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Abstract 

 ―Tree SRL system‖ is a Semantic Role Label-

ling supervised system based on a tree-distance 

algorithm and a simple k-NN implementation. 

The novelty of the system lies in comparing the 

sentences as tree structures with multiple rela-

tions instead of extracting vectors of features 

for each relation and classifying them. The sys-

tem was tested with the English CoNLL-2009 

shared task data set where 79% accuracy was 

obtained. 

1 Introduction 

Semantic Role Labelling (SRL) is a natural lan-

guage processing task which deals with semantic 

analysis at sentence-level. SRL is the task of 

identifying arguments for a certain predicate and 

labelling them. The predicates are usually verbs. 

They establish ―what happened‖. The arguments 

determine events such as ―who‖, ―whom‖, 

―where‖, etc, with reference to one predicate. 

The possible semantic roles are pre-defined for 

each predicate. The set of roles depends on the 

corpora. 

SRL is becoming an important tool for infor-

mation extraction, text summarization, machine 

translation and question answering (Màrquez, et 

al, 2008). 

2 The data 

The data set I used is taken from the CoNLL-

2009 shared task (Hajič et al., 2009) and is part 

of Propbank. Propbank (Palmer et al, 2005) is a 

hand-annotated corpus. It transforms sentences 

into propositions. It adds a semantic layer to the 

Penn TreeBank (Marcus et al, 1994) and defines 

a set of semantic roles for each predicate.  

It is difficult to define universal semantic roles 

for all predicates. That is why PropBank defines 

a set of semantic roles for each possible sense of 

each predicate (frame) [See a sample of the 

frame ―raise‖ on the Figure 1 caption]. 

 

 

The core arguments are labelled by numbers. 

Adjuncts, which are common to all predicates, 

have their own labels, like: AM-LOC, TMP, 

NEG, etc. The four most frequent labels in the 

data set are: A1:35%, A0:20.86%, A2:7.88% and 

AM-TMP: 7.72% 

Propbank was originally built using constitu-

ent tree structures, but here only the dependency 

tree structure version was used. Note that de-

pendency tree structures have labels on the ar-

rows. The tree distance algorithm cannot work 

with these labelled arrows and so they are moved 

to the child node as an extra label. 

The task performed by the Tree SRL system 

consists of labelling the relations (predicate ar-

guments) which are assumed to be already iden-

tified. 

3 Tree Distance  

The tree distance algorithm has already been ap-

plied to text entailment (Kouylekov & Magnini, 

2005) and question answering (Punyakanok et al, 

2004; Emms, 2006) with positive results.  

The main contribution of this piece of work to 

the SRL field is the inclusion of the tree distance 

algorithm into an SRL system, working with tree 

structures in contrast to the classical ―feature ex-

traction‖ and ―classification‖. Kim et al (2009) 

developed a similar system for Information Ex-

traction.   
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Tra 39279 179014 393699 4.55 2.20 56.2 

Dev 1334 6390 13865 4.79 2.17 1.97 

Evl 2399 10498 23286 4.38 2.22 3.41 

Table 1: The data 

The data set is divided into three files: training 

(Tra), development (Dev) and evaluation (Evl). 

The following table describes the number of 

sentences, sub-trees and labels contained in 

them, and the ratios of sub-trees per sentences 

and relations per sub-tree. 

79



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tai (1979) introduced a criterion for matching 

nodes between tree representations (or convert-

ing one tree into another one) and (Shasha & 

Zhang, 1990; Zhang & Shasha, 1989) developed 

an algorithm that finds an optimal matching tree 

solution for any given pair of trees. The advan-

tage of this algorithm is that its computational 

cost is low. The optimal matching depends on 

the defined atomic cost of matching two nodes.  

4 Tree SRL system architecture  

For the training and testing data set, all possible 

sub-trees were extracted. Figure 3 and Figure 5 

describe the process. Then, using the tree dis-

tance algorithm, the test sub-trees are labelled 

using the training ones. Finally, the predicted 

labels get assembled on the original sentence 

where the test sub-tree came from. Figure 2 de-

scribes the process. 

 

A sub-tree extracted from a sentence, contains 

a predicate node, all its argument nodes and all 

the ancestors up to the first common ancestor of 

all nodes. (Figure 1 shows two samples of sub-

tree extraction. Figure 3 describes how sub trees 

are obtained) 

 

Figure 1: Alignment sample 

A two sentence sample, in a dependency tree representation. In each node, the word form and the 

position of the word in the sentence are shown. Straight arrows represent syntactic dependencies. The 

label of the dependency is not shown. The square node represent the predicate that is going to be ana-

lyzed, (there can be multiple predicates in a single sentence). Semi-dotted arrows between a square 

node and an ellipse node represent a semantic relation. This arrow has a semantic tag (A1, A2, A3 

and A4). 

 

The grey shadow contains all the nodes of the sub tree for the ―rose‖ predicate. 

The dotted double arrows between the nodes of both sentences represent the tree distance alignment 

for both sub-trees. In this particular case every single node is matched. 

 

Both predicate nodes are samples of the frame ―raise‖ sense 01 (which means ―go up quantifiably‖) 

where the core arguments are: 

A0: Agent, causer of motion A1: Logical subject, patient, thing rising 

A2: EXT, amount raised A3: Start point A4: End point AM: Medium 
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5 Labelling  

Suppose that in Figure 1, the bottom sentence is 

the query, where the grey shadow contains the 

sub-tree to be labelled and the top sentence con-

tains the sub-tree sample chosen to label the 

query. Then, an alignment between the sample 

sub-tree and the query sub-tree suggests labelling 

the query sub-tree with A1, A2 and A3, where 

the first two labels are right but the last label, A4, 

is predicted as A3, so it is wrong.  

 

 
It is not necessary to label a whole sub-tree 

(query) using just a single sub-tree sample. How-

ever, if the whole query is labelled using a single 

answer sample, the prediction is guaranteed to be 

consistent (no repeated argument labels). 

Some possible ways to label the semantic rela-

tion using a sorted list of alignments (with each 

sub-tree of the training data set) is discussed 

ahead. Each sub-tree contains one predicate and 

several semantic relations, one for each argument 

node.  

5.1 Treating relations independently  

In this sub-section, the neighbouring sub-trees 

for one relation of a sub-tree T refers to the near-

Input: T: tree structure labelled in post order 

traversal 

Input: L: list of nodes to be on the sub-tree in 

post order traversal 

Output: T: Sub-Tree 

foreach node x in the list do 

mark x as part of the sub-tree; 

end 
while L contains more than 2 unique values do 

[minValue , position]=min(L); 

Value = parent(minValue); 

Mark value as part of the sub-tree; 

L[position] = value; 

end 
Remove all nodes that are not marked as part 

of the sub-tree; 

 

Figure 5: Sub-tree extraction 

Input: A sub-tree to be labelled 

Input: list of alignments sorted by ascending 

tree distance 

Output: labelled sub-tree 

foreach argument(a) in T do 

foreach alignment (ali) in the sorted list do 

if there is a semantic relation 

(ali.function(p),ali.function(a))  

Then break loop; 

end 

end 
label relation p-a with the label of the  

relation (ali.function(p),ali.function(a)); 

end 

p is the node predicate. 

a is a node argument. 

ali is an alignment between the sub-tree that 

has to be labelled and a sub-tree in the train-

ing dataset. 

The method function is explained in Figure 3. 

 

Figure 4: Labelling a relation. (approach 

A) 

 
Figure 3: Sub-tree extraction sample. 

Assuming that ―p‖ (the square node) is a pre-

dicate node and the nodes ―a1‖ and ―a2‖ are 

its arguments (the arguments are defined by 

the semantic relations. In this case, the semi-

doted arrows.), the sub-tree extracted from the 

above sentence will contain the nodes: ―a1‖, 

―a2‖, ―p‖, all ancestors of ―a1‖,‖a2‖ and ―p‖ 

up to the first common one, in this case node 

―u‖, which is also included in the sub-tree. 

All of the white nodes are not included in the 

sub-tree. The straight lines represent syntactic 

dependency relations. 

Input: training data set (labelled) 

Input: testing data set (unlabelled) 

Output: testing data set (labelled) 

Load training and testing data; 

Adapt the trees for the tree distance algorithm; 

foreach sentence (training & testing data) do  

obtain each minimal sub-tree for each pre-

dicate; 

end 

foreach sub-tree T from the testing data do 

calculate the distance and the alignment 

from T to each training sub-tree; 

sort the list of alignments by ascending 

tree distance; 

use the list to label the sub-tree T; 

Assemble T labels on the original sentence 

End 

 

Figure 2: Tree SRL system pseudo code 
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est sub-trees with which the match with T pro-

duces a match between two predicate nodes and 

two argument nodes. A label from the nearest 

neighbour(s) can be transferred to T for labelling 

the relation. 

The current implementation (Approach A), 

described in more detail in Figure 4, labels a re-

lation using the first nearest neighbour from a list 

ordered by ascending tree distance. If there are 

several nearest neighbours, the first one on the 

list is used. This is a naive implementation of the 

k-NN algorithm where in case of multiple near-

est neighbours only one is used and the others 

get ignored. 

A negative aspect of this strategy is that it can 

select a different sub-tree based on the input or-

der. This makes the algorithm indeterministic. A 

way to make it deterministic can be by extending 

the parameter ―k‖ in case of multiple cases at the 

same distance or a tie in the voting (Approach 

B). 

5.2 Treating relations dependently  

In this section, a sample refers to a sub-tree con-

taining all arguments and its labels. The argu-

ments for a certain predicate are related. 

Some strategies can lead to non-consistent 

structures (core argument labels cannot appear 

twice in the same sub-tree). Approach B treats 

the relations independently. It does not have any 

mechanism to keep the consistency of the whole 

predicate structure.  

Another way is to find a sample that contains 

enough information to label the whole sub-tree 

(Approach C). This approach always generates 

consistent structures. The limitation of this 

model is that the required sample may not exist 

or the tree distance may be very high, making 

those samples poor predictors. The implemented 

method (Approach A) indirectly attempts to find 

a training sample sub-tree which contains labels 

for all the arguments of the predicate. 

It is expected for tree distances to be smaller 

than other sub-trees that do not have information 

to label all the desired relations.  

The system tries to get a consistent structure 

using a simple algorithm. Only in the case when 

using the nearest tree does not lead to labelling 

the whole structure, labels are predicted using 

multiple samples, thereby, risking the structure 

consistency. 

Future implementations will rank possible 

candidate labels for each relation (probably using 

multiple samples).  

A ―joint scoring algorithm‖, which is com-

monly used (Marquez et al, 2008), can be applied 

for consistency checking after finding the rank 

probability for all the argument labels for the 

same predicate (Approach D).  

6 Experiments: the matching cost  

The cost of matching two nodes is crucial to the 

performance of the system. Different atomic 

measures (ways to measure the cost of matching 

two nodes) that were tested are explained ahead.  

Results for experiments using these atomic 

measures are given in Table 2. 

6.1 Binary system  

For Binary system, the atomic cost of matching 

two nodes is one if label POS or dependency re-

lations are different, otherwise the cost is zero. 

The atomic cost of inserting or deleting a node is 

always one. Note that the measure is totally 

based on the syntactic structure (words are not 

used). 

6.2 Ternary system  

The next intuitive measure is how the system 

would perform in case of a ternary cost (ternary 

system). The atomic cost is half if POS or de-

pendency relation is different, one if POS and 

dependency relation are different or zero in all 

other case. For this system, Table 2 shows a very 

similar accuracy to the binary one. 

6.3 Hamming system  

The atomic cost of matching two nodes is the 

sum of the following sub costs: 

0.25  if POS is different.  

0.25  if dependency relation is different. 

0.25  if Lemma is different. 

0.25 if one node is a predicate but the other  is 

not or if both nodes are predicates but with 

different lemma. 

The cost to create or delete nodes is one. 

Note that the sum of all costs cannot be 

greater than one. 

6.4 Predicate match system  

The analysis of results for the previous systems 

shows that the accuracy is higher for the sub-

trees that are labelled using sub-trees with the 

same predicate node. Consequently, this strategy 

attempts to force the predicate to be the same.  

In this system, the atomic cost of matching two 

nodes is the sum of the following sub costs: 
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0.3  if POS is different.  

0.3  if dependency relation is different. 

1 if one is a predicate and the other node 

is not or both nodes are predicates but 

with different lemma. 
The cost to create or delete nodes is one. 

6.5 Complex system  

This strategy attempts to improve the accuracy 

by adding an extra label to the argument nodes 

and using it.  

The atomic cost of matching two nodes is the 

sum of the following sub costs: 

0.1  for each different label (dependency rela-

tion or POS or lemma).  

0.1  for each pair of different labels (depend-

ency relation or POS or lemma).  

0.4  if one node is a predicate and the other is 

not.  

0.4  if both nodes are predicates and lemma is 

different.  

2  if one node is marked as an argument and 

the other is not or one node is marked as a 

predicate and the other is not.  

The atomic cost of deleting or inserting a node 

is: two if the node is an argument or predicate 

node and one in any other case. 

7 Results  

Table 2 shows the accuracy of all the systems. 

The validation data set is added to the training 

data set when the system is labelling the evalua-

tion data set. This is a common methodology 

followed in CoNLL2009 (Li et al, 2009).  

 
 

 
Accuracy is measured as the percentage of se-

mantic labels correctly predicted. 

The implementation of the Tree SRL system 

takes several days to run a single experiment. It 

makes non viable the idea of using the develop-

ment data set for adjusting parameters and that is 

why, for the last three systems (Hamming, Predi-

cate Match and Complex), the accuracy over the 

development data set is not measured. The same 

reason supports adding the development data set 

to the training data set without over fitting the 

system, because the development data set is not 

really used for adjusting parameters.  

However, the observations of the system on the 

development data set shows:  

1. If the complexity gets increased (Ternary), 

the number of cases having the multiple 

nearest sub-trees gets reduced. 

2. The output of the system only contains five 

per cent of inconsistent structures (Binary 

and Ternary), which is lower than expected. 

0.5% of inconsistent sub-trees were de-

tected in the training data-set. 

3. Higher accuracy for the relations where a 

sub-tree is labelled using a sub-tree sample 

which has the same predicate node. This has 

led to the design of the ―predicate match‖ 

and the ―complex‖ systems. 

4. Some sub-trees are very small (just one 

node). This resulted in low accuracy for 

they predicted labels due to multiple nearest 

neighbours. 

It is surprising that the hamming measure 

reaches higher accuracy than the ―predicate 

match‖, which uses more information, and is also 

surprising that the accuracies for ―Hamming‖, 

―Predicate Match‖ and ―Complex‖ systems are 

very similar. 

The CoNLL-2009 SRL shared task was evalu-

ated on multiple languages: Catalan, Chinese, 

Czech, English, German, Japanese and Spanish. 

Some results for those languages using ―Tree 

SRL System Binary‖ are shown in Table 3. 
 

Language Accuracy on 

evaluation  

Training data 

set size in Mb 

English 64.36% 56 

Spanish 57.86% 46 

Catalan 58.49% 43 

Japanese 50.71% 8 

German These languages had been ex-

cluded from the experiments be-

cause some of the sentences did 

not follow a dependency tree struc-

ture. 

Czech 

Chinese 

Table 3: Accuracy for other languages  

(Binary system) 

The accuracy results for multiple languages 

suggest that the size of the corpora has a strong 

influence on the results of the system perform-

ance.  

The results are not comparable with the rest of 

the CoNLL-2009 systems because the task is 

different. This system does not identify argu-

ments and does not perform predicate sense dis-

ambiguation. 

System   Evaluation   Development  

 Binary  64.36% 61.12% 

Ternary 64.88% 61.28% 

Hamming 78.01%  

Predicate 

Match 

76.98%  

Complex  78.98%  

Table 2: System accuracy 
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8 Conclusion  

The tree distance algorithm has been applied 

successfully to build a SRL system. Future work 

will focus on improving the performance of the 

system by: a) trying to extend the sub-trees 

which will contain more contextual information, 

b) using different approaches to label semantic 

relations discussed in Section 5. Also, the system 

will be expanded to identify arguments using a 

tree distance algorithm. 

Evaluating the task of identifying the argu-

ments and labelling the relations separately will 

assist in determining which systems to combine 

to create an hybrid system with better perform-

ance.  
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