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Abstract

Surface realisation decisions in language gen-
eration can be sensitive to a language model,
but also to decisions of content selection. We
therefore propose the joint optimisation of
content selection and surface realisation using
Hierarchical Reinforcement Learning (HRL).
To this end, we suggest a novel reward func-
tion that is induced from human data and is
especially suited for surface realisation. It is
based on a generation space in the form of
a Hidden Markov Model (HMM). Results in
terms of task success and human-likeness sug-
gest that our unified approach performs better
than greedy or random baselines.

1 Introduction

Surface realisation decisions in a Natural Language
Generation (NLG) system are often made accord-
ing to a language model of the domain (Langkilde
and Knight, 1998; Bangalore and Rambow, 2000;
Oh and Rudnicky, 2000; White, 2004; Belz, 2008).
However, there are other linguistic phenomena, such
as alignment (Pickering and Garrod, 2004), consis-
tency (Halliday and Hasan, 1976), and variation,
which influence people’s assessment of discourse
(Levelt and Kelter, 1982) and generated output (Belz
and Reiter, 2006; Foster and Oberlander, 2006).
Also, in dialogue the most likely surface form may
not always be appropriate, because it does not cor-
respond to the user’s information need, the user is
confused, or the most likely sequence is infelicitous
with respect to the dialogue history. In such cases, it
is important to optimise surface realisation in a uni-
fied fashion with content selection. We suggest to
use Hierarchical Reinforcement Learning (HRL) to

achieve this. Reinforcement Learning (RL) is an at-
tractive framework for optimising a sequence of de-
cisions given incomplete knowledge of the environ-
ment or best strategy to follow (Rieser et al., 2010;
Janarthanam and Lemon, 2010). HRL has the ad-
ditional advantage of scaling to large and complex
problems (Dethlefs and Cuayáhuitl, 2010). Since
an HRL agent will ultimately learn the behaviour
it is rewarded for, the reward function is arguably
the agent’s most crucial component. Previous work
has therefore suggested to learn a reward function
from human data as in the PARADISE framework
(Walker et al., 1997). Since PARADISE-based re-
ward functions typically rely on objective metrics,
they are not ideally suited for surface realisation,
which is more dependend on linguistic phenomena,
e.g. frequency, consistency, and variation. However,
linguistic and psychological studies (cited above)
show that such phenomena are indeed worth mod-
elling in an NLG system. The contribution of this
paper is therefore to induce a reward function from
human data, specifically suited for surface genera-
tion. To this end, we train HMMs (Rabiner, 1989)
on a corpus of grammatical word sequences and use
them to inform the agent’s learning process. In addi-
tion, we suggest to optimise surface realisation and
content selection decisions in a joint, rather than iso-
lated, fashion. Results show that our combined ap-
proach generates more successful and human-like
utterances than a greedy or random baseline. This is
related to Angeli et al. (2010), who also address in-
terdependent decision making, but do not use an opt-
misation framework. Since language models in our
approach can be obtained for any domain for which
corpus data is available, it generalises to new do-
mains with limited effort and reduced development
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Utterance
string=“turn around and go out”, time=‘20:54:55’

Utterance type
content=‘orientation,destination’ [straight, path, direction]
navigationlevel=‘low’ [high]

User
userreaction=‘performdesiredaction’
[perform undesiredaction, wait, requesthelp]
userposition=‘on track’ [off track]

Figure 1: Example annotation: alternative values for at-
tributes are given in square brackets.

time. For related work on using graphical models
for language generation, see e.g., Barzilay and Lee
(2002), who use lattices, or Mairesse et al. (2010),
who use dynamic Bayesian networks.

2 Generation Spaces

We are concerned with the generation of navigation
instructions in a virtual 3D world as in the GIVE
scenario (Koller et al., 2010). In this task, two peo-
ple engage in a ‘treasure hunt’, where one partici-
pant navigates the other through the world, pressing
a sequence of buttons and completing the task by
obtaining a trophy. The GIVE-2 corpus (Gargett et
al., 2010) provides transcripts of such dialogues in
English and German. For this paper, we comple-
mented the English dialogues of the corpus with a
set of semantic annotations,1 an example of which
is given in Figure 1. This example also exempli-
fies the type of utterances we generate. The input to
the system consists of semantic variables compara-
ble to the annotated values, the output corresponds
to strings of words. We use HRL to optimise deci-
sions of content selection (‘what to say’) and HMMs
for decisions of surface realisation (‘how to say it’).
Content selectioninvolves whether to use a low-, or
high-level navigation strategy. The former consists
of a sequence of primitive instructions (‘go straight’,
‘turn left’), the latter represents contractions of se-
quences of low-level instructions (‘head to the next
room’). Content selection also involves choosing a
level of detail for the instruction corresponding to
the user’s information need. We evaluate the learnt
content selection decisions in terms of task success.
For surface realisation, we use HMMs to inform
the HRL agent’s learning process. Here we address

1The annotations are available on request.

the one-to-many relationship arising between a se-
mantic form (from the content selection stage) and
its possible realisations. Semantic forms of instruc-
tions have an average of650 surface realisations,
including syntactic and lexical variation, and deci-
sions of granularity. We refer to the set of alterna-
tive realisations of a semantic form as its ‘generation
space’. In surface realisation, we aim to optimise the
tradeoff between alignment and consistency (Picker-
ing and Garrod, 2004; Halliday and Hasan, 1976) on
the one hand, and variation (to improve text quality
and readability) on the other hand (Belz and Reiter,
2006; Foster and Oberlander, 2006) in a50/50 dis-
tribution. We evaluate the learnt surface realisation
decisions in terms of similarity with human data.

Note that while we treat content selection and
surface realisation as separate NLG tasks, their op-
timisation is achieved jointly. This is due to a
tradeoff arising between the two tasks. For exam-
ple, while surface realisation decisions that are opti-
mised solely with respect to a language model tend
to favour frequent and short sequences, these can
be inappropriate according to the user’s information
need (because they are unfamiliar with the naviga-
tion task, or are confused or lost). In such situa-
tions, it is important to treat content selection and
surface realisation as a unified whole. Decisions of
both tasks are inextricably linked and we will show
in Section 5.2 that their joint optimisation leads to
better results than an isolated optimisation as in, for
example, a two-stage model.

3 NLG Using HRL and HMMs

3.1 Hierarchical Reinforcement Learning

The idea oflanguage generation as an optimisa-
tion problem is as follows: given a set of genera-
tion states, a set of actions, and an objective reward
function, an optimal generation strategy maximises
the objective function by choosing the actions lead-
ing to the highest reward for every reached state.
Such states describe the system’s knowledge about
the generation task (e.g. content selection, naviga-
tion strategy, surface realisation). The action set
describes the system’s capabilities (e.g.‘use high
level navigation strategy’, ‘use imperative mood’,
etc.). The reward function assigns a numeric value
for each action taken. In this way, language gen-
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Figure 2: Hierarchy of learning agents (left), where shadedagents use an HMM-based reward function. The top three
layers are responsible for content selection (CS) decisions and use HRL. The shaded agents in the bottom use HRL
with an HMM-based reward function and joint optimisation ofcontent selection and surface realisation (SR). They
provide the observation sequence to the HMMs. The HMMs represent generation spaces for surface realisation. An
example HMM, representing the generation space of ‘destination’ instructions, is shown on the right.

eration can be seen as a finite sequence of states,
actions and rewards{s0, a0, r1, s1, a1, ..., rt−1, st},
where the goal is to find an optimal strategy auto-
matically. To do this we use RL with a divide-and-
conquer approach to optimise a hierarchy of genera-
tion policies rather than a single policy. The hierar-
chy of RL agents consists ofL levels andN models
per level, denoted asM i

j , wherej ∈ {0, ..., N − 1}
and i ∈ {0, ..., L − 1}. Each agent of the hierar-
chy is defined as a Semi-Markov Decision Process
(SMDP) consisting of a 4-tuple< Si

j, A
i
j , T

i
j , R

i
j >.

Si
j is a set of states,Ai

j is a set of actions,T i
j is

a transition function that determines the next state
s′ from the current states and the performed ac-
tion a, and Ri

j is a reward function that specifies
the reward that an agent receives for taking an ac-
tion a in states lasting τ time steps. The random
variableτ represents the number of time steps the
agent takes to complete a subtask. Actions can be
either primitive or composite. The former yield sin-
gle rewards, the latter correspond to SMDPs and
yield cumulative discounted rewards. The goal of
each SMDP is to find an optimal policy that max-
imises the reward for each visited state, according to
π∗i

j(s) = arg maxa∈Ai
j
Q∗i

j(s, a), whereQ∗i
j (s, a)

specifies the expected cumulative reward for execut-
ing actiona in states and then following policyπ∗i

j.
We use HSMQ-Learning (Dietterich, 1999) to learn
a hierarchy of generation policies.

3.2 Hidden Markov Models for NLG

The idea of representing the generation space of
a surface realiser as an HMM can be roughly de-
fined as the converse of POS tagging, where an in-
put string of words is mapped onto a hidden se-
quence of POS tags. Our scenario is as follows:
given a set of (specialised) semantic symbols (e.g.,
‘actor’, ‘process’, ‘destination’),2 what is the most
likely sequence of words corresponding to the sym-
bols? Figure 2 provides a graphic illustration of this
idea. We treat states as representing words, and se-
quences of statesi0...in as representing phrases or
sentences. An observation sequenceo0...on consists
of a finite set of semantic symbols specific to the in-
struction type (i.e., ‘destination’, ‘direction’, ‘orien-
tation’, ‘path’, ‘straight’). Each symbol has an ob-
servation likelihoodbi(ot), which gives the proba-
bility of observingo in statei at time t. The tran-
sition and emission probabilities are learnt during
training using the Baum-Welch algorithm. To de-
sign an HMM from the corpus data, we used the
ABL algorithm (van Zaanen, 2000), which aligns
strings based on Minimum Edit Distance, and in-
duces a context-free grammar from the aligned ex-
amples. Subsequently, we constructed the HMMs
from the CFGs, one for each instruction type, and
trained them on the annotated data.

2Utterances typically contain five to ten semantic categories.
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3.3 An HMM-based Reward Function Induced
from Human Data

Due to its unique function in an RL framework, we
suggest to induce a reward function for surface re-
alisation from human data. To this end, we create
and train HMMs to represent the generation space
of a particular surface realisation task. We then use
the forward probability, derived from the Forward
algorithm, of an observation sequence to inform the
agent’s learning process.

r =


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




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









0 for reaching the goal state
+1 for a desired semantic choice or

maintaining an equal distribution
of alignment and variation

-2 for executing actiona and remain-
ing in the same states = s′

P (w0...wn) for for reaching a goal state corres-
ponding to word sequencew0...wn

-1 otherwise.

Whenever the agent has generated a word sequence
w0...wn, the HMM assigns a reward corresponding
to the likelihood of observing the sequence in the
data. In addition, the agent is rewarded for short
interactions at maximal task success3 and optimal
content selection (cf. Section 2). Note that while re-
wardP (w0...wn) applies only to surface realisation
agentsM3

0...4, the other rewards apply to all agents
of the hierarchy.

4 Experimental Setting

We test our approach using the (hand-crafted) hierar-
chy of generation subtasks in Figure 2. It consists of
a root agent (M0

0
), and subtasks for low-level (M2

0
)

and high-level (M2

1
) navigation strategies (M1

1
), and

for instruction types ‘orientation’ (M3

0
), ‘straight’

(M3
1
), ‘direction’ (M3

2
), ‘path’ (M3

3
) and destina-

tion’ (M3
4
). ModelsM3

0...4 are responsible for sur-
face generation. They will be trained using HRL
with an HMM-based reward function induced from
human data. All other agents use hand-crafted re-
wards. Finally, subtaskM1

0
can repair a previous

system utterance. The states of the agent contain
all situational and linguistic information relevant to
its decision making, e.g., the spatial environment,

3Task success is addressed by that each utterance needs to
be ‘accepted’ by the user (cf. Section 5.1).

discourse history, and status of grounding.4 Due to
space constraints, please see Dethlefs et al. (2011)
for the full state-action space. We distinguish prim-
itive actions (corresponding to single generation de-
cisions) and composite actions (corresponding to
generation subtasks (Fig. 2)).

5 Experiments and Results

5.1 The Simulated Environment

The simulated environment contains two kinds of
uncertainties: (1) uncertainty regarding the state of
the environment, and (2) uncertainty concerning the
user’s reaction to a system utterance. The first as-
pect is represented by a set of contextual variables
describing the environment,5 and user behaviour.6

Altogether, this leads to115 thousand different con-
textual configurations, which are estimated from
data (cf. Section 2). The uncertainty regarding
the user’s reaction to an utterance is represented by
a Naive Bayes classifier, which is passed a set of
contextual features describing the situation, mapped
with a set of semantic features describing the utter-
ance.7 From these data, the classifier specifies the
most likely user reaction (after each system act) of
performdesiredaction, performundesiredaction, wait
and requesthelp.8 The classifier was trained on the
annotated data and reached an accuracy of82% in a
cross-corpus validation using a60%-40% split.

5.2 Comparison of Generation Policies

We trained three different generation policies. The
learnt policy optimises content selection and sur-
face realisation decisions in a unified fashion, and
is informed by an HMM-based generation space
reward function. Thegreedy policy is informed
only by the HMM and always chooses the most

4An example for the state variables of modelM1
1 are the

annotation values in Fig. 1 which are used as the agent’s
knowledge base. Actions are ‘choose easy route’, ‘choose short
route’, ‘choose low level strategy’, ‘choose high level strategy’.

5previous system act, route length, route status
(known/unknown), objects within vision, objects within
dialogue history, number of instructions, alignment(proportion)

6previous user reaction, user position, user wait-
ing(true/false), user type(explorative/hesitant/medium)

7navigation level(high / low), abstractness(implicit / ex-
plicit), repair(yes / no), instruction type(destination /direction /
orientation / path / straight)

8User reactions measure the system’s task success.
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likely sequence independent of content selection.
Thevalid sequence policygenerates any grammat-
ical sequence. All policies were trained for20000
episodes.9 Figure 3, which plots the average re-
wards of all three policies (averaged over ten runs),
shows that the ‘learnt’ policy performs best in terms
of task success by reaching the highest overall re-
wards over time. An absolute comparison of the av-
erage rewards (rescaled from0 to 1) of the last1000
training episodes of each policy shows that greedy
improves ‘any valid sequence’ by71%, and learnt
improves greedy by29% (these differences are sig-
nificant atp < 0.01). This is due to the learnt policy
showing more adaptation to contextual features than
the greedy or ‘valid sequence’ policies. To evaluate
human-likeness, we compare instructions (i.e. word
sequences) using Precision-Recall based on the F-
Measure score, and dialogue similarity based on the
Kulback-Leibler (KL) divergence (Cuayáhuitl et al.,
2005). The former shows how the texts generated by
each of our generation policies compare to human-
authored texts in terms of precision and recall. The
latter shows how similar they are to human-authored
texts. Table 1 shows results of the comparison of
two human data sets ‘Real1’ vs ‘Real2’ and both of
them together against our different policies. While
the greedy policy receives higher F-Measure scores,
the learnt policy is most similar to the human data.
This is due to variation: in contrast to greedy be-
haviour, which always exploits the most likely vari-
ant, the learnt policy varies surface forms. This leads
to lower F-Measure scores, but achieves higher sim-
ilarity with human authors. This ultimately is a de-
sirable property, since it enhances the quality and
naturalness of our instructions.

6 Conclusion

We have presented a novel approach to optimising
surface realisation using HRL. We suggested to
inform an HRL agent’s learning process by an
HMM-based reward function, which was induced

9For training, the step-size parameterα (one for each
SMDP) , which indicates the learning rate, was initiated with
1 and then reduced over time byα = 1

1+t
, wheret is the time

step. The discount rateγ, which indicates the relevance of fu-
ture rewards in relation to immediate rewards, was set to0.99,
and the probability of a random actionǫ was0.01. See Sutton
and Barto (1998) for details on these parameters.
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Figure 3: Performance of ‘learnt’, ‘greedy’, and ‘any
valid sequence’ generation behaviours (average rewards).

Compared Policies F-Measure KL-Divergence

Real1 - Real2 0.58 1.77
Real - ‘Learnt’ 0.40 2.80
Real - ‘Greedy’ 0.49 4.34
Real - ‘Valid Seq.’ 0.0 10.06

Table 1: Evaluation of generation behaviours with
Precision-Recall and KL-divergence.

from data and in which the HMM represents the
generation space of a surface realiser. We also
proposed to jointly optimise surface realisation
and content selection to balance the tradeoffs of
(a) frequency in terms of a language model, (b)
alignment/consistency vs variation, (c) properties
of the user and environment. Results showed that
our hybrid approach outperforms two baselines in
terms of task success and human-likeness: a greedy
baseline acting independent of content selection,
and a random ‘valid sequence’ baseline. Future
work can transfer our approach to different domains
to confirm its benefits. Also, a detailed human
evaluation study is needed to assess the effects
of different surface form variants. Finally, other
graphical models besides HMMs, such as Bayesian
Networks, can be explored for informing the surface
realisation process of a generation system.
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