
Proceedings of the ACL 2010 Student Research Workshop, pages 79–84,
Uppsala, Sweden, 13 July 2010. c©2010 Association for Computational Linguistics

Edit Tree Distance alignments for Semantic Role Labelling

Hector-Hugo Franco-Penya

Trinity College Dublin

Dublin, Ireland.
francoph@cs.tcd.ie

Abstract

 ―Tree SRL system‖ is a Semantic Role Label-

ling supervised system based on a tree-distance

algorithm and a simple k-NN implementation.

The novelty of the system lies in comparing the

sentences as tree structures with multiple rela-

tions instead of extracting vectors of features

for each relation and classifying them. The sys-

tem was tested with the English CoNLL-2009

shared task data set where 79% accuracy was

obtained.

1 Introduction

Semantic Role Labelling (SRL) is a natural lan-

guage processing task which deals with semantic

analysis at sentence-level. SRL is the task of

identifying arguments for a certain predicate and

labelling them. The predicates are usually verbs.

They establish ―what happened‖. The arguments

determine events such as ―who‖, ―whom‖,

―where‖, etc, with reference to one predicate.

The possible semantic roles are pre-defined for

each predicate. The set of roles depends on the

corpora.

SRL is becoming an important tool for infor-

mation extraction, text summarization, machine

translation and question answering (Màrquez, et

al, 2008).

2 The data

The data set I used is taken from the CoNLL-

2009 shared task (Hajič et al., 2009) and is part

of Propbank. Propbank (Palmer et al, 2005) is a

hand-annotated corpus. It transforms sentences

into propositions. It adds a semantic layer to the

Penn TreeBank (Marcus et al, 1994) and defines

a set of semantic roles for each predicate.

It is difficult to define universal semantic roles

for all predicates. That is why PropBank defines

a set of semantic roles for each possible sense of

each predicate (frame) [See a sample of the

frame ―raise‖ on the Figure 1 caption].

The core arguments are labelled by numbers.

Adjuncts, which are common to all predicates,

have their own labels, like: AM-LOC, TMP,

NEG, etc. The four most frequent labels in the

data set are: A1:35%, A0:20.86%, A2:7.88% and

AM-TMP: 7.72%

Propbank was originally built using constitu-

ent tree structures, but here only the dependency

tree structure version was used. Note that de-

pendency tree structures have labels on the ar-

rows. The tree distance algorithm cannot work

with these labelled arrows and so they are moved

to the child node as an extra label.

The task performed by the Tree SRL system

consists of labelling the relations (predicate ar-

guments) which are assumed to be already iden-

tified.

3 Tree Distance

The tree distance algorithm has already been ap-

plied to text entailment (Kouylekov & Magnini,

2005) and question answering (Punyakanok et al,

2004; Emms, 2006) with positive results.

The main contribution of this piece of work to

the SRL field is the inclusion of the tree distance

algorithm into an SRL system, working with tree

structures in contrast to the classical ―feature ex-

traction‖ and ―classification‖. Kim et al (2009)

developed a similar system for Information Ex-

traction.

S
en

te
n

ce
s

p
re

d
ic

at
es

ar
g

u
m

en
ts

P
re

d
ic

at
es

 p
er

se
n

te
n

ce

ar
g

u
m

en
ts

p
er

 s
u

b
-t

re
e

F
il

e
si

ze
 i

n

M
b

Tra 39279 179014 393699 4.55 2.20 56.2

Dev 1334 6390 13865 4.79 2.17 1.97

Evl 2399 10498 23286 4.38 2.22 3.41

Table 1: The data

The data set is divided into three files: training

(Tra), development (Dev) and evaluation (Evl).

The following table describes the number of

sentences, sub-trees and labels contained in

them, and the ratios of sub-trees per sentences

and relations per sub-tree.

79

Tai (1979) introduced a criterion for matching

nodes between tree representations (or convert-

ing one tree into another one) and (Shasha &

Zhang, 1990; Zhang & Shasha, 1989) developed

an algorithm that finds an optimal matching tree

solution for any given pair of trees. The advan-

tage of this algorithm is that its computational

cost is low. The optimal matching depends on

the defined atomic cost of matching two nodes.

4 Tree SRL system architecture

For the training and testing data set, all possible

sub-trees were extracted. Figure 3 and Figure 5

describe the process. Then, using the tree dis-

tance algorithm, the test sub-trees are labelled

using the training ones. Finally, the predicted

labels get assembled on the original sentence

where the test sub-tree came from. Figure 2 de-

scribes the process.

A sub-tree extracted from a sentence, contains

a predicate node, all its argument nodes and all

the ancestors up to the first common ancestor of

all nodes. (Figure 1 shows two samples of sub-

tree extraction. Figure 3 describes how sub trees

are obtained)

Figure 1: Alignment sample

A two sentence sample, in a dependency tree representation. In each node, the word form and the

position of the word in the sentence are shown. Straight arrows represent syntactic dependencies. The

label of the dependency is not shown. The square node represent the predicate that is going to be ana-

lyzed, (there can be multiple predicates in a single sentence). Semi-dotted arrows between a square

node and an ellipse node represent a semantic relation. This arrow has a semantic tag (A1, A2, A3

and A4).

The grey shadow contains all the nodes of the sub tree for the ―rose‖ predicate.

The dotted double arrows between the nodes of both sentences represent the tree distance alignment

for both sub-trees. In this particular case every single node is matched.

Both predicate nodes are samples of the frame ―raise‖ sense 01 (which means ―go up quantifiably‖)

where the core arguments are:

A0: Agent, causer of motion A1: Logical subject, patient, thing rising

A2: EXT, amount raised A3: Start point A4: End point AM: Medium

80

5 Labelling

Suppose that in Figure 1, the bottom sentence is

the query, where the grey shadow contains the

sub-tree to be labelled and the top sentence con-

tains the sub-tree sample chosen to label the

query. Then, an alignment between the sample

sub-tree and the query sub-tree suggests labelling

the query sub-tree with A1, A2 and A3, where

the first two labels are right but the last label, A4,

is predicted as A3, so it is wrong.

It is not necessary to label a whole sub-tree

(query) using just a single sub-tree sample. How-

ever, if the whole query is labelled using a single

answer sample, the prediction is guaranteed to be

consistent (no repeated argument labels).

Some possible ways to label the semantic rela-

tion using a sorted list of alignments (with each

sub-tree of the training data set) is discussed

ahead. Each sub-tree contains one predicate and

several semantic relations, one for each argument

node.

5.1 Treating relations independently

In this sub-section, the neighbouring sub-trees

for one relation of a sub-tree T refers to the near-

Input: T: tree structure labelled in post order

traversal

Input: L: list of nodes to be on the sub-tree in

post order traversal

Output: T: Sub-Tree

foreach node x in the list do

mark x as part of the sub-tree;

end
while L contains more than 2 unique values do

[minValue , position]=min(L);

Value = parent(minValue);

Mark value as part of the sub-tree;

L[position] = value;

end
Remove all nodes that are not marked as part

of the sub-tree;

Figure 5: Sub-tree extraction

Input: A sub-tree to be labelled

Input: list of alignments sorted by ascending

tree distance

Output: labelled sub-tree

foreach argument(a) in T do

foreach alignment (ali) in the sorted list do

if there is a semantic relation

(ali.function(p),ali.function(a))

Then break loop;

end

end
label relation p-a with the label of the

relation (ali.function(p),ali.function(a));

end

p is the node predicate.

a is a node argument.

ali is an alignment between the sub-tree that

has to be labelled and a sub-tree in the train-

ing dataset.

The method function is explained in Figure 3.

Figure 4: Labelling a relation. (approach

A)

Figure 3: Sub-tree extraction sample.

Assuming that ―p‖ (the square node) is a pre-

dicate node and the nodes ―a1‖ and ―a2‖ are

its arguments (the arguments are defined by

the semantic relations. In this case, the semi-

doted arrows.), the sub-tree extracted from the

above sentence will contain the nodes: ―a1‖,

―a2‖, ―p‖, all ancestors of ―a1‖,‖a2‖ and ―p‖

up to the first common one, in this case node

―u‖, which is also included in the sub-tree.

All of the white nodes are not included in the

sub-tree. The straight lines represent syntactic

dependency relations.

Input: training data set (labelled)

Input: testing data set (unlabelled)

Output: testing data set (labelled)

Load training and testing data;

Adapt the trees for the tree distance algorithm;

foreach sentence (training & testing data) do

obtain each minimal sub-tree for each pre-

dicate;

end

foreach sub-tree T from the testing data do

calculate the distance and the alignment

from T to each training sub-tree;

sort the list of alignments by ascending

tree distance;

use the list to label the sub-tree T;

Assemble T labels on the original sentence

End

Figure 2: Tree SRL system pseudo code

81

est sub-trees with which the match with T pro-

duces a match between two predicate nodes and

two argument nodes. A label from the nearest

neighbour(s) can be transferred to T for labelling

the relation.

The current implementation (Approach A),

described in more detail in Figure 4, labels a re-

lation using the first nearest neighbour from a list

ordered by ascending tree distance. If there are

several nearest neighbours, the first one on the

list is used. This is a naive implementation of the

k-NN algorithm where in case of multiple near-

est neighbours only one is used and the others

get ignored.

A negative aspect of this strategy is that it can

select a different sub-tree based on the input or-

der. This makes the algorithm indeterministic. A

way to make it deterministic can be by extending

the parameter ―k‖ in case of multiple cases at the

same distance or a tie in the voting (Approach

B).

5.2 Treating relations dependently

In this section, a sample refers to a sub-tree con-

taining all arguments and its labels. The argu-

ments for a certain predicate are related.

Some strategies can lead to non-consistent

structures (core argument labels cannot appear

twice in the same sub-tree). Approach B treats

the relations independently. It does not have any

mechanism to keep the consistency of the whole

predicate structure.

Another way is to find a sample that contains

enough information to label the whole sub-tree

(Approach C). This approach always generates

consistent structures. The limitation of this

model is that the required sample may not exist

or the tree distance may be very high, making

those samples poor predictors. The implemented

method (Approach A) indirectly attempts to find

a training sample sub-tree which contains labels

for all the arguments of the predicate.

It is expected for tree distances to be smaller

than other sub-trees that do not have information

to label all the desired relations.

The system tries to get a consistent structure

using a simple algorithm. Only in the case when

using the nearest tree does not lead to labelling

the whole structure, labels are predicted using

multiple samples, thereby, risking the structure

consistency.

Future implementations will rank possible

candidate labels for each relation (probably using

multiple samples).

A ―joint scoring algorithm‖, which is com-

monly used (Marquez et al, 2008), can be applied

for consistency checking after finding the rank

probability for all the argument labels for the

same predicate (Approach D).

6 Experiments: the matching cost

The cost of matching two nodes is crucial to the

performance of the system. Different atomic

measures (ways to measure the cost of matching

two nodes) that were tested are explained ahead.

Results for experiments using these atomic

measures are given in Table 2.

6.1 Binary system

For Binary system, the atomic cost of matching

two nodes is one if label POS or dependency re-

lations are different, otherwise the cost is zero.

The atomic cost of inserting or deleting a node is

always one. Note that the measure is totally

based on the syntactic structure (words are not

used).

6.2 Ternary system

The next intuitive measure is how the system

would perform in case of a ternary cost (ternary

system). The atomic cost is half if POS or de-

pendency relation is different, one if POS and

dependency relation are different or zero in all

other case. For this system, Table 2 shows a very

similar accuracy to the binary one.

6.3 Hamming system

The atomic cost of matching two nodes is the

sum of the following sub costs:

0.25 if POS is different.

0.25 if dependency relation is different.

0.25 if Lemma is different.

0.25 if one node is a predicate but the other is

not or if both nodes are predicates but with

different lemma.

The cost to create or delete nodes is one.

Note that the sum of all costs cannot be

greater than one.

6.4 Predicate match system

The analysis of results for the previous systems

shows that the accuracy is higher for the sub-

trees that are labelled using sub-trees with the

same predicate node. Consequently, this strategy

attempts to force the predicate to be the same.

In this system, the atomic cost of matching two

nodes is the sum of the following sub costs:

82

0.3 if POS is different.

0.3 if dependency relation is different.

1 if one is a predicate and the other node

is not or both nodes are predicates but

with different lemma.
The cost to create or delete nodes is one.

6.5 Complex system

This strategy attempts to improve the accuracy

by adding an extra label to the argument nodes

and using it.

The atomic cost of matching two nodes is the

sum of the following sub costs:

0.1 for each different label (dependency rela-

tion or POS or lemma).

0.1 for each pair of different labels (depend-

ency relation or POS or lemma).

0.4 if one node is a predicate and the other is

not.

0.4 if both nodes are predicates and lemma is

different.

2 if one node is marked as an argument and

the other is not or one node is marked as a

predicate and the other is not.

The atomic cost of deleting or inserting a node

is: two if the node is an argument or predicate

node and one in any other case.

7 Results

Table 2 shows the accuracy of all the systems.

The validation data set is added to the training

data set when the system is labelling the evalua-

tion data set. This is a common methodology

followed in CoNLL2009 (Li et al, 2009).

Accuracy is measured as the percentage of se-

mantic labels correctly predicted.

The implementation of the Tree SRL system

takes several days to run a single experiment. It

makes non viable the idea of using the develop-

ment data set for adjusting parameters and that is

why, for the last three systems (Hamming, Predi-

cate Match and Complex), the accuracy over the

development data set is not measured. The same

reason supports adding the development data set

to the training data set without over fitting the

system, because the development data set is not

really used for adjusting parameters.

However, the observations of the system on the

development data set shows:

1. If the complexity gets increased (Ternary),

the number of cases having the multiple

nearest sub-trees gets reduced.

2. The output of the system only contains five

per cent of inconsistent structures (Binary

and Ternary), which is lower than expected.

0.5% of inconsistent sub-trees were de-

tected in the training data-set.

3. Higher accuracy for the relations where a

sub-tree is labelled using a sub-tree sample

which has the same predicate node. This has

led to the design of the ―predicate match‖

and the ―complex‖ systems.

4. Some sub-trees are very small (just one

node). This resulted in low accuracy for

they predicted labels due to multiple nearest

neighbours.

It is surprising that the hamming measure

reaches higher accuracy than the ―predicate

match‖, which uses more information, and is also

surprising that the accuracies for ―Hamming‖,

―Predicate Match‖ and ―Complex‖ systems are

very similar.

The CoNLL-2009 SRL shared task was evalu-

ated on multiple languages: Catalan, Chinese,

Czech, English, German, Japanese and Spanish.

Some results for those languages using ―Tree

SRL System Binary‖ are shown in Table 3.

Language Accuracy on

evaluation

Training data

set size in Mb

English 64.36% 56

Spanish 57.86% 46

Catalan 58.49% 43

Japanese 50.71% 8

German These languages had been ex-

cluded from the experiments be-

cause some of the sentences did

not follow a dependency tree struc-

ture.

Czech

Chinese

Table 3: Accuracy for other languages

(Binary system)

The accuracy results for multiple languages

suggest that the size of the corpora has a strong

influence on the results of the system perform-

ance.

The results are not comparable with the rest of

the CoNLL-2009 systems because the task is

different. This system does not identify argu-

ments and does not perform predicate sense dis-

ambiguation.

System Evaluation Development

 Binary 64.36% 61.12%

Ternary 64.88% 61.28%

Hamming 78.01%

Predicate

Match

76.98%

Complex 78.98%

Table 2: System accuracy

83

8 Conclusion

The tree distance algorithm has been applied

successfully to build a SRL system. Future work

will focus on improving the performance of the

system by: a) trying to extend the sub-trees

which will contain more contextual information,

b) using different approaches to label semantic

relations discussed in Section 5. Also, the system

will be expanded to identify arguments using a

tree distance algorithm.

Evaluating the task of identifying the argu-

ments and labelling the relations separately will

assist in determining which systems to combine

to create an hybrid system with better perform-

ance.

Acknowledgments

This research is supported by the Science Foun-

dation Ireland (Grant 07/CE/I1142) as part of the

Centre for Next Generation Localisation

(www.cngl.ie) at Trinity College Dublin.

Thanks are due to Dr Martin Emms for his sup-

port on the development of this project.

References

Martin Emms. 2006. Variants of Tree Similarity in

a Question Answering Task. In Proceedings of

the Workshop on Linguistic Distances, held in

conjunction with COLING 2006, 100—108, Syd-

ney, Australia, Asociation for Computational Lin-

guistics.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-

son, Daisuke Ka-wahara, Maria Antonia Martí,

Luis Màrquez, Adam Meyers, Joakim Nivre, Se-

bastian Padó, Jan Štěpánek, Pavel Stravnák, Mihai

Surdeanu, Nianwen Xue and Yi Zhang. 2009. The

CoNLL-2009 shared task: syntactic and se-

mantic dependencies in multiple languages. In

CoNLL '09: Proceedings of the Thirteenth Confe-

rence on Computational Natural Language Learn-

ing (pp. 1-18). Morristown, NJ, USA: Association

for Computational Linguistics.

Seokhwan Kim, Minwoo Jeong and Gary Geunbae

Lee. 2009. A Local Tree Alignment-based Soft

Pattern Matching Approach for Information

Extraction. Proceedings of NAAACL HLT, 169-

172. Boulder, Colorado, June 2009

Milen Kouylekov and Bernardo Magnini. 2005. Re-

cognizing textual entailment with tree edit

distance algorithms. In Recognizing Textual En-

tailment (pp. 17-20). Southampton, U.K.

Baoli Li, Martin Emms, Saturnino Luz and Carl Vo-

gel. 2009. Exploring multilingual semantic role

labeling. In CoNLL '09: Proceedings of the Thir-

teenth Conference on Computational Natural Lan-

guage Learning (pp. 73-78). Morristown, NJ,

USA: Association for Computational Linguistics.

Mitchell Marcus, Beatrice Santorini and Mary Ann

Marcinkiewicz. 1994. Building a large anno-

tated corpus of Eng-lish: The Penn Treebank.

Computational linguistics, 19(2), 313–330.

Alessandro Moschitti, Daniele Pighin and Roberto

Basili. 2008. Tree kernels for semantic role

labeling. Computational Linguistics, 34(2), 193-

224. Cambridge, MA, USA: MIT Press.

Lluis Màrquez, Xavier Carreras, Kenneth. C.

Litkowski and Suzanne Stevenson. 2008. Seman-

tic Role Labeling: An Introduction to the Spe-

cial Issue. Computational Linguistics, 34(2), 145-

159.

Martha Palmer, Paul Kingsbury and Daniel Gildea.

2005. The Proposition Bank: An Annotated

Corpus of Semantic Roles. Computational Lin-

guistics, 31(1), 71-106.

Vasin Punyakanok, Dan Roth and Wen-tau Yih. 2004.

Mapping dependencies trees: An application

to question answering. In Proceedings of

AI\&Math 2004 (pp. 1-10). Ford.

Dennis Shasha and Kaizhong Zhang. 1990. Fast al-

gorithms for the unit cost editing distance be-

tween trees. J. Algorithms, 11(4), 581-621. Du-

luth, MN, USA: Academic Press, Inc.

Kuo-Chung Tai. 1979. The Tree-to-Tree Correc-

tion Problem. J. ACM, 26(3), 422-433. New

York, NY, USA: ACM.

Kaizhong Zhang and Dennis Shasha. 1989. Simple

fast algorithms for the editing distance be-

tween trees and related problems. SIAM J.

Comput., 18(6), 1245-1262. Philadelphia, PA,

USA: Society for Industrial and Applied Mathe-

matics.

84

