
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:shortpapers, pages 603–608,
Portland, Oregon, June 19-24, 2011. c©2011 Association for Computational Linguistics

Semantic Information and Derivation Rules for Robust Dialogue Act
Detection in a Spoken Dialogue System

Wei-Bin Liang1 Chung-Hsien Wu2

Department of Computer Science and
Information Engineering

National Cheng Kung University
Tainan, Taiwan

1liangnet@gmail.com
2chunghsienwu@gmail.com

Chia-Ping Chen
Department of Computer Science

and Engineering
National Sun Yat-sen University

Kaohsiung, Taiwan
cpchen@mail.cse.nsysu.edu.tw

Abstract

In this study, a novel approach to robust di-
alogue act detection for error-prone speech
recognition in a spoken dialogue system is
proposed. First, partial sentence trees are pro-
posed to represent a speech recognition out-
put sentence. Semantic information and the
derivation rules of the partial sentence trees
are extracted and used to model the relation-
ship between the dialogue acts and the deriva-
tion rules. The constructed model is then used
to generate a semantic score for dialogue act
detection given an input speech utterance. The
proposed approach is implemented and evalu-
ated in a Mandarin spoken dialogue system for
tour-guiding service. Combined with scores
derived from the ASR recognition probabil-
ity and the dialogue history, the proposed ap-
proach achieves 84.3% detection accuracy, an
absolute improvement of 34.7% over the base-
line of the semantic slot-based method with
49.6% detection accuracy.

1 Introduction

An intuitive framework for spoken dialogue system
(SDS) can be regarded as a chain process. Specifi-
cally, the automatic speech recognition (ASR) mod-
ule accepts the user’s utteranceUt and returns a
string of wordsWt The spoken language under-
standing (SLU) module convertsWt to an abstract
representation of the user’s dialogue act (DA). The
dialogue management (DM) module determines the
user’s dialogue actA∗

t and accordingly decides the
current act of the system. The system DA is con-
verted to a surface representation by natural lan-

Figure 1: Details of the SLU and DM modules.

guage generation in the textual form, which is
passed to a text-to-speech synthesizer for speech
waveform generation. The cycle repeats when the
user responds with a new utterance. Clearly, one can
see that the inference of the user’s overall intention
via DA detection is an important task in SDS.

Figure 1 depicts the training and test phases of
the SLU module and the DM module in our system.
The dataflow for training and testing are indicated
by blue arrows and red arrows, respectively. The
input word sequences are converted to partial sen-
tence trees (PST) (Wu and Chen, 2004) in the PST
Construction block. The derivation rule (DR) Gen-
eration block extracts derivation rules from the train-
ing text. The DR-DA matrix is created after cluster-
ing the sentences into different dialogue acts (DAs),
counting the occurrences the DRs in DA, and intro-
ducing an entropy-based weighting scheme (Belle-
garda, 2000). This matrix is pivotal in the computa-
tion of the lexical score. Finally, the lexical, the his-
tory, and the ASR scores are combined to decide the
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optimal dialogue act, and a proper action by the sys-
tem is taken. In our system, not only the clean text
data but also the noisy ASR output data are used in
order to take the error-proneness of ASR output into
account. Furthermore, a predefined keyword list is
used and the keyword tokens are replaced by the cor-
responding named entity classes (NEC) in order to
obtain a compact feature set.

2 Models for Dialogue Act Detection

Referring to the SDS depicted in Figure 1, the DA
detection can be formulated as follows. At turnt,
the most likely DA is determined by

A∗
t = arg max

A∈Ω
Pr(A|Ut, Ht), (1)

whereUt is the user’s utterance,Ht is the dialogue
historical information, andΩ = {A1, . . . , Aq} is the
set of DAs. Using the maximum approximation for
summation, (1) can be written as

A∗
t = arg max

A∈Ω

∑

W

Pr(A,W|Ut, Ht)

≈ arg max
A∈Ω

max
W

Pr(A,W|Ut, Ht)

= arg max
A∈Ω,W

Pr(W|Ut, Ht)Pr(A|W, Ut, Ht),

(2)
whereW is the ASR output. Since the ASR output
is independent ofHt givenUt, the ASR-related first
term in (2) can be re-written as

Pr(W|Ut, Ht) = Pr(W|Ut) ∝ f(W, Ut), (3)

where the functionf(W, Ut) is introduced as the
ASR score function. In addition, assuming that the
information provided byUt is completely conveyed
in W, we can approximate the second term in (3) by
the product of two functions

Pr(A|W, Ut, Ht) = Pr(A|W, Ht)

∝ g(A,W) h(A, Ht),
(4)

whereg(A,W) is introduced as the lexical score
function, andh(A, Ht) is introduced as the history
score function. Thus, (3) can be re-written as

A∗
t ≈ arg max

A∈Ω,W

f(W, Ut) g(A,W) h(A, Ht). (5)

In Sections 3 and 4, we specify and explain how the
scores in (5) are computed.

Figure 2: An example of a dialogue management mod-
ule usingn-gram model for dialogue act sequence in the
domain of historic spot.

3 ASR Score and History Score

For the ASR score, we use the conventional recog-
nition probability of the ASR recognition model.
For the history score, similar to the schemes used
in (Hori et al., 2009c; Hori et al., 2009b; Hori et al.,
2009a), a back-off bi-gram model for DA sequence
is estimated from the data collected by the SDS. The
estimated bi-gram model is used to calculate the his-
tory score. That is,

h(A, Ht) = Pr(At = A | At−1). (6)

Essentially, (6) is based on a Markov model assump-
tion for the chain of the dialogue acts. Figure 2
shows an example of dialogue controlling model of
an SDS. In this example, each state represents a DA.
A dialogue begins with the greeting state and ends
with the ending state. During a session, a user can
inquire the system about the provided services and
then choose one service to continue (e.g., the loop-
back connection in Figure 2).

4 The Lexical Score Function

The main challenge of this system is the computa-
tion of the lexical scoreg(A,W). In this paper, we
propose a novel data-driven scheme incorporating
many techniques.

4.1 Construction of Partial Sentence Tree

In an SDS, it is often beneficial to define a set of
keywordsK, and a set of non-keywordsN . Each
word w ∈ K should be indicative of the DA of
the sentence. The set of sentencesS containing
at least one keyword inK, can be represented as
S = N ∗ (K N ∗)+, whereK+ means a string of one
or more words inK. Given a sentences ∈ S, a par-
tial sentence is formed by keeping all the keywords
in s and some of the non-keywords ins. These
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Figure 3: Construction of the partial sentence tree for the
sentenceWhere is the Anping-Fort.

partial sentences can be compiled in a tree, called
the partial sentence tree (PST) and denoted asT (s).
The motivation for using PST is to achieve robust
DA detection as the ASR module could be error-
prone in adverse environments. In addition, words
that are not confidently recognized are replaced by
a special non-keyword token calledFiller. Specif-
ically, we compute thez-score (Larsen and Marx,
2000) of each wordw in the ASR output. Figure 3
illustrates the PST for the sentences: Where is the
Anping-Fort. There are two keywordsWhere and
Anping-Fort and two non-keywordsis andthe. Note
that with2 non-keywords in the original sentences,
we have22 = 4 partial sentences in the PSTT (s).

4.2 Extraction of the Derivation Rules

After text processing, a sentences is parsed by the
statistical Stanford parser (S-parser) (Levy and Man-
ning, 2003). Let the grammar of the S-parser be
denoted as a5-tuple G = (V , Σ,P, S, D) where
V is the variable (non-terminal) set,Σ is the termi-
nal symbol set,P is the production rule set,S is the
sentence symbol, andD is a function defined onP
for rule probability (Jurafsky and Martin, 2009). A
derivation rule is defined to be a derivation of the
form A → B → w whereA, B ∈ V andw ∈ Σ.
The parsing result of the exemplar sentences repre-
sented in the parenthesized expression is shown in
Figure 4. From the parsing result, four DRs are ex-
tracted. Essentially, we have one DR for each lexical
word in the sentence. Totally, given a corpus,l rules
are extracted and defined asD = {R1, R2, . . . , Rl}.

Based on PSTT (s) and DR setD, a vector rep-
resentationv(s) for sentences can be constructed
according to the DRs used inT (s). That is

vi(s) =

{

1, if Ri ∈ T (s)

0, otherwise
(7)

Parse Result Derivation Rule
(Root DR1: WHADVP (WRB Where)
(SINV DR2: VP (VBZ is)
(FRAG DR3: NP (DT the)
(WHADVP (WRB Where))) DR4: NP (NNP Anping-Fort)
(VP (VBZ is))
(NP (DT the) (NNP Anping-Fort))))

Figure 4: The parse result (left) and the extracted deriva-
tion rules (right) for the exemplar sentences.

For example,v(s) = [1 0 1 0]T means that there are
four derivation rules, of whichR1 andR3 are used
in T (s). The motivation for using DRs instead of
the lexical words is to incorporate the part-of-speech
(POS) tags information. POS tags are helpful in
the disambiguation of noun-and-verb homonyms in
Chinese. Moreover, the probabilistic nature of the
S-parser renders the DRs extracted from the pars-
ing results quite robust and consistent, even for the
error-prone ASR output sentences.

4.3 Generation of Dialogue Acts

The basic idea of data-driven DA is to cluster sen-
tences in the set and identify the clusters as formed
by the sentences of the same DA. In this work, the
spectral clustering algorithm (von Luxburg, 2007) is
employed for sentence clustering. Specifically, sup-
pose we have n vectors represented asC = {vk ,

v(sk), k = 1, . . . , n} converted from sentences ac-
cording to (7). FromC, we construct ann × n sim-
ilarity matrix M , in which each elementMkk′ is
a symmetric nonnegative distance measure between
vk andvk′ . In this work, we use the cosine measure.
The matrixM can be regarded as the adjacency ma-
trix of a graphG with node setN and edge setE ,
whereN is 1-to-1 correspondent to the setC, andE
corresponds to the non-zero entries inM . The nor-
malized Laplacian matrix ofM is

L , I −D−
1

2 MD−
1

2 , (8)

whereD is a diagonal matrix with entries

Dkk′ = δkk′

n
∑

j=1

Mkj . (9)

It has been shown (von Luxburg, 2007) that the mul-
tiplicity of the eigenvalue0 for L equals the num-
ber of disjoint connected components inG. In our
implementation, we find theq eigenvectors of the
normalized Laplacian matrix ofM of the smallest
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eigenvalues. We put these eigenvectors in ann × q

orthogonal matrixQ, and cluster the row vectors to
q clusters. Each cluster correspond to a data-driven
DA Aj , and then sentences are classified according
to the cluster they belong to.

In order to use the DRs in a PST as a knowl-
edge source for DA detection, we essentially need to
model the relationship between the random DA and
the random DR. Denote the random DA byX and
the random DR byY . Given a text corpus, letnij be
the accumulated count thatRi occurs in a sentence
labeled asAj . Fromnij , the conditional probability
of Y = Aj givenX = Ri can be defined as

γij = p̂(Y = Aj |X = Ri) ,
nij

∑q
j′=1 nij′

, (10)

wherej = 1, . . . , q. The normalized entropy for the
conditional probability function (10) is

ǫi = −
1

log q

q
∑

j=1

γij log γij . (11)

From (10) and (11), a matrixΦ can be constructed
by Φij = (1 − ǫi)γij . We call Φ the derivation-
rule dialogue-act (DR-DA) matrix, in which each
row corresponds to a derivation rule and each col-
umn corresponds to a dialogue act.

4.4 Distance Measure

In our system, the lexical scoreg(A,W) in (5) is
further broken into two terms

g(A,W) ≈ gR(A, s)gN (A,W) (12)

where gR(A, s) is called the DR score and
gN (A,W) is called the named entity score. Note
thats denotes the sentence after text processing. The
cosine distance measure is employed for the deriva-
tion rule score,

gR(A = Aj , s) = max
σ∈T (s)

b
T
σaj

|bσ||aj |
(13)

wherebT
σ is the vector representation (using the co-

ordinates of the DRs) of a partial sentenceσ in T (s),
andaj is thejth column vector in the DR-DA matrix
Φ. For the named entity score, we use the approxi-
mation

gN (A,W) =
∏

k

ν(A, αk) (14)

NEC/SC Name entities/Words

City Tainan, Taipei, Kaohsiung
Spot Anping-Fort, Sun-Moon Lake

Greeting Welcome, Hello
Ending Thanks, Bye

Table 1: Examples of named entity classes (NEC) and
semantic classes (SC)

whereαk is thekth named entity inW. Note that
ν(A, α) is estimated from a training corpus by rela-
tive frequencies.

5 Experiments and Discussion

To evaluate the proposed method of dialogue act de-
tection for robust spoken dialogue system, we adopt
the commonly-used Wizard-of-Oz approach (Fraser
and Gilbert, 1991) to harvest the Tainan-city tour-
guiding dialogue corpus in a lab environment and
experiment with simulated noisy ASR results. The
details are given in this section. Two types of data
from different sources are collected for this work.
The first type of data, called A-data, is a travel infor-
mation data set harvested from the databases avail-
able on the web, e.g., Wikipedia and Google Map.
A-data consists of1, 603 sentences with317 word
types. The second type of data, called Q-data, is the
edited transcription of a speech data set simulating
human-computer dialogues in a lab environment. Q-
data is intended for the system to learn to handle the
various situations, e.g., misunderstanding the user’s
intention. It consists of144 dialogues with1, 586 ut-
terances. From the Q-data,28 named entity classes
and796 derivation rules were obtained from the S-
parser. Table 1 gives some examples of the selected
NECs and semantic classes.

5.1 Experimental Conditions

A Mandarin speech recognition engine was real-
ized using the HTK (Young et al., 2006), which is
commonly used in research and development. For
speech features, 39 dimensions were used, includ-
ing 12 dimensions of mel-frequency cepstral coeffi-
cients (MFCCs), one dimension of log energy, and
their delta and acceleration features. In total, the
acoustic models are composed of153 subsyllable
and37 particle models (e.g., EN, MA, OU) based
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number of DA types 37 38 39

detection accuracy 82.7 84.3 77.2

Table 2: Detection accuracies with varying numbers of
DA types.

on Hidden Markov Model (HMM) with32 Gaus-
sian mixture components per state. For the lan-
guage model, SRILM toolkit (Stolcke, 2002) was
employed to estimate a bi-gram model with the Q-
data. The average word accuracy of the ASR module
is 86.1% with a lexicon of297 words. Note that the
vocabulary size is small due to a limited domain.5-
fold cross validation method was utilized for system
evaluation.

As shown in Table 2, one can see that38 DA types
achieve the best performance for the proposed detec-
tion model. Therefore, we use38 DA types (q = 38)
in our system. Note that some exemplar DAs are
shown in Figure 2.

5.2 Incremental Evaluation

We incrementally add techniques in our SDS un-
til the complete proposed overall system is imple-
mented, to observe the effect of these techniques.
The detection accuracies are shown in Table 3. In
this table, the third column (ASR) represents the re-
sults of the experiment using the ASR transcripts
directly. The fourth column (REF) uses the refer-
ence transcripts, so it represents the case with per-
fect ASR. The first (40%-sim) and second (60%-
sim) column represents the simulation where 40%
and 60% of the words in the reference transcripts
are retained, respectively. There are five sets of ex-
periments summarized in this table. For the base-
line, each keyword corresponds to a coordinate in
the vector representation for a sentence. The results
are shown in the first row (baseline). In the second
set of experiments (NEC), the keywords are replaced
by their NEC. In the third set of experiments (PST),
the PST representation for a sentence is used. In
the fourth set of experiments (DR), the derivation
rule representation of a sentence is used. Finally, the
entropy-normalized DR-DA matrix is used to repre-
sent sentences, and the results are shown in the last
row (DR-DA). There are strong improvements when
NEC (from 49.6% to 56.8%) and PST (from 56.8%
to 76.2%) representations are introduced. Moreover,

40%-sim 60%-sim ASR REF

baseline 17.2 32.6 49.6 60.9
NEC 22.4 36.8 56.8 76.9
PST 29.8 49.2 76.2 91.1
DR 26.3 48.0 81.6 92.1

DR-DA 26.3 47.4 82.9 93.3

Table 3: Detection accuracies of cascading components
for the lexical score.

value ofλL 0.5 0.6 0.7 0.8

Accuracy (%) 84.3 84.6 85.1 84.9

Table 4: Evaluation on different weighted product fusion

the DR and DR-DA representations also lead to sig-
nificant improvements, achieving 81.6% to 82.9%,
respectively. For the other conditions of 40%-sim,
60%-sim, and REF, similar improvements of using
NEC and PST are observed. Using DR-DA, how-
ever, suffers from performance degradation when
the keywords are randomly discarded.

5.3 Evaluation on the Weighting Scheme

We examine the effect of different weighted product
fusion and rewrite the formulation in (5) as

A∗
t ≈ arg max

A∈Ω,W

[f(W, Ut)g(A,W)]λA [h(A, Ht)]
λL

(15)
whereλA is the weight for the ASR score and the
lexical score,λL is the weight of the history score,
andλA + λL = 1. Table 4 shows the results that
history information will effect on the DA detection,
because it was estimated by the dialogue turns that
captured the user behaviors.

6 Conclusions

In this paper, a noise-robust dialogue act detection
using named entity classes, partial sentence trees,
derivation rules, and entropy-based dialogue act-
derivation rule matrix is investigated. Data-driven
dialogue acts are created by the spectral cluster-
ing algorithm, which is applied on the vectors of
sentences represented by the derivation rules. Our
spoken dialogue system benefits when the proposed
components are integrated incrementally. For the
fully integrated system, we find that the proposed
approach achieves 84.3% detection accuracy.
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