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Abstract

We present a discriminative learning method
to improve the consistency of translations in
phrase-based Statistical Machine Translation
(SMT) systems. Our method is inspired by
Translation Memory (TM) systems which are
widely used by human translators in industrial
settings. We constrain the translation of an in-
put sentence using the most similar ‘transla-
tion example’ retrieved from the TM. Differ-
ently from previous research which used sim-
ple fuzzy match thresholds, these constraints
are imposed using discriminative learning to
optimise the translation performance. We ob-
serve that using this method can benefit the
SMT system by not only producing consis-
tent translations, but also improved translation
outputs. We report a 0.9 point improvement
in terms of BLEU score on English–Chinese
technical documents.

1 Introduction

Translation consistency is an important factor
for large-scale translation, especially for domain-
specific translations in an industrial environment.
For example, in the translation of technical docu-
ments, lexical as well as structural consistency is es-
sential to produce a fluent target-language sentence.
Moreover, even in the case of translation errors, con-
sistency in the errors (e.g. repetitive error patterns)
are easier to diagnose and subsequently correct by
translators.

∗This work was done while the first author was in the Cen-
tre for Next Generation Localisation at Dublin City University.

In phrase-based SMT, translation models and lan-
guage models are automatically learned and/or gen-
eralised from the training data, and a translation is
produced by maximising a weighted combination of
these models. Given that global contextual informa-
tion is not normally incorporated, and that training
data is usually noisy in nature, there is no guaran-
tee that an SMT system can produce translations in
a consistent manner.

On the other hand, TM systems – widely used by
translators in industrial environments for enterprise
localisation by translators – can shed some light on
mitigating this limitation. TM systems can assist
translators by retrieving and displaying previously
translated similar ‘example’ sentences (displayed as
source-target pairs, widely called ‘fuzzy matches’ in
the localisation industry (Sikes, 2007)). In TM sys-
tems, fuzzy matches are retrieved by calculating the
similarity or the so-called ‘fuzzy match score’ (rang-
ing from 0 to 1 with 0 indicating no matches and 1
indicating a full match) between the input sentence
and sentences in the source side of the translation
memory.

When presented with fuzzy matches, translators
can then avail of useful chunks in previous transla-
tions while composing the translation of a new sen-
tence. Most translators only consider a few sen-
tences that are most similar to the current input sen-
tence; this process can inherently improve the con-
sistency of translation, given that the new transla-
tions produced by translators are likely to be similar
to the target side of the fuzzy match they have con-
sulted.

Previous research as discussed in detail in Sec-
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tion 2 has focused on using fuzzy match score as
a threshold when using the target side of the fuzzy
matches to constrain the translation of the input
sentence. In our approach, we use a more fine-
grained discriminative learning method to determine
whether the target side of the fuzzy matches should
be used as a constraint in translating the input sen-
tence. We demonstrate that our method can consis-
tently improve translation quality.

The rest of the paper is organized as follows:
we begin by briefly introducing related research in
Section 2. We present our discriminative learning
method for consistent translation in Section 3 and
our feature design in Section 4. We report the exper-
imental results in Section 5 and conclude the paper
and point out avenues for future research in Section
6.

2 Related Research

Despite the fact that TM and MT integration has
long existed as a major challenge in the localisation
industry, it has only recently received attention in
main-stream MT research. One can loosely combine
TM and MT at sentence (called segments in TMs)
level by choosing one of them (or both) to recom-
mend to the translators using automatic classifiers
(He et al., 2010), or simply using fuzzy match score
or MT confidence measures (Specia et al., 2009).

One can also tightly integrate TM with MT at the
sub-sentence level. The basic idea is as follows:
given a source sentence to translate, we firstly use
a TM system to retrieve the most similar ‘example’
source sentences together with their translations. If
matched chunks between input sentence and fuzzy
matches can be detected, we can directly re-use the
corresponding parts of the translation in the fuzzy
matches, and use an MT system to translate the re-
maining chunks.

As a matter of fact, implementing this idea is
pretty straightforward: a TM system can easily de-
tect the word alignment between the input sentence
and the source side of the fuzzy match by retracing
the paths used in calculating the fuzzy match score.
To obtain the translation for the matched chunks, we
just require the word alignment between source and
target TM matches, which can be addressed using
state-of-the-art word alignment techniques. More

importantly, albeit not explicitly spelled out in pre-
vious work, this method can potentially increase the
consistency of translation, as the translation of new
input sentences is closely informed and guided (or
constrained) by previously translated sentences.

There are several different ways of using the
translation information derived from fuzzy matches,
with the following two being the most widely
adopted: 1) to add these translations into a phrase
table as in (Biçici and Dymetman, 2008; Simard and
Isabelle, 2009), or 2) to mark up the input sentence
using the relevant chunk translations in the fuzzy
match, and to use an MT system to translate the parts
that are not marked up, as in (Smith and Clark, 2009;
Koehn and Senellart, 2010; Zhechev and van Gen-
abith, 2010). It is worth mentioning that translation
consistency was not explicitly regarded as their pri-
mary motivation in this previous work. Our research
follows the direction of the second strand given that
consistency can no longer be guaranteed by con-
structing another phrase table.

However, to categorically reuse the translations
of matched chunks without any differentiation could
generate inferior translations given the fact that the
context of these matched chunks in the input sen-
tence could be completely different from the source
side of the fuzzy match. To address this problem,
both (Koehn and Senellart, 2010) and (Zhechev and
van Genabith, 2010) used fuzzy match score as a
threshold to determine whether to reuse the transla-
tions of the matched chunks. For example, (Koehn
and Senellart, 2010) showed that reusing these trans-
lations as large rules in a hierarchical system (Chi-
ang, 2005) can be beneficial when the fuzzy match
score is above 70%, while (Zhechev and van Gen-
abith, 2010) reported that it is only beneficial to a
phrase-based system when the fuzzy match score is
above 90%.

Despite being an informative measure, using
fuzzy match score as a threshold has a number of
limitations. Given the fact that fuzzy match score
is normally calculated based on Edit Distance (Lev-
enshtein, 1966), a low score does not necessarily
imply that the fuzzy match is harmful when used
to constrain an input sentence. For example, in
longer sentences where fuzzy match scores tend to
be low, some chunks and the corresponding trans-
lations within the sentences can still be useful. On
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the other hand, a high score cannot fully guarantee
the usefulness of a particular translation. We address
this problem using discriminative learning.

3 Constrained Translation with
Discriminative Learning

3.1 Formulation of the Problem

Given a sentencee to translate, we retrieve the most
similar sentencee′ from the translation memory as-
sociated with target translationf ′. The m com-
mon “phrases”̄em

1
betweene ande

′ can be iden-
tified. Given the word alignment information be-
tweene

′ and f
′, one can easily obtain the corre-

sponding translations̄f ′m
1

for each of the phrases in
ē
m

1
. This process can derive a number of “phrase

pairs” < ēm, f̄ ′
m >, which can be used to specify

the translations of the matched phrases in the input
sentence. The remaining words without specified
translations will be translated by an MT system.

For example, given an input sentencee1e2 · · ·
eiei+1 · · · eI , and a phrase pair< ē, f̄ ′ >, ē =
eiei+1, f̄ ′ = f ′

jf
′
j+1

derived from the fuzzy match,
we can mark up the input sentence as:

e1e2 · · · <tm=“f ′
jf

′
j+1

”> eiei+1 < /tm> · · · eI .
Our method to constrain the translations using

TM fuzzy matches is similar to (Koehn and Senel-
lart, 2010), except that the word alignment between
e
′ andf

′ is the intersection of bidirectional GIZA++
(Och and Ney, 2003) posterior alignments. We use
the intersected word alignment to minimise the noise
introduced by word alignment of only one direction
in marking up the input sentence.

3.2 Discriminative Learning

Whether the translation information from the fuzzy
matches should be used or not (i.e. whether the input
sentence should be marked up) is determined using
a discriminative learning procedure. The translation
information refers to the “phrase pairs” derived us-
ing the method described in Section 3.1. We cast
this problem as a binary classification problem.

3.2.1 Support Vector Machines

SVMs (Cortes and Vapnik, 1995) are binary classi-
fiers that classify an input instance based on decision
rules which minimise the regularised error function

in (1):

min
w,b,ξ

1

2
wT w + C

l
∑

i=1

ξi

s. t. yi(wT φ(xi) + b) > 1− ξi

ξi > 0

(1)

where(xi, yi) ∈ Rn × {+1,−1} arel training in-
stances that are mapped by the functionφ to a higher
dimensional space.w is the weight vector,ξ is the
relaxation variable andC > 0 is the penalty param-
eter.

Solving SVMs is viable using a kernel function
K in (1) with K(xi, xj) = Φ(xi)

T Φ(xj). We per-
form our experiments with the Radial Basis Func-
tion (RBF) kernel, as in (2):

K(xi, xj) = exp(−γ||xi − xj ||
2), γ > 0 (2)

When using SVMs with the RBF kernel, we have
two free parameters to tune on: the cost parameter
C in (1) and the radius parameterγ in (2).

In each of our experimental settings, the param-
etersC and γ are optimised by a brute-force grid
search. The classification result of each set of pa-
rameters is evaluated by cross validation on the
training set.

The SVM classifier will thus be able to predict
the usefulness of the TM fuzzy match, and deter-
mine whether the input sentence should be marked
up using relevant phrase pairs derived from the fuzzy
match before sending it to the SMT system for trans-
lation. The classifier uses features such as the fuzzy
match score, the phrase and lexical translation prob-
abilities of these relevant phrase pairs, and addi-
tional syntactic dependency features. Ideally the
classifier will decide to mark up the input sentence
if the translations of the marked phrases are accurate
when taken contextual information into account. As
large-scale manually annotated data is not available
for this task, we use automatic TER scores (Snover
et al., 2006) as the measure for training data annota-
tion.

We label the training examples as in (3):

y =

{

+1 if TER(w. markup) < TER(w/o markup)

−1 if TER(w/o markup) ≥ TER(w. markup)
(3)

Each instance is associated with a set of features
which are discussed in more detail in Section 4.
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3.2.2 Classification Confidence Estimation

We use the techniques proposed by (Platt, 1999) and
improved by (Lin et al., 2007) to convert classifica-
tion margin to posterior probability, so that we can
easily threshold our classifier (cf. Section 5.4.2).

Platt’s method estimates the posterior probability
with a sigmoid function, as in (4):

Pr(y = 1|x) ≈ PA,B(f) ≡
1

1 + exp(Af + B)
(4)

wheref = f(x) is the decision function of the esti-
mated SVM. A and B are parameters that minimise
the cross-entropy error functionF on the training
data, as in (5):

min
z=(A,B)

F (z) = −
l

∑

i=1

(tilog(pi) + (1 − ti)log(1− pi)),

wherepi = PA,B(fi), andti =

{

N++1
N++2 if yi = +1

1
N
−

+2 if yi = −1

(5)
where z = (A,B) is a parameter setting, and

N+ and N− are the numbers of observed positive
and negative examples, respectively, for the labelyi.
These numbers are obtained using an internal cross-
validation on the training set.

4 Feature Set

The features used to train the discriminative classi-
fier, all on the sentence level, are described in the
following sections.

4.1 The TM Feature

The TM feature is the fuzzy match score, which in-
dicates the overall similarity between the input sen-
tence and the source side of the TM output. If the
input sentence is similar to the source side of the
matching segment, it is more likely that the match-
ing segment can be used to mark up the input sen-
tence.

The calculation of the fuzzy match score itself is
one of the core technologies in TM systems, and
varies among different vendors. We compute fuzzy
match cost as the minimum Edit Distance (Leven-
shtein, 1966) between the source and TM entry, nor-
malised by the length of the source as in (6), as
most of the current implementations are based on
edit distance while allowing some additional flexi-
ble matching.

hfm(e) = min
s

EditDistance(e, s)

Len(e)
(6)

wheree is the sentence to translate, ands is the
source side of an entry in the TM. For fuzzy match
scoresF , hfm roughly corresponds to1− F .

4.2 Translation Features

We use four features related to translation probabil-
ities, i.e. the phrase translation and lexical probabil-
ities for the phrase pairs< ēm, f̄ ′

m > derived us-
ing the method in Section 3.1. Specifically, we use
the phrase translation probabilitiesp(f̄ ′

m|ēm) and
p(ēm|f̄ ′

m), as well as the lexical translation prob-
abilities plex(f̄ ′

m|ēm) and plex(ēm|f̄ ′
m) as calcu-

lated in (Koehn et al., 2003). In cases where mul-
tiple phrase pairs are used to mark up one single
input sentencee, we use a unified score for each
of the four features, which is an average over the
corresponding feature in each phrase pair. The intu-
ition behind these features is as follows: phrase pairs
< ēm, f̄ ′

m > derived from the fuzzy match should
also be reliable with respect to statistically produced
models.

We also have a count feature, i.e. the number of
phrases used to mark up the input sentence, and a
binary feature, i.e. whether the phrase table contains
at least one phrase pair< ēm, f̄ ′

m > that is used to
mark up the input sentence.

4.3 Dependency Features

Given the phrase pairs< ēm, f̄ ′
m > derived from

the fuzzy match, and used to translate the corre-
sponding chunks of the input sentence (cf. Sec-
tion 3.1), these translations are more likely to be co-
herent in the context of the particular input sentence
if the matched parts on the input side are syntacti-
cally and semantically related.

For matched phrases̄em between the input sen-
tence and the source side of the fuzzy match, we de-
fine the contextual information of the input side us-
ing dependency relations between wordsem in ēm

and the remaining wordsej in the input sentencee.
We use the Stanford parser to obtain the depen-

dency structure of the input sentence. We add
a pseudo-label SYS PUNCT to punctuation marks,
whose governor and dependent are both the punc-
tuation mark. The dependency features designed to
capture the context of the matched input phrasesēm

are as follows:
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Coverage featuresmeasure the coverage of de-
pendency labels on the input sentence in order to
obtain a bigger picture of the matched parts in the
input. For each dependency labelL, we consider its
head or modifier ascoveredif the corresponding in-
put word em is covered by a matched phraseēm.
Our coverage features are the frequencies of gov-
ernor and dependent coverage calculated separately
for each dependency label.

Position features identify whether the head and
the tail of a sentence are matched, as these are the
cases in which the matched translation is not af-
fected by the preceding words (when it is the head)
or following words (when it is the tail), and is there-
fore more reliable. The feature is set to 1 if this hap-
pens, and to 0 otherwise. We distinguish among the
possible dependency labels, the head or the tail of
the sentence, and whether the aligned word is the
governor or the dependent. As a result, each per-
mutation of these possibilities constitutes a distinct
binary feature.

The consistency featureis a single feature which
determines whether matched phrasesēm belong to
a consistent dependency structure, instead of being
distributed discontinuously around in the input sen-
tence. We assume that a consistent structure is less
influenced by its surrounding context. We set this
feature to 1 if every word in̄em is dependent on an-
other word inēm, and to 0 otherwise.

5 Experiments

5.1 Experimental Setup

Our data set is an English–Chinese translation mem-
ory with technical translation from Symantec, con-
sisting of 87K sentence pairs. The average sentence
length of the English training set is 13.3 words and
the size of the training set is comparable to the larger
TMs used in the industry. Detailed corpus statistics
about the training, development and test sets for the
SMT system are shown in Table 1.

The composition of test subsets based on fuzzy
match scores is shown in Table 2. We can see that
sentences in the test sets are longer than those in the
training data, implying a relatively difficult trans-
lation task. We train the SVM classifier using the
libSVM (Chang and Lin, 2001) toolkit. The SVM-

Train Develop Test
SENTENCES 86,602 762 943
ENG. TOKENS 1,148,126 13,955 20,786
ENG. VOC. 13,074 3,212 3,115
CHI . TOKENS 1,171,322 10,791 16,375
CHI . VOC. 12,823 3,212 1,431

Table 1: Corpus Statistics

Scores Sentences Words W/S
(0.9, 1.0) 80 1526 19.0750
(0.8, 0.9] 96 1430 14.8958
(0.7, 0.8] 110 1596 14.5091
(0.6, 0.7] 74 1031 13.9324
(0.5, 0.6] 104 1811 17.4135
(0, 0.5] 479 8972 18.7307

Table 2: Composition of test subsets based on fuzzy
match scores

training and validation is on the same training sen-
tences1 as the SMT system with5-fold cross valida-
tion.

The SVM hyper-parameters are tuned using the
training data of the first fold in the5-fold cross val-
idation via a brute force grid search. More specifi-
cally, for parameterC in (1), we search in the range
[2−5, 215], while for parameterγ (2) we search in the
range[2−15, 23]. The step size is 2 on the exponent.

We conducted experiments using a standard log-
linear PB-SMT model: GIZA ++ implementation of
IBM word alignment model 4 (Och and Ney, 2003),
the refinement and phrase-extraction heuristics de-
scribed in (Koehn et al., 2003), minimum-error-
rate training (Och, 2003), a 5-gram language model
with Kneser-Ney smoothing (Kneser and Ney, 1995)
trained with SRILM (Stolcke, 2002) on the Chinese
side of the training data, and Moses (Koehn et al.,
2007) which is capable of handling user-specified
translations for some portions of the input during de-
coding. The maximum phrase length is set to 7.

5.2 Evaluation

The performance of the phrase-based SMT system
is measured by BLEU score (Papineni et al., 2002)
and TER (Snover et al., 2006). Significance test-

1We have around 87K sentence pairs in our training data.
However, for 67.5% of the input sentences, our MT system pro-
duces the same translation irrespective of whether the input sen-
tence is marked up or not.
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ing is carried out using approximate randomisation
(Noreen, 1989) with a 95% confidence level.

We also measure the quality of the classification
by precision and recall. LetA be the set of pre-
dicted markup input sentences, andB be the set
of input sentences where the markup version has a
lower TER score than the plain version. We stan-
dardly define precisionP and recallR as in (7):

P =
|A

⋂

B|

|A|
, R =

|A
⋂

B|

|B|
(7)

5.3 Cross-fold translation

In order to obtain training samples for the classifier,
we need to label each sentence in the SMT training
data as to whether marking up the sentence can pro-
duce better translations. To achieve this, we translate
both the marked-up versions and plain versions of
the sentence and compare the two translations using
the sentence-level evaluation metric TER.

We do not make use of additional training data to
translate the sentences for SMT training, but instead
use cross-fold translation. We create a new training
corpusT by keeping 95% of the sentences in the
original training corpus, and creating a new test cor-
pusH by using the remaining 5% of the sentences.
Using this scheme we make 20 different pairs of cor-
pora(Ti,Hi) in such a way that each sentence from
the original training corpus is in exactly oneHi for
some1 ≤ i ≤ 20. We train 20 different systems
using eachTi, and use each system to translate the
correspondingHi as well as the marked-up version
of Hi using the procedure described in Section 3.1.
The development set is kept the same for all systems.

5.4 Experimental Results

5.4.1 Translation Results

Table 3 contains the translation results of the SMT
system when we use discriminative learning to mark
up the input sentence (MARKUP-DL). The first row
(BASELINE) is the result of translating plain test
sets without any markup, while the second row is
the result when all the test sentences are marked
up. We also report the oracle scores, i.e. the up-
perbound of using our discriminative learning ap-
proach. As we can see from this table, we obtain sig-
nificantly inferior results compared to the the Base-
line system if we categorically mark up all the in-

TER BLEU
BASELINE 39.82 45.80
MARKUP 41.62 44.41
MARKUP-DL 39.61 46.46
ORACLE 37.27 48.32

Table 3: Performance of Discriminative Learning (%)

put sentences using phrase pairs derived from fuzzy
matches. This is reflected by an absolute 1.4 point
drop in BLEU score and a 1.8 point increase in TER.
On the other hand, both the oracle BLEU and TER
scores represent as much as a 2.5 point improve-
ment over the baseline. Our discriminative learning
method (MARKUP-DL), which automatically clas-
sifies whether an input sentence should be marked
up, leads to an increase of 0.7 absolute BLEU points
over the BASELINE, which is statistically signifi-
cant. We also observe a slight decrease in TER com-
pared to the BASELINE. Despite there being much
room for further improvement when compared to the
Oracle score, the discriminative learning method ap-
pears to be effective not only in maintaining transla-
tion consistency, but also a statistically significant
improvement in translation quality.

5.4.2 Classification Confidence Thresholding

To further analyse our discriminative learning ap-
proach, we report the classification results on the test
set using the SVM classifier. We also investigate the
use of classification confidence, as described in Sec-
tion 3.2.2, as a threshold to boost classification pre-
cision if required. Table 4 shows the classification
and translation results when we use different con-
fidence thresholds. The default classification con-
fidence is 0.50, and the corresponding translation
results were described in Section 5.4.1. We inves-
tigate the impact of increasing classification confi-
dence on the performance of the classifier and the
translation results. As can be seen from Table 4,
increasing the classification confidence up to 0.70
leads to a steady increase in classification precision
with a corresponding sacrifice in recall. The fluc-
tuation in classification performance has an impact
on the translation results as measured by BLEU and
TER. We can see that the best BLEU as well as TER
scores are achieved when we set the classification
confidence to 0.60, representing a modest improve-
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Classification Confidence
0.50 0.55 0.60 0.65 0.70 0.75 0.80

BLEU 46.46 46.65 46.69 46.59 46.34 46.06 46.00
TER 39.61 39.46 39.32 39.36 39.52 39.71 39.71
P 60.00 68.67 70.31 74.47 72.97 64.28 88.89
R 32.14 29.08 22.96 17.86 13.78 9.18 4.08

Table 4: The impact of classification confidence thresholding

ment over the default setting (0.50). Despite the
higher precision when the confidence is set to 0.7,
the dramatic decrease in recall cannot be compen-
sated for by the increase in precision.

We can also observe from Table 4 that the recall
is quite low across the board, and the classification
results become unstable when we further increase
the level of confidence to above 0.70. This indicates
the degree of difficulty of this classification task, and
suggests some directions for future research as dis-
cussed at the end of this paper.

5.4.3 Comparison with Previous Work

As discussed in Section 2, both (Koehn and Senel-
lart, 2010) and (Zhechev and van Genabith, 2010)
used fuzzy match score to determine whether the in-
put sentences should be marked up. The input sen-
tences are only marked up when the fuzzy match
score is above a certain threshold. We present the
results using this method in Table 5. From this ta-

Fuzzy Match Scores
0.50 0.60 0.70 0.80 0.90

BLEU 45.13 45.55 45.58 45.84 45.82
TER 40.99 40.62 40.56 40.29 40.07

Table 5: Performance using fuzzy match score for classi-
fication

ble, we can see an inferior performance compared to
the BASELINE results (cf. Table 3) when the fuzzy
match score is below 0.70. A modest gain can only
be achieved when the fuzzy match score is above
0.8. This is slightly different from the conclusions
drawn in (Koehn and Senellart, 2010), where gains
are observed when the fuzzy match score is above
0.7, and in (Zhechev and van Genabith, 2010) where
gains are only observed when the score is above 0.9.
Comparing Table 5 with Table 4, we can see that
our classification method is more effective. This
confirms our argument in the last paragraph of Sec-

tion 2, namely that fuzzy match score is not informa-
tive enough to determine the usefulness of the sub-
sentences in a fuzzy match, and that a more compre-
hensive set of features, as we have explored in this
paper, is essential for the discriminative learning-
based method to work.

FM Scores w. markup w/o markup
[0,0.5] 37.75 62.24
(0.5,0.6] 40.64 59.36
(0.6,0.7] 40.94 59.06
(0.7,0.8] 46.67 53.33
(0.8,0.9] 54.28 45.72
(0.9,1.0] 44.14 55.86

Table 6: Percentage of training sentences with markup
vs without markup grouped by fuzzy match (FM) score
ranges

To further validate our assumption, we analyse
the training sentences by grouping them accord-
ing to their fuzzy match score ranges. For each
group of sentences, we calculate the percentage of
sentences where markup (and respectively without
markup) can produce better translations. The statis-
tics are shown in Table 6. We can see that for sen-
tences with fuzzy match scores lower than 0.8, more
sentences can be better translated without markup.
For sentences where fuzzy match scores are within
the range(0.8, 0.9], more sentences can be better
translated with markup. However, within the range
(0.9, 1.0], surprisingly, actually more sentences re-
ceive better translation without markup. This indi-
cates that fuzzy match score is not a good measure to
predict whether fuzzy matches are beneficial when
used to constrain the translation of an input sentence.

5.5 Contribution of Features

We also investigated the contribution of our differ-
ent feature sets. We are especially interested in
the contribution of dependency features, as they re-
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Example 1
w/o markup after policy name , type the name of the policy ( it shows new host integrity

policy by default ) .
Translation 在“策略”名称后面，键入策略的名称 (名称显示为 “新主机完整性

策略默认）。

w. markup after policy name<tm translation=“，键入策略名称（默认显示 “新
主机 完整性策略”）。”>, type the name of the policy ( it shows new host
integrity policy by default ) .< /tm>

Translation 在“策略”名称后面，键入策略名称（默认显示 “新主机 完整性策略”）。

Reference 在“策略名称”后面，键入策略名称（默认显示 “新主机 完整性策略”）。

Example 2
w/o markup changes apply only to the specific scan that you select.
Translation 更改仅适用于特定扫描的规则。

w. markup changes apply only to the specific scan that you select <tm translation=“。”>.< /tm>
Translation 更改仅适用于您选择的特定扫描。

Reference 更改只应用于您选择的特定扫描。

flect whether translation consistency can be captured
using syntactic knowledge. The classification and

TER BLEU P R
TM+TRANS 40.57 45.51 52.48 27.04
+DEP 39.61 46.46 60.00 32.14

Table 7: Contribution of Features (%)

translation results using different features are re-
ported in Table 7. We observe a significant improve-
ment in both classification precision and recall by
adding dependency (DEP) features on top of TM
and translation features. As a result, the translation
quality also significantly improves. This indicates
that dependency features which can capture struc-
tural and semantic similarities are effective in gaug-
ing the usefulness of the phrase pairs derived from
the fuzzy matches. Note also that without including
the dependency features, our discriminative learning
method cannot outperform the BASELINE (cf. Ta-
ble 3) in terms of translation quality.

5.6 Improved Translations

In order to pinpoint the sources of improvements by
marking up the input sentence, we performed some
manual analysis of the output. We observe that the
improvements can broadly be attributed to two rea-
sons: 1) the use of long phrase pairs which are miss-
ing in the phrase table, and 2) deterministically using
highly reliable phrase pairs.

Phrase-based SMT systems normally impose a
limit on the length of phrase pairs for storage and
speed considerations. Our method can overcome

this limitation by retrieving and reusing long phrase
pairs on the fly. A similar idea, albeit from a dif-
ferent perspective, was explored by (Lopez, 2008),
where he proposed to construct a phrase table on the
fly for each sentence to be translated. Differently
from his approach, our method directly translates
part of the input sentence using fuzzy matches re-
trieved on the fly, with the rest of the sentence trans-
lated by the pre-trained MT system. We offer some
more insights into the advantages of our method by
means of a few examples.

Example 1 shows translation improvements by
using long phrase pairs. Compared to the refer-
ence translation, we can see that for the underlined
phrase, the translation without markup contains (i)
word ordering errors and (ii) a missing right quota-
tion mark. In Example 2, by specifying the transla-
tion of the final punctuation mark, the system cor-
rectly translates the relative clause ‘that you select’.
The translation of this relative clause is missing
when translating the input without markup. This
improvement can be partly attributed to the reduc-
tion in search errors by specifying the highly reliable
translations for phrases in an input sentence.

6 Conclusions and Future Work

In this paper, we introduced a discriminative learn-
ing method to tightly integrate fuzzy matches re-
trieved using translation memory technologies with
phrase-based SMT systems to improve translation
consistency. We used an SVM classifier to predict
whether phrase pairs derived from fuzzy matches
could be used to constrain the translation of an in-
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put sentence. A number of feature functions includ-
ing a series of novel dependency features were used
to train the classifier. Experiments demonstrated
that discriminative learning is effective in improving
translation quality and is more informative than the
fuzzy match score used in previous research. We re-
port a statistically significant 0.9 absolute improve-
ment in BLEU score using a procedure to promote
translation consistency.

As mentioned in Section 2, the potential improve-
ment in sentence-level translation consistency us-
ing our method can be attributed to the fact that
the translation of new input sentences is closely in-
formed and guided (or constrained) by previously
translated sentences using global features such as
dependencies. However, it is worth noting that
the level of gains in translation consistency is also
dependent on the nature of the TM itself; a self-
contained coherent TM would facilitate consistent
translations. In the future, we plan to investigate
the impact of TM quality on translation consistency
when using our approach. Furthermore, we will ex-
plore methods to promote translation consistency at
document level.

Moreover, we also plan to experiment with
phrase-by-phrase classification instead of sentence-
by-sentence classification presented in this paper,
in order to obtain more stable classification results.
We also plan to label the training examples using
other sentence-level evaluation metrics such as Me-
teor (Banerjee and Lavie, 2005), and to incorporate
features that can measure syntactic similarities in
training the classifier, in the spirit of (Owczarzak et
al., 2007). Currently, only a standard phrase-based
SMT system is used, so we plan to test our method
on a hierarchical system (Chiang, 2005) to facilitate
direct comparison with (Koehn and Senellart, 2010).
We will also carry out experiments on other data sets
and for more language pairs.
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