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Abstract

Active Learning (AL) is typically initialized
with a small seed of examples selected ran-
domly. However, when the distribution of
classes in the data is skewed, some classes
may be missed, resulting in a slow learning
progress. Our contribution is twofold: (1) we
show that an unsupervised language modeling
based technique is effective in selecting rare
class examples, and (2) we use this technique
for seeding AL and demonstrate that it leads
to a higher learning rate. The evaluation is
conducted in the context of word sense disam-
biguation.

1 Introduction

Active learning (AL) (Settles, 2009) has become a
popular research field due to its potential benefits: it
can lead to drastic reductions in the amount of anno-
tation that is necessary for training a highly accurate
statistical classifier. Unlike in a random sampling
approach, where unlabeled data is selected for anno-
tation randomly, AL delegates the selection of un-
labeled data to the classifier. In a typical AL setup,
a classifier is trained on a small sample of the data
(usually selected randomly), known as the seed ex-
amples. The classifier is subsequently applied to a
pool of unlabeled data with the purpose of selecting
additional examples that the classifier views as infor-
mative. The selected data is annotated and the cycle
is repeated, allowing the learner to quickly refine the

decision boundary between the classes.
Unfortunately, AL is susceptible to a shortcom-
ing known as the missed cluster effect (Schiitze et
al., 2006) and its special case called the missed class
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effect (Tomanek et al., 2009). The missed cluster ef-
fect is a consequence of the fact that seed examples
influence the direction the learner takes in its ex-
ploration of the instance space. Whenever the seed
does not contain the examples of a certain cluster
that is representative of a group of examples in the
data, the learner may become overconfident about
the class membership of this cluster (particularly if it
lies far from the decision boundary). As a result, the
learner spends a lot of time exploring one region of
the instance space at the expense of missing another.
This problem can become especially severe, when
the class distribution in the data is skewed: a ran-
domly selected seed may not adequately represent
all the classes or even miss certain classes altogether.
Consider a binary classification task where rare class
examples constitute 5% of the data (a frequent sce-
nario in e.g. word sense disambiguation). If 10
examples are chosen randomly for seeding AL, the
probability that none of the rare class examples will
make it to the seed is 60% '. Thus, there is a high
probability that AL would stall, selecting only the
examples of the predominant class over the course
of many iterations. At the same time, if we had a
way to ensure that examples of the rare class were
present in the seed, AL would be able to select the
examples of both classes, efficiently clarifying the
decision boundary and ultimately producing an ac-
curate classifier.

Tomanek et al. (2009) simulated these scenarios
using manually constructed seed sets. They demon-
strated that seeding AL with a data set that is artifi-
cially enriched with rare class examples indeed leads
to a higher learning rate comparing to randomly

!Calculated using Binomial distribution
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sampled and predominant class enriched seeds. In
this paper, we propose a simple automatic approach
for selecting the seeds that are rich in the examples
of the rare class. We then demonstrate that this ap-
proach to seed selection accelerates AL. Finally, we
analyze the mechanism of this acceleration.

2 Approach

Language Model (LM) Sampling is a simple unsu-
pervised technique for selecting unlabeled data that
is enriched with rare class examples. LM sampling
involves training a LM on a corpus of unlabeled can-
didate examples and selecting the examples with low
LM probability. Dligach and Palmer (2009) used
this technique in the context of word sense disam-
biguation and showed that rare sense examples tend
to concentrate among the examples with low prob-
ability. Unfortunately these authors provided a lim-
ited evaluation of this technique: they looked at its
effectiveness only at a single selection size. We pro-
vide a more convincing evaluation in which the ef-
fectiveness of this approach is examined for all sizes
of the selected data.

Seed Selection for AL is typically done ran-
domly. However, for datasets with a skewed dis-
tribution of classes, rare class examples may end
up being underrepresented. We propose to use LM
sampling for seed selection, which captures more
examples of rare classes than random selection, thus
leading to a faster learning progress.

3 Evaluation

3.1 Data

For our evaluation, we needed a dataset that is
characterized by a skewed class distribution. This
phenomenon is pervasive in word sense data. A
large word sense annotated corpus has recently
been released by the OntoNotes (Hovy et al., 2006;
Weischedel et al., 2009) project. For clarity of eval-
uation, we identify a set of verbs that satisfy three
criteria: (1) the number of senses is two, (2) the
number of annotated examples is at least 100, (3) the
proportion of the rare sense is at most 20%. The fol-
lowing 25 verbs satisfy these criteria: account, add,
admit, allow, announce, approve, compare, demand,
exist, expand, expect, explain, focus, include, invest,
issue, point, promote, protect, receive, remain, re-
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place, strengthen, wait, wonder. The average num-
ber of examples for these verbs is 232. In supervised
word sense disambiguation, a single model per word
is typically trained and that is the approach we take.
Thus, we conduct our evaluation using 25 different
data sets. We report the averages across these 25
data sets. In our evaluation, we use a state-of-the-
art word sense disambiguation system (Dligach and
Palmer, 2008), that utilizes rich linguistic features to
capture the contexts of ambiguous words.

3.2 Rare Sense Retrieval

The success of our approach to seeding AL hinges
on the ability of LM sampling to discover rare class
examples better than random sampling. In this ex-
periment, we demonstrate that LM sampling outper-
forms random sampling for every selection size. For
each verb we conduct an experiment in which we
select the instances of this verb using both methods.
We measure the recall of the rare sense, which we
calculate as the ratio of the number of selected rare
sense examples to the total number of rare sense ex-
amples for this verb.

We train a LM (Stolcke, 2002) on the corpora
from which OntoNotes data originates: the Wall
Street Journal, English Broadcast News, English
Conversation, and the Brown corpus. For each verb,
we compute the LM probability for each instance of
this verb and sort the instances by probability. In
the course of the experiment, we select one example
with the smallest probability and move it to the set
of selected examples. We then measure the recall of
the rare sense for the selected examples. We con-
tinue in this fashion until all the examples have been
selected. We use random sampling as a baseline,
which is obtained by continuously selecting a single
example randomly. We continue until all the exam-
ples have been selected. At the end of the exper-
iment, we have produced two recall curves, which
measure the recall of the rare sense retrieval for this
verb at various sizes of selected data. Due to the
lack of space, we do not show the plots that display
these curves for individual verbs. Instead, in Figure
1 we display the curves that are averaged across all
verbs. At every selection size, LM sampling results
in a higher recall of the rare sense. The average dif-
ference across all selection sizes is 11%.
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Figure 1: Average recall of rare sense retrieval for LM
and random sampling by relative size of training set

3.3 Classic and Selectively Seeded AL

In this experiment, we seed AL using LM sampling
and compare how this selectively seeded AL per-
forms in comparison with classic (randomly-seeded)
AL. Our experimental setup is typical for an active
learning study. We split the set of annotated exam-
ples for a verb into 90% and 10% parts. The 90%
part is used as a pool of unlabeled data. The 10%
part is used as a test set. We begin classic AL by
randomly selecting 10% of the examples from the
pool to use as seeds. We train a maximum entropy
model (Le, 2004) using these seeds. We then repeat-
edly apply the model to the remaining examples in
the pool: on each iteration of AL, we draw a sin-
gle most informative example from the pool. The
informativeness is estimated using prediction mar-
gin (Schein and Ungar, 2007), which is computed as
|P(c1|x) — P(ca|z)|, where ¢; and ¢y are the two
most probable classes of example x according to the
model. The selected example is moved to the train-
ing set. On each iteration, we also keep track of how
accurately the current model classifies the held out
test set.

In parallel, we conduct a selectively seeded AL
experiment that is identical to the classic one but
with one crucial difference: instead of selecting the
seed examples randomly, we select them using LM
sampling by identifying 10% of the examples from
the pool with the smallest LM probability. We also
produce a random sampling curve to be used as a
baseline. At the end of this experiment we have ob-
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tained three learning curves: for classic AL, for se-
lectively seeded AL, and for the random sampling
baseline. The final learning curves for each verb are
produced by averaging the learning curves from ten
different trials.

Figure 2 presents the average accuracy of selec-
tively seeded AL (top curve), classic AL (middle
curve) and the random sampling baseline (bottom
curve) at various fractions of the total size of the
training set. The size of zero corresponds to a train-
ing set consisting only of the seed examples. The
size of one corresponds to a training set consisting
of all the examples in the pool labeled. The accuracy
at a given size was averaged across all 25 verbs.

It is clear that LM-seeded AL accelerates learn-
ing: it reaches the same performance as classic AL
with less training data. LM-seeded AL also reaches
a higher classification accuracy (if stopped at its
peak). We will analyze this somewhat surprising be-
havior in the next section. The difference between
the classic and LM-seeded curves is statistically sig-
nificant (p = 0.0174) 2.
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Figure 2: Randomly and LM-seeded AL. Random sam-
pling baseline is also shown.

3.4 Why LM Seeding Produces Better Results

For random sampling, the system achieves its best
accuracy, 94.4%, when the entire pool of unlabeled
examples is labeled. The goal of a typical AL study
is to demonstrate that the same accuracy can be

>We compute the average area under the curve for each type
of AL and use Wilcoxon signed rank test to test whether the
difference between the averages is significant.



achieved with less labeled data. For example, in our
case, classic AL reaches the best random sampling
accuracy with only about 5% of the data. However,
it is interesting to notice that LM-seeded AL actually
reaches a higher accuracy, 95%, during early stages
of learning (at 15% of the total training set size). We
believe this phenomenon takes place due to overfit-
ting the predominant class: as the model receives
new data (and therefore more and more examples of
the predominant class), it begins to mislabel more
and more examples of the rare class. A similar idea
has been expressed in literature (Weiss, 1995; Kubat
and Matwin, 1997; Japkowicz, 2001; Weiss, 2004;
Chen et al., 2006), however it has never been veri-
fied in the context of AL.

To verify our hypothesis, we conduct an experi-
ment. The experimental setup is the same as in sec-
tion 3.3. However, instead of measuring the accu-
racy on the test set, we resort to different metrics
that reflect how accurately the classifier labels the in-
stances of the rare class in the held out test set. These
metrics are the recall and precision for the rare class.
Recall is the ratio of the correctly labeled examples
of the rare class and the total number of instances of
the rare class. Precision is the ratio of the correctly
labeled examples of the rare class and the number of
instances labeled as that class. Results are in Figures
3 and 4.
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Figure 3: Rare sense classification recall

Observe that for LM-seeded AL, the recall peaks
at first and begins to decline later. Thus the clas-
sifier makes progressively more errors on the rare
class as more labeled examples are being received.
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Figure 4: Rare sense classification precision

This is consistent with our hypothesis that the clas-
sifier overfits the predominant class. When all the
data is labeled, the recall decreases from about 13%
to only 7%, an almost 50% drop. The reason that
the system achieved a higher level of recall at first is
due to the fact that AL was seeded with LM selected
data, which has a higher content of rare classes (as
we demonstrated in the first experiment). The avail-
ability of the extra examples of the rare class allows
the classifier to label the instances of this class in
the test set more accurately, which in turn boosts the
overall accuracy.

4 Conclusion and Future Work

We introduced a novel approach to seeding AL, in
which the seeds are selected from the examples with
low LM probability. This approach selects more rare
class examples than random sampling, resulting in
more rapid learning and, more importantly, leading
to a classifier that performs better on rare class ex-
amples. As a consequence of this, the overall classi-
fication accuracy is higher than that for classic AL.

Our plans for future work include improving our
LM by incorporating syntactic information such as
POS tags. This should result in better performance
on the rare classes, which is currently still low.
We also plan to experiment with other unsupervised
techniques, such as clustering and outlier detection,
that can lead to better retrieval of rare classes. Fi-
nally, we plan to investigate the applicability of our
approach to a multi-class scenario.
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