word sequerec®laive Bayes classifier, which is passed a set of
wy...wy, the HMM assigns a reward correspondingcontextual features describing the situation, mapped
to the likelihood of observing the sequence in thevith a set of semantic features describing the utter-
data. In addition, the agent is rewarded for shorince’! From these data, the classifier specifies the
interactions at maximal task succgsmd optimal most likely user reaction (after each system act) of
content selection (cf. Section 2). Note that while reperformdesiredaction, performundesiredaction, wait
ward P (wy...w,,) applies only to surface realisation andrequesthelp® The classifier was trained on the
agentsM; ,, the other rewards apply to all agentsannotated data and reached an accuradp¥fin a
of the hierarchy. cross-corpus validation usings@%-40% split.

4 Experimental Setting 5.2 Comparison of Generation Policies

. ~ We trained three different generation policies. The
We test our approach using the (hand-crafted) hieragart policy optimises content selection and sur-
chy of generation subtasks in Figure 2. It consists ghce realisation decisions in a unified fashion, and
a root agent {/y), and subtasks for low-leveld3) s informed by an HMM-based generation space
and high-level {/7) navigation strategies\(;), and  re\ard function. Thegreedy policy is informed
for instruction types ‘orientation’ N/3), ‘straight only by the HMM and always chooses the most
(M3), ‘direction’ (M3), ‘path’ (M3) and destina-

tion’ (Mf) Models MS’ 4 are responsible for sur- “An _example for the_ state var_iables of model! are the
annotation values in Fig. 1 which are used as the agent's

fa.ce generation. They will be tr?me_d using HRI'knowledge base. Actions are ‘choose easy route’, ‘choosk sh
with an HMM-based reward function induced fromqyte', ‘choose low level strategy’, ‘choose high levebstgy'.

human data. All other agents use hand-crafted re- Sprevious system act, route length, route status
wards. Finally, subtaslM& can repair a previous (known/unknown), objects within vision, objects within
system utterance. The states of the agent contdf/lo9ue history, number of instructions, alignment(djon)

. . . e . previous user reaction, user position, user wait-
all situational and linguistic information relevant toing(true/false), user type(explorative/hesitant/megiu
its decision making, e.g., the spatial environment, “navigation level(high / low), abstractness(implicit / ex-

plicit), repair(yes / no), instruction type(destinatiodirection /
3Task success is addressed by that each utterance needsrientation / path / straight)

be ‘accepted’ by the user (cf. Section 5.1). 8User reactions measure the system’s task success.
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likely sequence independent of content selection. -—
Thevalid sequence policygenerates any grammat- L emmsmena R sy s g v
ical sequence. All policies were trained 20000 '

episode$. Figure 3, which plots the average re-
wards of all three policies (averaged over ten runs),
shows that the ‘learnt’ policy performs best in terms
of task success by reaching the highest overall re-
wards over time. An absolute comparison of the av- -
erage rewards (rescaled frahto 1) of the last1000

training episodes of each policy shows that greedyigure 3: Performance of ‘learnt, ‘greedy’, and ‘any
improves ‘any valid sequence’ B¥1%, and learnt valid sequence’ generation behaviours (average rewards).
improves greedy bg9% (these differences are sig-
nificant atp < 0.01). This is due to the learnt policy
showing more adaptation to contextual features than_Compared Policies F-Measure  KL-Divergence

—— Valid Sequence
= = = Greedy
= = Learnt

Average Rewards

; ; ; ;
1 12 14 16 18 2
Episodes «10'

the greedy or ‘valid sequence’ policies. To evaluate Reall - Real2 0.58 1.77
human-likeness, we compare instructions (i.e. word Real - ‘Learnt’ 0.40 2.80
sequences) using Precision-Recall based on the F-Real - ‘Greedy’ 0.49 4.34
Measure score, and dialogue similarity based on the Real - ‘Valid Seq.’ 0.0 10.06

Kulback-Leibler (KL) divergence (Cuayahuitl et al., _ _ i )
2005). The former shows how the texts generated t??blg L Evaluation of generation behaviours  with

. - recision-Recall and KL-divergence.
each of our generation policies compare to human-
authored texts in terms of precision and recall. The
latter shows how similar they are to human-authoreftom data and in which the HMM represents the
texts. Table 1 shows results of the comparison ajeneration space of a surface realiser. We also
two human data sets ‘Reall’ vs ‘Real2’ and both oproposed to jointly optimise surface realisation
them together against our different policies. Whileand content selection to balance the tradeoffs of
the greedy policy receives higher F-Measure score@) frequency in terms of a language model, (b)
the learnt policy is most similar to the human dataalignment/consistency vs variation, (c) properties
This is due to variation: in contrast to greedy beef the user and environment. Results showed that
haviour, which always exploits the most likely vari-our hybrid approach outperforms two baselines in
ant, the learnt policy varies surface forms. This lead®rms of task success and human-likeness: a greedy
to lower F-Measure scores, but achieves higher sinbaseline acting independent of content selection,
ilarity with human authors. This ultimately is a de-and a random ‘valid sequence’ baseline. Future
sirable property, since it enhances the quality angork can transfer our approach to different domains

naturalness of our instructions. to confirm its benefits. Also, a detailed human
evaluation study is needed to assess the effects
6 Conclusion of different surface form variants. Finally, other

We h q | h . _q%raphical models besides HMMs, such as Bayesian
e have pre_septe a novel approac to optimisi etworks, can be explored for informing the surface

surface realisation using HRL. We suggested P alisation process of a generation system.

inform an HRL agent’s learning process by an

HMM-based reward function, which was induced
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