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Abstract

Automated grammar correction techniques
have seen improvement over the years, but
there is still much room for increased perfor-
mance. Current correction techniques mainly
focus on identifying and correcting a specific
type of error, such as verb form misuse or
preposition misuse, which restricts the correc-
tions to a limited scope. We introduce a novel
technique, based on a noisy channel model,
which can utilize the whole sentence context
to determine proper corrections. We show
how to use the EM algorithm to learn the pa-
rameters of the noise model, using only a data
set of erroneous sentences, given the proper
language model. This frees us from the bur-
den of acquiring a large corpora of corrected
sentences. We also present a cheap and effi-
cient way to provide automated evaluation re-
sults for grammar corrections by using BLEU
and METEOR, in contrast to the commonly
used manual evaluations.

1 Introduction

The process of editing written text is performed by
humans on a daily basis. Humans work by first
identifying the writer’s intent, and then transform-
ing the text so that it is coherent and error free. They
can read text with several spelling errors and gram-
matical errors and still easily identify what the au-
thor originally meant to write. Unfortunately, cur-
rent computer systems are still far from such ca-
pabilities when it comes to the task of recogniz-
ing incorrect text input. Various approaches have
been taken, but to date it seems that even many

spell checkers such as Aspell do not take context
into consideration, which prevents them from find-
ing misspellings which have the same form as valid
words. Also, current grammar correction systems
are mostly rule-based, searching the text for de-
fined types of rule violations in the English gram-
mar. While this approach has had some success in
finding various grammatical errors, it is confined to
specifically defined errors.

In this paper, we approach this problem by mod-
eling various types of human errors using a noisy
channel model (Shannon, 1948). Correct sentences
are produced by a predefined generative proba-
bilistic model, and lesioned by the noise model.
We learn the noise model parameters using an
expectation-maximization (EM) approach (Demp-
ster et al., 1977; Wu, 1983). Our model allows us
to deduce the original intended sentence by looking
for the the highest probability parses over the entire
sentence, which leads to automated whole sentence
spelling and grammar correction based on contex-
tual information.

In Section 2, we discuss previous work, followed
by an explanation of our model and its implementa-
tion in Sections 3 and 4. In Section 5 we present
a novel technique for evaluating the task of auto-
mated grammar and spelling correction, along with
the data set we collected for our experiments. Our
experiment results and discussion are in Section 6.
Section 7 concludes this paper.

2 Background

Much of the previous work in the domain of auto-
mated grammar correction has focused on identi-934



fying grammatical errors. Chodorow and Leacock
(2000) used an unsupervised approach to identify-
ing grammatical errors by looking for contextual
cues in a ±2 word window around a target word.
To identify errors, they searched for cues which did
not appear in the correct usage of words. Eeg-
olofsson and Knutsson (2003) used rule-based meth-
ods to approach the problem of discovering preposi-
tion and determiner errors of L2 writers, and var-
ious classifier-based methods using Maximum En-
tropy models have also been proposed (Izumi et al.,
2003; Tetreault and Chodorow, 2008; De Felice and
Pulman, 2008). Some classifier-based methods can
be used not only to identify errors, but also to deter-
mine suggestions for corrections by using the scores
or probabilities from the classifiers for other possi-
ble words. While this is a plausible approach for
grammar correction, there is one fundamental dif-
ference between this approach and the way humans
edit. The output scores of classifiers do not take into
account the observed erroneous word, changing the
task of editing into a fill-in-the-blank selection task.
In contrast, editing makes use of the writer’s erro-
neous word which often encompasses information
neccessary to correctly deduce the writer’s intent.

Generation-based approaches to grammar correc-
tion have also been taken, such as Lee and Sen-
eff (2006), where sentences are paraphrased into an
over-generated word lattice, and then parsed to se-
lect the best rephrasing. As with the previously men-
tioned approaches, these approaches often have the
disadvantage of ignoring the writer’s selected word
when used for error correction instead of just error
detection.

Other work which relates to automated grammar
correction has been done in the field of machine
translation. Machine translation systems often gen-
erate output which is grammatically incorrect, and
automated post-editing systems have been created to
address this problem. For instance, when translat-
ing Japanese to English, the output sentence needs
to be edited to include the correct articles, since the
Japanese language does not contain articles. Knight
and Chander (1994) address the problem of select-
ing the correct article for MT systems. These types
of systems could also be used to facilitate grammar
correction.

While grammar correction can be used on the out-

put of MT systems, note that the task of grammar
correction itself can also be thought of as a machine
translation task, where we are trying to ‘translate’ a
sentence from an ‘incorrect grammar’ language to
a ‘correct grammar’ language. Under this idea, the
use of statistical machine translation techniques to
correct grammatical errors has also been explored.
Brockett et al. (2006) uses phrasal SMT techniques
to identify and correct mass noun errors of ESL stu-
dents. Désilets and Hermet (2009) use a round-trip
translation from L2 to L1 and back to L2 to cor-
rect errors using an SMT system, focusing on errors
which link back to the writer’s native language.

Despite the underlying commonality between the
tasks of machine translation and grammar correc-
tion, there is a practical difference in that the field
of grammar correction suffers from a lack of good
quality parallel corpora. While machine translation
has taken advantage of the plethora of translated
documents and books, from which various corpora
have been built, the field of grammar correction does
not have this luxury. Annotated corpora of gram-
matical errors do exist, such as the NICT Japanese
Learner of English corpus and the Chinese Learner
English Corpus (Shichun and Huizhong, 2003), but
the lack of definitive corpora often makes obtaining
data for use in training models a task within itself,
and often limits the approaches which can be taken.

Using classification or rule-based systems for
grammatical error detection has proven to be suc-
cessful to some extent, but many approaches are not
sufficient for real-world automated grammar correc-
tion for various of reasons. First, as we have already
mentioned, classification systems and generation-
based systems do not make full use of the given
data when trying to make a selection. This limits the
system’s ability to make well-informed edits which
match the writer’s original intent. Second, many of
the systems start with the assumption that there is
only one type of error. However, ESL students often
make several combined mistakes in one sentence.
These combined mistakes can throw off error detec-
tion/correction schemes which assume that the rest
of the sentence is correct. For example, if a student
erroneously writes ‘much poeple’ instead of ‘many
people’, a system trying to correct ‘many/much’ er-
rors may skip correction of much to many because it
does not have any reference to the misspelled word935



‘poeple’. Thus there are advantages in looking at the
sentence as a whole, and creating models which al-
low several types of errors to occur within the same
sentence. We now present our model, which sup-
ports the addition of various types of errors into one
combined model, and derives its response by using
the whole of the observed sentence.

3 Base Model

Our noisy channel model consists of two main com-
ponents, a base language model and a noise model.
The base language model is a probabilistic lan-
guage model which generates an ‘error-free’ sen-
tence1 with a given probability. The probabilistic
noise model then takes this sentence and decides
whether or not to make it erroneous by inserting
various types of errors, such as spelling mistakes,
article choice errors, wordform choice errors, etc.,
based on its parameters (see Figure 1 for example).
Using this model, we can find the posterior proba-
bility p(Sorig|Sobs) using Bayes rule where Sorig is
the original sentence created by our base language
model, and Sobs is the observed erroneous sentence.

p(Sorig|Sobs) =
p(Sobs|Sorig)p(Sorig)

p(Sobs)

For the language model, we can use various
known probabilistic models which already have de-
fined methods for learning the parameters, such as
n-gram models or PCFGs. For the noise model, we
need some way to learn the parameters for the mis-
takes that a group of specified writers (such as Ko-
rean ESL students) make. We address this issue in
Section 4.

Using this model, we can find the highest likeli-
hood error-free sentence for an observed output sen-
tence by tracing all possible paths from the language
model through the noise model and ending in the ob-
served sentence as output.

4 Implementation

To actually implement our model, we use a bigram
model for the base language model, and various
noise models which introduce spelling errors, ar-
ticle choice errors, preposition choice errors, etc.

1In reality, the language model will most likely produce sen-
tences with errors as seen by humans, but from the modeling
perspective, we assume that the language model is a perfect rep-
resentation of the language for our task.

Figure 1: Example of noisy channel model

All models are implemented using weighted finite-
state tranducers (wFST). For operations on the wF-
STs, we use OpenFST (Allauzen et al., 2007), along
with expectation semiring code supplied by Markus
Dryer for Dreyer et al. (2008).

4.1 Base language model

The base language model is a bigram model imple-
mented by using a weighted finite-state transducer
(wFST). The model parameters are learned from
the British National Corpus modified to use Amer-
ican English spellings with Kneser-Ney smoothing.
To lower our memory usage, only bigrams whose
words are found in the observed sentences, or are
determined to be possible candidates for the correct
words of the original sentence (due to the noise mod-
els) are used. While we use a bigram model here for
simplicity, any probabilistic language model having
a tractable intersection with wFSTs could be used.
For the bigram model, each state in the wFST rep-
resents a bigram context, except the end state. The
arcs of the wFST are set so that the weight is the bi-
gram probability of the output word given the con-
text specified by the from state, and the output word
is a word of the vocabulary. Thus, given a set of n
words in the vocabulary, the language model wFST
had one start state, from which n arcs extended to
each of their own context states. From each of these
nodes, n + 1 arcs extend to each of the n context
states and the end state. Thus the number of states
in the language model is n + 2 and the number of
arcs is O(n2).

4.2 Noise models

For our noise model, we created a weighted finite-
state transducer (wFST) which accepts error-free in-
put, and outputs erroneous sentences with a spec-
ified probability. To model various types of human
errors, we created several different noise models and936



Figure 2: Example of noise model

composed them together, creating a layered noise
model. The noise models we implement are spelling
errors, article choice errors, preposition choice er-
rors, and insertion errors, which we will explain in
more detail later in this section.

The basic design of each noise wFST starts with
an initial state, which is also the final state of the
wFST. For each word found in the language model,
an arc going from the initial state to itself is created,
with the input and output values set as the word.
These arcs model the case of no error being made.
In addition to these arcs, arcs representing prediction
errors are also inserted. For example, in the article
choice error model, an arc is added for each possible
(input, output) article pair, such as a:an for making
the mistake of writing an instead of a. The weights
of the arcs are the probabilities of introducing errors,
given the input word from the language model. For
example, the noise model shown in Figure 2 shows
a noise model in which a will be written correctly
with a probability of 0.9, and will be changed to an
or the with probabilities 0.03 and 0.07, respectively.
For this model to work correctly, the setting of the
probabilities for each error is required. How this is
done is explained in Section 4.3.

4.2.1 Spelling errors
The spelling error noise model accounts for

spelling errors made by writers. For spelling er-
rors, we allowed all spelling errors which were
a Damerau-Levenshtein distance of 1 (Damerau,
1964; Levenshtein, 1966). While allowing a DL dis-
tance of 2 or higher may likely have better perfor-
mance, the model was constrained to a distance of 1
due to memory constraints. We specified one param-
eter λn for each possible word length n. This param-
eter is the total probability of making a spelling error
for a given word length. For each word length we

distributed the probability of each possible spelling
error equally. Thus for word length n, we have
n deletion errors, 25n substitution errors, n − 1
transposition errors, and 26(n + 1) insertion er-
rors, and the probability for each possible error is

λn
n+25n+n−1+26(n+1) . We set the maximum word
length for spelling errors to 22, giving us 22 param-
eters.

4.2.2 Article choice errors
The article choice error noise model simulates in-

correct selection of articles. In this model we learn
n(n−1) parameters, one for each article pair. Since
there are only 3 articles (a, an, the), we only have 6
parameters for this model.

4.2.3 Preposition choice errors
The preposition choice error noise model simu-

lates incorrect selection of prepositions. We take
the 12 most commonly misused prepositions by ESL
writers (Gamon et al., 2009) and specify one param-
eter for each preposition pair, as we do in the article
choice error noise model, giving us a total of 132
parameters.

4.2.4 Wordform choice errors
The wordform choice error noise model simulates

choosing the incorrect wordform of a word. For ex-
ample, choosing the incorrect tense of a verb (e.g.
went→go), or the incorrect number marking on a
noun or verb (e.g. are→is) would be a part of this
model. This error model has one parameter for every
number of possible inflections, up to a maximum of
12 inflections, giving us 12 parameters. The param-
eter is the total probability of choosing the wrong
inflection of a word, and the probability is spread
evenly between each possible inflection. We used
CELEX (Baayen et al., 1995) to find all the possible
wordforms of each observed word.

4.2.5 Word insertion errors
The word insertion error model simulates the ad-

dition of extraneous words to the original sentence.
We create a list of words by combining the prepo-
sitions and articles found in the article choice and
preposition choice errors. We assume that the words
on the list have a probability of being inserted erro-
neously. There is a parameter for each word, which937



is the probability of that word being inserted. Thus
we have 15 parameters for this noise model.

4.3 Learning noise model parameters

To achieve maximum performance, we wish to learn
the parameters of the noise models. If we had a
large set of erroneous sentences, along with a hand-
annotated list of the specific errors and their correc-
tions, it would be possible to do some form of super-
vised learning to find the parameters. We looked at
the NICT Japanese Learner of English (JLE) corpus,
which is a corpus of transcripts of 1,300 Japanese
learners’ English oral proficiency interview. This
corpus has been annotated using an error tagset
(Izumi et al., 2004). However, because the JLE cor-
pus is a set of transcribed sentences, it is in a differ-
ent domain from our task. The Chinese Learner En-
glish Corpus (CLEC) contains erroneous sentences
which have been annotated, but the CLEC corpus
had too many manual errors, such as typos, as well
as many incorrect annotations, making it very diffi-
cult to automate the processing. Many of the correc-
tions themselves were also incorrect. We were not
able to find of a set of annotated errors which fit our
task, nor are we aware that such a set exists. Instead,
we collected a large data set of possibly erroneous
sentences from Korean ESL students (Section 5.1).
Since these sentences are not annotated, we need to
use an unsupervised learning method to learn our pa-
rameters.

To learn the parameters of the noise models, we
assume that the collected sentences are random out-
put of our model, and train our model using the
EM algorithm. This was done by making use of
the V -expectation semiring (Eisner, 2002). The
V -expectation semiring is a semiring in which the
weight is defined as R≥0 × V , where R can be used
to keep track of the probability, and V is a vector
which can be used to denote arc traversal counts or
feature counts. The weight for each of the arcs in the
noise models was set so that the real value was the
probability and the vector V denoted which choice
(having a specified error or not) was made by select-
ing the arc. We create a generative language-noise
model by composing the language model wFST with
the noise model wFSTs, as shown in Figure 3. By
using the expectation semiring, we can keep track of
the probability of each path going over an erroneous
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Figure 3: Example of language model (top) and noise
model (middle) wFST composition. The vector of the
V -expectation semiring weight is in brackets. The first
value of the vector denotes no error being made on writ-
ing ‘a’ and the second value denotes the error of writing
‘an’ instead of ‘a’

arc or non-erroneous arc.

Once our model is set up for the E step using the
initial parameters, we must compute the expected
number of noise model arc traversals for use in cal-
culating our new parameters. To do this, we need to
find all possible paths resulting in the observed sen-
tence as output, for each observed sentence. Then,
for each possible path, we need to calculate the prob-
ability of the path given the output sentence, and get
the expected counts of going over each erroneous
and error-free arc to learn the parameters of the noise
model. To find a wFST with just the possible paths
for each observed sentence, we can compose the
language-noise wFST with the observed sentence
wFST. The observed sentence wFST is created in
the following manner. Given an observed sentence,
an initial state is created. For each word in the sen-
tence, in the order appearing in the sentence, a new
state is added, and an arc is created going from the
previously added state to the newly added state. The
new arc takes the observed word as input and also
uses it as output. The weight/probability for each
arc is set to 1. Composing the sentence wFST with
the language-noise wFST has the effect of restricting
the new wFST to only have sentences which out-
put the observed sentence from the language-noise
wFST. We now have a new wFST where all valid
paths are the paths which can produce the observed938



sentence. To find the total weight of all paths, we
first change all input and output symbols into the
empty string. Since all arcs in this wFST are ep-
silon arcs, we can use the epsilon-removal operation
(Mohri, 2002), which will reduce the wFST to one
state with no arcs. This operation combines the to-
tal weight of all paths into the final weight of the
sole state, giving us the total expectation value for
that sentence. By doing this for each sentence, and
adding the expectation values for each sentence, we
can easily compute the expectation step, from which
we can find the maximizing parameters and update
our parameters accordingly.

4.4 Finding the maximum likelihood correction
Once the parameters are learned, we can use our
model to find the maximum likelihood error-free
sentence. This is done by again creating the lan-
guage model and noise model with the learned pa-
rameters, but this time we set the weights of the
noise model to just the probabilities, using the log
semiring, since we do not need to keep track of ex-
pected values. We also set the language model input
for each arc to be the same word as the output, in-
stead of using an empty string. Once again, we com-
pose the language model with the noise models. We
create a sentence wFST using the observed sentence
we wish to correct, the same way the observed sen-
tence wFST for training was created. This is now
composed with the language-noise wFST. Now all
we need to do is find the shortest path (when using
minus-log probabilities) of the new wFST, and the
input to that path will be our corrected sentence.

5 Experiment

We now present the data set and evaluation tech-
nique used for our experiments.

5.1 Data Set
To train our noise models, we collected around
25,000 essays comprised of 478,350 sentences writ-
ten by Korean ESL students preparing for the
TOEFL writing exam. These were collected from
open web postings by Korean ESL students ask-
ing for advice on their writing samples. In order
to automate the process, a program was written to
download the posts, and discard the posts that were
deemed too short to be TOEFL writing samples.

Also discarded were the posts that had a “[re” or
“re..” in the title. Next, all sentences containing
Korean were removed, after which some characters
were changed so that they were in ASCII form. The
remaining text was separated into sentences solely
by punctuation marks ., !, and ?. This resulted in the
478,350 sentences stated above. Due to the process,
some of the sentences collected are actually sen-
tence fragments, where punctuation had been mis-
used. For training and evaluation purposes, the data
set was split into a test set with 504 randomly se-
lected sentences, an evaluation set of 1017 randomly
selected sentences, and a training set composed of
the remaining sentences.

5.2 Evaluation technique

In the current literature, grammar correction tasks
are often manually evaluated for each output cor-
rection, or evaluated by taking a set of proper sen-
tences, artificially introducing some error, and see-
ing how well the algorithm fixes the error. Man-
ual evaluation of automatic corrections may be the
best method for getting a more detailed evaluation,
but to do manual evaluation for every test output re-
quires a large amount of human resources, in terms
of both time and effort. In the case where artificial
lesioning is introduced, the lesions may not always
reflect the actual errors found in human data, and
it is difficult to replicate the actual tendency of hu-
mans to make a variety of different mistakes in a
single sentence. Thus, this method of evaluation,
which may be suitable for evaluating the correction
performance of specific grammatical errors, would
not be fit for evaluating our model’s overall perfor-
mance. For evaluation of the given task, we have
incorporated evaluation techniques based on current
evaluation techniques used in machine translation,
BLEU (Papineni et al., 2002) and METEOR (Lavie
and Agarwal, 2007).

Machine translation addresses the problem of
changing a sentence in one language to a sentence of
another. The task of correcting erroneous sentences
can also be thought of as translating a sentence from
a given language A, to another language B, where A
is a broken language, and B is the correct language.
Under this context, we can apply machine trans-
lation evaluation techniques to evaluate the perfor-
mance of our system. Our model’s sentence correc-939



tions can be thought of as the output translation to be
evaluated. In order to use BLEU and METEOR, we
need to have reference translations on which to score
our output. As we have already explained in section
5.1, we have a collection of erroneous sentences, but
no corrections. To obtain manually corrected sen-
tences for evaluation, the test and evaluation set sen-
tences and were put on Amazon Mechanical Turk as
a correction task. Workers residing in the US were
asked to manually correct the sentences in the two
sets. Workers had a choice of selecting ‘Impossi-
ble to understand’, ‘Correct sentence’, or ‘Incorrect
sentence’, and were asked to correct the sentences
so no spelling errors, grammatical errors, or punctu-
ation errors were present. Each sentence was given
to 8 workers, giving us a set of 8 or fewer corrected
sentences for each erroneous sentence. We asked
workers not to completely rewrite the sentences, but
to maintain the original structure as much as pos-
sible. Each hit was comprised of 6 sentences, and
the reward for each hit was 10 cents. To ensure the
quality of our manually corrected sentences, a native
English speaker research assistant went over each of
the ‘corrected’ sentences and marked them as cor-
rect or incorrect. We then removed all the incorrect
‘corrections’.

Using our manually corrected reference sen-
tences, we evaluate our model’s correction perfor-
mance using METEOR and BLEU. Since METEOR
and BLEU are fully automated after we have our ref-
erence translations (manual corrections), we can run
evaluation on our tests without any need for further
manual input. While these two evaluation methods
were created for machine translation, they also have
the potential of being used in the field of grammar
correction evaluation. One difference between ma-
chine translation and our task is that finding the right
lemma is in itself something to be rewarded in MT,
but is not sufficient for our task. In this respect, eval-
uation of grammar correction should be more strict.
Thus, for METEOR, we used the ‘exact’ module for
evaluation.

To validate our evaluation method, we ran a sim-
ple test by calculating the METEOR and BLEU
scores for the observed sentences, and compared
them with the scores for the manually corrected sen-
tences, to test for an expected increase. The scores
for each correction were evaluated using the set of

METEOR BLEU
Original ESL sentences 0.8327 0.7540

Manual corrections 0.9179 0.8786

Table 1: BLEU and METEOR scores for ESL sentences
vs manual corrections on 100 randomly chosen sentences

METEOR BLEU
Aspell 0.824144 0.719713

Spelling noise model 0.825001 0.722383

Table 2: Aspell vs Spelling noise model

corrected sentences minus the correction sentence
being evaluated. For example, let us say we have the
observed sentence o, and correction sentences c1, c2,
c3 and c4 from Mechanical Turk. We run METEOR
and BLEU on both o and c1 using c2, c3 and c4 as
the reference set. We repeat the process for o and c2,
using c1, c3 and c4 as the reference, and so on, until
we have run METEOR and BLEU on all 4 correction
sentences. With a set of 100 manually labeled sen-
tences, the average METEOR score for the ESL sen-
tences was 0.8327, whereas the corrected sentences
had an average score of 0.9179. For BLEU, the av-
erage scores were 0.7540 and 0.8786, respectively,
as shown in Table 1. Thus, we have confirmed that
the corrected sentences score higher than the ESL
sentence. It is also notable that finding corrections
for the sentences is a much easier task than finding
various correct translations, since the task of editing
is much easier and can be done by a much larger set
of qualified people.

6 Results

For our experiments, we used 2000 randomly se-
lected sentences for training, and a set of 1017 an-
notated sentences for evaluation. We also set aside
a set of 504 annotated sentences as a development
set. With the 2000 sentence training, the perfor-
mance generally converged after around 10 itera-
tions of EM.

6.1 Comparison with Aspell

To check how well our spelling error noise model is
doing, we compared the results of using the spelling
error noise model with the output results of using
the GNU Aspell 0.60.6 spelling checker. Since we940



METEOR ↑ ↓ BLEU ↑ ↓
ESL Baseline 0.821000 0.715634
Spelling only 0.825001 49 5 0.722383 53 8
Spelling, Article 0.825437 55 6 0.723022 59 9
Spelling, Preposition 0.824157 52 17 0.720702 55 19
Spelling, Wordform 0.825654 81 25 0.723599 85 27
Spelling, Insertion 0.825041 52 5 0.722564 56 8

Table 3: Average evaluation scores for various noise models run on 1017 sentences, along with counts of sentences
with increased (↑) and decreased (↓) scores. All improvements are significant by the binomial test at p < 0.001

are using METEOR and BLEU for our evaluation
metric, we needed to get a set of corrected sentences
for using Aspell. Aspell lists the suggested spelling
corrections of misspelled words in a ranked order, so
we replaced each misspelled word found by Aspell
with the word with the highest rank (lowest score)
for the Aspell corrections. One difference between
Aspell and our model is that Aspell only corrects
words which do not appear in the dictionary, while
our method looks at all words, even those found in
the dictionary. Thus our model can correct words
which look correct by themselves, but seem to be
incorrect due to the bigram context. Another differ-
ence is that Aspell has the capability to split words,
whereas our model does not allow the insertion of
spaces. A comparison of the scores is shown in Ta-
ble 2. We can see that our model has better per-
formance, due to better word selection, despite the
advantage that Aspell has by using phonological in-
formation to find the correct word, and the disadvan-
tage that our model is restricted to spellings which
are within a Damerau-Levenstein distance of 1. This
is due to the fact that our model is context-sensitive,
and can use other information in addition to the mis-
spelled word. For example, the sentence ‘In contast,
high prices of products would be the main reason
for dislike.’ was edited in Aspell by changing ‘con-
tast’ to ‘contest’, while our model correctly selected
‘contrast’. The sentence ‘So i can reach the theater
in ten minuets by foot’ was not edited by Aspell, but
our model changed ‘minuets’ to ‘minutes’. Another
difference that can be seen by looking through the
results is that Aspell changes every word not found
in the dictionary, while our algorithm allows words
it has not seen by treating them as unknown tokens.
Since we are using smoothing, these tokens are left
in place if there is no other high probability bigram

to take its place. This helps leave intact the proper
nouns and words not in the vocabulary.

6.2 Noise model performance and output

Our next experiment was to test the performance of
our model on various types of errors. Table 3 shows
the BLEU and METEOR scores of our various error
models, along with the number of sentences achiev-
ing improved and reduced scores. As we have al-
ready seen in section 6.1, the spelling error model
increases the evaluation scores from the ESL base-
line. Adding in the article choice error model and
the word insertion error models in addition to the
spelling error noise model increases the BLEU score
performance of finding corrections. Upon observ-
ing the outputs of the corrections on the develop-
ment set, we found that the corrections changing
a to an were all correct. Changes between a and
the were sometimes correct, and sometimes incor-
rect. For example, ‘which makes me know a exis-
tence about’ was changed to ‘which makes me know
the existence about’, ‘when I am in a trouble.’ was
changed to ‘when I am in the trouble.’, and ‘many
people could read a nonfiction books’ was changed
to ‘many people could read the nonfiction books’.
For the last correction, the manual corrections all
changed the sentence to contain ‘many people could
read a nonfiction book’, bringing down the evalu-
ation score. Overall, the article corrections which
were being made seemed to change the sentence for
the better, or left it at the same quality.

The preposition choice error model decreased the
performance of the system overall. Looking through
the development set corrections, we found that many
correct prepositions were being changed to incorrect
prepositions. For example, in the sentence ‘Distrust
about desire between two have been growing in their941



relationship.’, about was changed to of, and in ‘As
time goes by, ...’, by was changed to on. Since these
changes were not found in the manual corrections,
the scores were decreased.

For wordform errors, the BLEU and METEOR
scores both increased. While the wordform choice
noise model had the most sentences with increased
scores, it also had the most sentences with decreased
scores. Overall, it seems that to correct wordform
errors, more context than just the preceding and fol-
lowing word are needed. For example, in the sen-
tence ‘There are a lot of a hundred dollar phones in
the market.’, phones was changed to phone. To infer
which is correct, you would have to have access to
the previous context ‘a lot of’. Another example is
‘..., I prefer being indoors to going outside ...’, where
going was changed to go. These types of cases illus-
trate the restrictions of using a bigram model as the
base language model.

The word insertion error model was restricted to
articles and 12 prepositions, and thus did not make
many changes, but was correct when it did. One
thing to note is that since we are using a bigram
model for the language model, the model itself is
biased towards shorter sentences. Since we only in-
cluded words which were needed when they were
used, we did not run into problems with this bias.
When we tried including a large set of commonly
used words, we found that many of the words were
being erased because of the bigrams models proba-
bilistic preference for shorter sentences.

6.3 Limitations of the bigram language model

Browsing through the development set data, we
found that many of our model’s incorrect ‘correc-
tions’ were the result of using a bigram model as our
language model. For example, ‘.., I prefer being in-
doors to going outside in that...’ was changed to ‘..,
I prefer being indoors to go outside in that...’. From
the bigram model, the probabilities p(go to) and
p(outside go) are both higher than p(going to) and
p(outside going), respectively. To infer that going
is actually correct, we would need to know the previ-
ous context, that we are comparing ‘being indoors’
to ‘going outside’. Unfortunately, since we are using
a bigram model, this is not possible. These kind of
errors are found throughout the corrections. It seems
likely that making use of a language model which

can keep track of this kind of information would in-
crease the performance of the correction model by
preventing these kinds of errors.

7 Conclusion and future work

We have introduced a novel way of finding grammar
and spelling corrections, which uses the EM algo-
rithm to train the parameters of our noisy channel
approach. One of the benefits of this approach is that
it does not require a parallel set of erroneous sen-
tences and their corrections. Also, our model is not
confined to a specific error, and various error models
may be added on. For training our noise model, all
that is required is finding erroneous data sets. De-
pending on which domain you are training on, this
can also be quite feasible as we have shown by our
collection of Korean ESL students’ erroneous writ-
ing samples. Our data set could have been for ESL
students of any native language, or could also be a
data set of other groups such as young native En-
glish speakers, or the whole set of English speakers
for grammar correction. Using only these data sets,
we can train our noisy channel model, as we have
shown using a bigram language model, and a wFST
for our noise model. We have also shown how to use
weighted finite-state transducers and the expectation
semiring, as well as wFST algorithms implemented
in OpenFST to train the model using EM. For evalu-
ation, we have introduced a novel way of evaluating
grammar corrections, using MT evaluation methods,
which we have not seen in other grammar correction
literature. The produced corrections show the re-
strictions of using a bigram language model. For fu-
ture work, we plan to use a more accurate language
model, and add more types of complex error models,
such as word deletion and word ordering error mod-
els to improve performance and address other types
of errors.
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