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Abstract

We describe a method for disambiguating Chi-
nese commas that is central to Chinese sen-
tence segmentation. Chinese sentence seg-
mentation is viewed as the detection of loosely
coordinated clauses separated by commas.
Trained and tested on data derived from the
Chinese Treebank, our model achieves a clas-
sification accuracy of close to 90% overall,
which translates to an F1 score of 70% for
detecting commas that signal sentence bound-
aries.

1 Introduction

Sentence segmentation, or the detection of sentence
boundaries, is very much a solved problem for En-
glish. Sentence boundaries can be determined by
looking for periods, exclamation marks and ques-
tion marks. Although the symbol (dot) that is used to
represent period is ambiguous because it is also used
as the decimal point or in abbreviations, its resolu-
tion only requires local context. It can be resolved
fairly easily with rules in the form of regular expres-
sions or in a machine-learning framework (Reynar
and Ratnaparkhi, 1997).

Chinese also uses periods (albeit with a different
symbol), question marks, and exclamation marks to
indicate sentence boundaries. Where these punctua-
tion marks exist, sentence boundaries can be unam-
biguously detected. The difference is that the Chi-
nese comma also functions similarly as the English
period in some context and signals the boundary of a
sentence. As a result, if the commas are not disam-
biguated, Chinese would have these “run-on” sen-
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tences that can only be plausibly translated into mul-
tiple English sentences. An example is given in (1),
where one Chinese sentence is plausibly translated
into three English sentences.
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X nano 3, [1118 &[] BT
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speaking,  Zhuoyue ~ s price relatively
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low DE, and can guarantee be genuine
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“I have been paying attention to this Nano 3 re-
cently, [1] and I even visited a few computer
stores in person. [2] Comparatively speaking,
[3] Zhuoyue’ s prices are relatively low, [4]
and they can also guarantee that their products
are genuine. [5] Therefore I placed the order.”

In this paper, we formulate Chinese sentence seg-
mentation as a comma disambiguation problem. The
problem is basically one of separating commas that
mark sentence boundaries (such as [2] and [5] in (1))
from those that do not (such as [1], [3] and [4]).
Sentences that can be split on commas are gener-
ally loosely coordinated structures that are syntacti-
cally and semantically complete on their own, and
they do not have a close syntactic relation with one
another. We believe that a sentence boundary detec-
tion task that disambiguates commas, if successfully
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solved, simplifies downstream tasks such as parsing P
and Machine Translation.

The rest of the paper is organized as follows. In P—TRUT P L PUY P PU
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sults. Section 5 discusses related work. Section 6 #R | A NP VP
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2 Obtaining data
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To our knowledge, there is no data in the public
domain with commas explicitly annotated based on
whether they mark sentence boundaries. One could
imagine using parallel data where a Chinese sen-
tence is word-aligned with multiple English sen-
tences, but such data is generally noisy and com-
mas are not disambiguated based on a uniform stan-
dard. We instead pursued a different path and de-
rived our training and test data from the Chinese
Treebank (CTB). The CTB does not disambiguate
commas explicitly, and just like the Penn English
Treebank (Marcus et al., 1993), the sentence bound-
aries in the CTB are identified by periods, exclama-
tion and question marks. However, there are clear
syntactic patterns that can be used to disambiguate
the two types of commas. Commas that mark sen-
tence boundaries delimit loosely coordinated top-
level IPs, as illustrated in Figure 1, and commas that
don’t cover all other cases. One such example is
Figure 2, where a PP is separated from the rest of
the sentence with a comma. We devised a heuristic
algorithm to detect loosely coordinated structures in
the Chinese Treebank, and labeled each comma with
either EOS (end of a sentence) or Non-EOS (not the
end of a sentence).

3 Learning

After the commas are labeled, we have basically
turned comma disambiguation into a binary classi-
fication problem. The syntactic structures are an
obvious source of information for this classification
task, so we parsed the entire CTB 6.0 in a round-
robin fashion. We divided CTB 6.0 into 10 portions,
and parsed each portion with a model trained on
other portions, using the Berkeley parser (Petrov and
Klein, 2007). The labels for the commas are derived
632

Figure 1: Sentence-boundary denoting comma
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Figure 2: Non-sentence boundary denoting comma

from the gold-standard parses using the heuristics
described in Section 2, as they obviously should be.
We first established a baseline by applying the same
heuristic algorithm to the automatic parses. This will
give us a sense of how accurately commas can be
disambiguated given imperfect parses. The research
question we’re trying to address here basically is:
can we improve on the baseline accuracy with a ma-
chine learning model?

We conducted our experiments with a Maximum
Entropy classifier trained with the Mallet package
(McCallum, 2002). The following are the features
we used to train our classifier. All features are de-
scribed relative to the comma being classified and
the context is the sentence that the comma is in. The
actual feature values for the first comma in Figure 1
are given as examples:

1. Part-of-speech tag of the previous word, and
the string representation of the previous word
if it has a frequency of greater than 20 in the
training corpus, e.g., fI=VV, f2=1[X.

2. Part-of-speech of the following word and the
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string representation of the following word if it
has a frequency of greater than 20 in the train-
ing corpus, e.g., f3=JJ, f4="H X

3. The string representation of the following word
if it occurs more than 12,000 times in sentence-
initial positions in a large corpus external to our
training and test data.!

4. The phrase label of the left sibling and the
phrase label of their right sibling in the syntac-
tic parse tree, as well as their conjunction, e.g,
f6=IP, f7=IP, f8=1P+IP

5. The conjunction of the ancestors, the phrase la-
bel of the left sibling, and the phrase label of
the right sibling. The ancestor is defined as the
path from the parent of the comma to the root
node of the parse tree, e.g., f9=IP+I1P+IP.

6. Whether there is a subordinating conjunction
(e.g., “if”, “because”) to the left of the comma.
The search starts at the comma and stops at the
previous punctuation mark or the beginning of
the sentence, e.g., fl0=noCS.

7. Whether the parent of the comma is a coordi-
nating IP construction. A coordinating IP con-
struction is an IP that dominates a list of coor-
dinated IPs, e.g., fl1=CoordIP.

8. Whether the comma is a top-level child, defined
as the child of the root node of the syntactic
tree, e.g., fI2=top.

9. Whether the parent of the comma is a
top-level coordinating IP construction, e.g.,
fl13=top+coordIP.

10. The punctuation mark template for this sen-
tence, e.g., fl4=,+,4+ -

11. whether the length difference between the left
and right segments of the comma is smaller
than 7. The left (right) segment spans from the
previous (next) punctuation mark or the begin-
ning (end) of the sentence to the comma, e.g.,
f15=>7

4 Results and discussion

Our comma disambiguation models are trained and
evaluated on a subset of the Chinese TreeBank
(CTB) 6.0, released by the LDC. The unused por-
tion of CTB 6.0 consists of broadcast news data that

!This feature is not instantiated here because the following
word in this example does not occur with sufficient accuracy.
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contains disfluencies, different from the rest of the
CTB 6.0. We used the training/test data split rec-
ommended in the Chinese Treebank documentation.
The CTB file IDs used in our experiments are listed
in Table 1. The automatic parses in each test set
are produced by retraining the Berkeley parser on
its corresponding training set, plus the unused por-
tion of the CTB 6.0. Measured by the ParsEval met-
ric (Black et al., 1991), the parsing accuracy on the
CTB test set stands at 83.63% (F-score), with a pre-
cision of 85.66% and a recall of 81.69%.

Data Train Test
41-325, 400-454, 500-554 1-40
CTB 590-596, 600-885, 900 901-931
1001-1078, 1100-1151

Table 1: Data set division.

There are 1,510 commas in the test set, and our
heuristic baseline algorithm is able to correctly label
1,321 or 87.5% of the commas. Among these, 250
or 16.6% of them are EOS commas that mark sen-
tence boundaries and 1,260 of them are Non-EOS
commas. The results of our experiments are pre-
sented in Table 2. The baseline precision and recall
for the EOS commas are 59.1% and 79.6% respec-
tively with an F1 score of 67.8% . For Non-EOS
commas, the baseline precision and recall are 95.7%
and 89.0% respectively, amounting to an F1 score of
70.1%. The learned maximum classifier achieved a
modest improvement over the baseline. The over-
all accuracy of the learned model is 89.2%, just shy
of 90%. The precision and recall for EOS commas
are 64.7% and 76.4% respectively and the combined
F1 score is 70.1%. For Non-EOS commas, the pre-
cision and recall are 95.1% and 91.7% respectively,
with the F1 score being 93.4%. Other than a list
of most frequent words that start a sentence, all the
features are extracted from the sentence the comma
occurs in. Given that the heuristic algorithm and the
learned model use essentially the same source of in-
formation, we attribute the improvement to the use
of lexical features that the heuristic algorithm cannot
easily take advantage of.

Table 3 shows the contribution of individual fea-
ture groups. The numbers reflect the accuracy when
each feature group is taken out of the model. While
all the features have made a contribution to the over-



Baseline Learning
(%) p r fl p r fl
Overall 87.5 89.2
EOS 59.1 | 79.6 | 67.8 || 64.7 | 76.4 | 70.1
Non- 95.7 | 89.0 | 92.2 || 95.1 | 91.7 | 93.4
EOS

Table 2: Accuracy for the baseline heuristic algorithm
and the learned model

all accuracy on the development set, some of the
features (3 and 8) actually hurt the overall perfor-
mance slightly on the test set. What’s interesting is
while the heuristic algorithm that is based entirely
on syntactic structure produced a strong baseline,
when formulated as features they are not at all effec-
tive. In particular, feature groups 7, 8, 9 are explicit
reformulations of the heuristic algorithm, but they
all contributed very little to or even slightly hurt the
overall performance. The more effective features are
the lexical features (1, 2, 10, 11) probably because
they are more robust. What this suggests is that we
can get reasonable sentence segmentation accuracy
without having to parse the sentence (or rather, the
multi-sentence group) first. The sentence segmenta-
tion can thus come before parsing in the processing
pipeline even in a language like Chinese where sen-
tences are not unambiguously marked.

overall | f1 (EOS) | f1 (non-EOS)
all 89.2 70.1 934
-(1,2) | 875 67.7 92.3
-10 87.8 67.5 92.5
-11 88.6 68.6 93.1
-4 89.0 69.6 93.3
-5 89.1 69.5 93.3
-6 89.1 69.9 93.4
-7 89.1 70.1 93.4
-9 89.1 69.7 93.3
-8 89.2 70.5 934
-3 89.4 70.5 93.5

Table 3: Feature effectiveness

5 Related work

There has been a fair amount of research on punctua-
tion prediction or generation in the context of spoken
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language processing (Lu and Ng, 2010; Guo et al.,
2010). The task presented here is different in that the
punctuation marks are already present in the text and
we are only concerned with punctuation marks that
are semantically ambiguous. Our specific focus is
on the Chinese comma, which sometimes signals a
sentence boundary and sometimes doesn’t. The Chi-
nese comma has also been studied in the context of
syntactic parsing for long sentences (Jin et al., 2004;
Li et al., 2005), where the study of comma is seen as
part of a “divide-and-conquer” strategy to syntactic
parsing. Long sentences are split into shorter sen-
tence segments on commas before they are parsed,
and the syntactic parses for the shorter sentence seg-
ments are then assembled into the syntactic parse for
the original sentence. We study comma disambigua-
tion in its own right aimed at helping a wide range of
NLP applications that include parsing and Machine
Translation.

6 Conclusion

The main goal of this short paper is to bring to
the attention of the field a problem that has largely
been taken for granted. We show that while sen-
tence boundary detection in Chinese is a relatively
easy task if formulated based on purely orthographic
grounds, the problem becomes much more challeng-
ing if we delve deeper and consider the semantic and
possibly the discourse basis on which sentences are
segmented. Seen in this light, the central problem
to Chinese sentence segmentation is comma disam-
biguation. We trained a statistical model using data
derived from the Chinese Treebank and reported
promising preliminary results. Much remains to be
done regarding how sentences in Chinese should be
segmented and how this problem should be modeled
in a statistical learning framework.
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