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Abstract

Many NLP tasks need accurate knowl-
edge for semantic inference. To this end,
mostly WordNet is utilized. Yet Word-
Net is limited, especially for inference be-
tween predicates. To help filling this gap,
we present an algorithm that generates
inference rules between predicates from
FrameNet. Our experiment shows that the
novel resource is effective and comple-
ments WordNet in terms of rule coverage.

1 Introduction

Many text understanding applications, such as
Question Answering (QA) and Information Ex-
traction (IE), need to infer a target textual mean-
ing from other texts. This need was proposed as a
generic semantic inference task under the Textual
Entailment (TE) paradigm (Dagan et al., 2006).

A fundamental component in semantic infer-
ence is the utilization of knowledge resources.
However, a major obstacle to improving semantic
inference performance is the lack of such knowl-
edge (Bar-Haim et al., 2006; Giampiccolo et al.,
2007). We address one prominent type of infer-
ence knowledge known as entailment rules, focus-
ing specifically on rules between predicates, such
as ‘cure X ⇒ X recover’.

We aim at highly accurate rule acquisition,
for which utilizing manually constructed sources
seem appropriate. The most widely used manual
resource is WordNet (Fellbaum, 1998). Yet it is in-
complete for generating entailment rules between
predicates (Section 2.1). Hence, other manual re-
sources should also be targeted.

In this work1, we explore how FrameNet
(Baker et al., 1998) could be effectively used for
generating entailment rules between predicates.

1The detailed description of our work can be found in
(Ben Aharon, 2010).

FrameNet is a manually constructed database
based on Frame Semantics. It models the semantic
argument structure of predicates in terms of proto-
typical situations called frames.

Prior work utilized FrameNet’s argument map-
ping capabilities but took entailment relations
from other resources, namely WordNet. We
propose a novel method for generating entail-
ment rules from FrameNet by detecting the entail-
ment relations implied in FrameNet. We utilize
FrameNet’s annotated sentences and relations be-
tween frames to extract both the entailment rela-
tions and their argument mappings.

Our analysis shows that the rules generated by
our algorithm have a reasonable “per-rule” accu-
racy of about 70%2. We tested the generated rule-
set on an entailment testbed derived from an IE
benchmark and compared it both to WordNet and
to state-of-the-art rule generation from FrameNet.
Our experiment shows that our method outper-
forms prior work. In addition, our rule-set’s per-
formance is comparable to WordNet and it is com-
plementary to WordNet when uniting the two re-
sources. Finally, additional analysis shows that
our rule-set accuracy is 90% in practical use.

2 Background

2.1 Entailment Rules and their Acquisition

To generate entailment rules, two issues should
be addressed: a) identifying the lexical entailment
relations between predicates, e.g. ‘cure ⇒ re-
cover’; b) mapping argument positions, e.g. ‘cure
X ⇒ X recover’. The main approach for gener-
ating highly accurate rule-sets is to use manually
constructed resources. To this end, most systems
mainly utilize WordNet (Fellbaum, 1998), being
the most prominent lexical resource with broad
coverage of predicates. Furthermore, some of its

2The rule-set is available at: http://www.cs.biu.
ac.il/˜nlp/downloads
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relations capture types of entailment relations, in-
cluding synonymy, hypernymy, morphologically-
derived, entailment and cause.

Yet, WordNet is limited for entailment rule gen-
eration. First, many entailment relations, no-
tably for the WordNet entailment and cause re-
lation types, are missing, e.g. ‘elect ⇒ vote’.
Furthermore, WordNet does not include argument
mapping between related predicates. Thus, only
substitutable WordNet relations (synonymy and
hypernymy), for which argument positions are
preserved, could be used to generate entailment
rules. The other non-substitutable relations, e.g.
cause (‘kill ⇒ die’) and morphologically-derived
(‘meet.v⇔ meeting.n’), cannot be used.

2.2 FrameNet
FrameNet (Baker et al., 1998) is a knowledge-
base of frames, describing prototypical situations.
Frames can be related to each other by inter-frame
relations, e.g. Inheritance, Precedence, Usage and
Perspective.

For each frame, several semantic roles are spec-
ified, called frame elements (FEs), denoting the
participants in the situation described. Each FE
may be labeled as core if it is central to the frame.
For example, some core FEs of the Commerce pay
frame are Buyer and Goods, while a non-core FE
is Place. Each FE may also be labeled with a se-
mantic type, e.g. Sentient, Event, and Time.

A frame includes a list of predicates that can
evoke the described situation, called lexical units
(LUs). LUs are mainly verbs but may also be
nouns or adjectives. For example, the frame Com-
merce pay lists the LUs pay.v and payment.n.

Finally, FrameNet contains annotated sentences
that represent typical LU occurrences in texts.
Each annotation refers to one LU in a specific
frame and the FEs of the frame that occur in the
sentence. An example sentence is “IBuyer have to
pay the billsMoney”. Each sentence is accompa-
nied by a valence pattern, which provides, among
other info, grammatical functions of the core FEs
with respect to the LU. The valence pattern of the
above sentence is [(Buyer Subj), (Money Obj)].

2.3 Using FrameNet for Semantic Inference
To the best of our knowledge, the only work that
utilized FrameNet for entailment rule generation
is LexPar (Coyne and Rambow, 2009). LexPar
first identifies lexical entailment relations by go-
ing over all LU pairs which are either in the

same frame or whose frames are related by one of
FrameNet’s inter-frame relations. Each candidate
pair is considered entailing if the two LUs are ei-
ther synonyms or in a direct hypernymy relation in
WordNet (providing the vast majority of LexPar’s
relations), or if their related frames are connected
via the Perspective relation in FrameNet.

Then, argument mappings between each entail-
ing LU pair are extracted based on the core FEs
that are shared between the two LUs. The syntac-
tic positions of the shared FEs are taken from the
valence patterns of the LUs. A LexPar rule exam-
ple is presented in Figure 3 (top part).

Since most of LexPar’s entailment relations
are based on WordNet’s relations, LexPar’s rules
could be viewed as an intersection of WordNet and
FrameNet lexical relations, accompanied with ar-
gument mappings taken from FrameNet.

3 Rule Extraction from FrameNet

The above prior work identified lexical entailment
relations mainly from WordNet, which limits the
use of FrameNet in two ways. First, some rela-
tions that appear in FrameNet are missed because
they do not appear in WordNet. Second, unlike
FrameNet, WordNet does not include argument
mappings for its relations. Thus, prior work for
rule generation considered only substitutable rela-
tions from WordNet (synonyms and hypernyms),
not utilizing FrameNet’s capability to map argu-
ments of non-substitutable relations.

Our goal in this paper is to generate entail-
ment rules solely from the information within
FrameNet. We present a novel algorithm for gen-
erating entailment rules from FrameNet, called
FRED (FrameNet Entailment-rule Derivation),
which operates in three steps: a) extracting tem-
plates for each LU; b) detecting lexical entailment
relations between pairs of LUs; c) generating en-
tailment rules by mapping the arguments between
two LUs in each entailing pair.

3.1 Template Extraction

Many LUs in FrameNet are accompanied by an-
notated sentences (Section 2.2). From each sen-
tence of a given LU, we extract one template for
each annotated FE in the sentence. Each tem-
plate includes the LU, one argument correspond-
ing to the target FE and their syntactic relation
in the sentence parse-tree. We focus on extract-
ing unary templates, as they can describe any ar-
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Figure 1: Template extraction for a sentence con-
taining the LU ‘arrest’.

gument mapping by decomposing templates with
several arguments into unary ones (Szpektor and
Dagan, 2008). Figure 1 exemplifies this process.

As a pre-parsing step, all FE phrases in a given
sentence are replaced by their related FE names,
excluding syntactic information such as preposi-
tions or possessives (step (b) in Figure 1). Then,
the sentence is parsed using the Minipar depen-
dency parser (Lin, 1998) (step (c)). Finally, a
path in the parse-tree is extracted between each FE
node and the node of the LU (step (d)). Each ex-
tracted path is converted into a template by replac-
ing the FE node with an argument variable.

We simplify each extracted path by removing
nodes along the path that are not part of the syn-
tactic relation between the LU and the FE, such
as conjunctions and other FE nodes. For example,

‘Authorities
subj←− enter

conj−→ arrest’ is simplified

into ‘Authorities
subj←− arrest’.

Some templates originated from different anno-
tated sentences share the same LU and syntactic
structure, but differ in their FEs. Usually, one of
these templates is incorrect, due to erroneous parse

(e.g. ‘Suspect
obj←− arrest’ is a correct template, in

contrast to ‘Charges
obj←− arrest’). We thus keep

only the most frequently annotated template out of
the identical templates, assuming it is the correct
one.

3.2 Identifying Lexical Entailment Relations

FrameNet groups LUs in frames and describes re-
lations between frames. However, relations be-
tween LUs are not explicitly defined. We next de-
scribe how we automatically extract several types
of lexical entailment relations between LUs using
two approaches.

In the first approach, LUs in the same frame
that are morphological derivations of each other,
e.g. ‘negotiation.n’ and ‘negotiate.v’, are marked
as paraphrases. We take morphological derivation
information from the CATVAR database (Habash
and Dorr, 2003).

The second approach is based on our observa-
tion that some LUs express the prototypical situ-
ation that their frame describes, which we denote
dominant LUs. For example, the LU ‘recover’ is
dominant for the Recovery frame. We mark LUs
as dominant if they are morphologically derived
from the frame’s name.

Our assumption is that since dominant LUs ex-
press the frame’s generic meaning, their meaning
is likely to be entailed by the other LUs in this
frame. Consequently, we generate such lexical
rules between any dominant LU and any other LU
in a given frame, e.g. ‘heal⇒ recover’ and ‘con-
valescence⇒ recover’ for the Recovery frame.

In addition, we assume that if two frames are
related by some type of entailment relation, their
dominant LUs are also related by the same rela-
tion. Accordingly, we extract entailment relations
between dominant LUs of frames that are con-
nected via the Inheritance, Cause and Perspective
relations, where Inheritance and Cause generate
directional entailment relations (e.g. ‘choose ⇒
decide’ and ‘cure⇒ recover’, respectively) while
Perspective generates bidirectional paraphrase re-
lations (e.g. ‘transfer⇔ receive’).

Finally, we generate the transitive closure of
the set of lexical relations identified by the above
methods. For example, the combination of ‘sell⇔
buy’ and ‘buy⇒ get’ generates ‘sell⇒ get’.

3.3 Generating Entailment Rules

The final step in the FRED algorithm generates
lexical syntactic entailment rules from the ex-
tracted templates and lexical entailment relations.

For each identified lexical relation ‘left⇒ right’
between two LUs, the set of FEs that are shared by
both LUs is collected. Then, for each shared FE,
we take the list of templates that connect this FE
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Lexical Relation:
cure⇒ recovery

Templates:
Patient

obj←− cure (cure Patient)

Affliction
of←− cure (cure of Affliction)

Patient
gen←− recovery (Patient’s recovery)

Patient
of←− recovery (recovery of Patient)

Affliction
from←− recovery (recovery from Affliction)

Intra-LU Entailment Rules:
Patient

gen←− recovery⇐⇒ Patient
of←− recovery

Inter-LU Entailment Rules:
Patient

obj←− cure =⇒ Patient
gen←− recovery

Patient
obj←− cure =⇒ Patient

of←− recovery

Affliction
of←− cure =⇒ Affliction

from←− recovery

Figure 2: Some entailment rules generated for the
lexical relation ‘cure.v⇒ recovery.n’.

Configuration R (%) P (%) F1
No-Rules 13.8 57.7 20.9
LexPar 14.1 42.9 17.4
WordNet 18.3 32.2 17.8
FRED 17.6 55.1 24.6
FRED ∪WordNet 21.8 33.3 20.9

Table 1: Macro average Recall (R), Precision (P)
and F1 results for the tested configurations.

to each of the LUs, denoted by T fe
left and T fe

right.

Finally, for each template pair, l ∈ T fe
left and r ∈

T fe
right, the rule ‘l ⇒ r’ is generated. In addition,

we generate paraphrase rules between the various
templates including the same FE and the same LU.
Figure 2 illustrates this process.

To improve rule quality, we filter out rules that
map FEs of adjunct-like semantic types, such as
Time and Location, since different templates of
such FEs may have different semantic meanings

(e.g. ‘Time
before←− arrive’ ‘Time

after←− arrive’).
Thus, it is hard to identify those template pairs that
correctly map these FEs for entailment.

We manually evaluated a random sample of 250
rules from the resulting rule-set, out of which we
judged 69% as correct.

4 Application-based Evaluation

4.1 Experimental Setup

We would like to evaluate the overall utility of our
resource for NLP applications, assessing the cor-
rectness of the actual rule applications performed

in practice, as well as to compare its performance
to related resources. To this end, we follow the ex-
perimental setup presented in (Szpektor and Da-
gan, 2009), which utilized the ACE 2005 event
dataset3 as a testbed for entailment rule-sets. We
briefly describe this setup here.

The task is to extract argument mentions for
26 events, such as Sue and Attack, from the ACE
annotated corpus, using a given tested entailment
rule-set. Each event is represented by a set of
unary seed templates, one for each event argu-
ment. Some seed templates for Attack are ‘At-

tacker
subj←−attack’ and ‘attack

obj−→Target’.
Argument mentions are found in the ACE cor-

pus by matching either the seed templates or tem-
plates entailing them found in the tested rule-set.
We manually added for each event its relevant
WordNet synset-ids and FrameNet frame-ids, so
only rules fitting the event target meaning will be
extracted from the tested rule-sets.

4.2 Tested Configurations

We evaluated several rule-set configurations:

No-Rules The system matches only the seed
templates directly, without any additional rules.

WordNet Rules are generated from WordNet
3.0, using only the synonymy and hypernymy rela-
tions (see Section 2.1). Transitive chaining of re-
lations is allowed (Moldovan and Novischi, 2002).

LexPar Rules are generated from the publicly
available LexPar database. We generated unary
rules from each LexPar rule based on a manually
constructed mapping from FrameNet grammatical
functions to Minipar dependency relations. Fig-
ure 3 presents an example of this procedure.

FRED Rules are generated by our algorithm.

FRED ∪WordNet The union of the rule-sets of
FRED and WordNet.

4.3 Results

Each configuration was tested on each ACE event.
We measured recall, precision and F1. Table 1
reports macro averages of the three measures over
the 26 ACE events.

As expected, using No-Rules achieves the high-
est precision and the lowest recall compared to all
other configurations. When adding LexPar rules,

3http://projects.ldc.upenn.edu/ace/
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LexPar rule:
Lexemes: arrest −→ apprehend
Valencies: [(Authorities Subj), (Suspect Obj), (Offense (for))] =⇒ [(Authorities Subj), (Suspect Obj), (Offense (in))]

Generated unary rules:
X

subj←− arrest =⇒ X
subj←− apprehend , arrest

obj−→ Y =⇒ apprehend
obj−→ Y , arrest

for−→ Z =⇒ apprehend in−→ Z

Figure 3: An example for generation of unary entailment rules from a LexPar rule.

only a slight increase in recall is gained. This
shows that the subset of WordNet rules captured
by LexPar (Section 2.3) might be too small for the
ACE application setting.

When using all WordNet’s substitutable rela-
tions, a substantial relative increase in recall is
achieved (32%). Yet, precision decreases dramat-
ically (relative decrease of 44%), causing an over-
all decrease in F1. Most errors are due to correct
WordNet rules whose LHS is ambiguous. Since
we do not apply a WSD module, these rules are
also incorrectly applied to other senses of the LHS.
While this phenomenon is common to all rule-sets,
WordNet suffers from it the most since it contains
many infrequent word senses.

Our main result is that using FRED’s rule-set,
recall increases significantly, a relative increase
of 27% compared to No-Rules, while precision
hardly decreases. Hence, overall F1 is the high-
est compared to all other configurations (a rela-
tive increase of 17% compared to No-Rules). The
improvement in F1 is statistically significant com-
pared to all other configurations, according to the
two-sided Wilcoxon signed rank test at the level of
0.01 (Wilcoxon, 1945).

FRED preforms significantly better than LexPar
in both recall, precision and F1 (a relative increase
of 25%, 28% and 41% respectively). For example,
LexPar hardly utilizes FrameNet’s argument map-
ping capabilities since most of its rules are based
on a sub-set of WordNet’s substitutable relations.

FRED’s precision is substantially higher than
WordNet. This mostly results from the fact
that FrameNet mainly contains common senses
of predicates while WordNet includes many rare
word senses; which, as said above, harms preci-
sion when WSD is not applied. Error analysis
showed that only 7.5% of incorrect extractions are
due to erronous rules in FRED, while the majority
of errors are due to sense mismatch or syntactic
matching errors of the seed templates ot entailing
templates in texts.

FRED’s Recall is somewhat lower than Word-

Net, since FrameNet is a much smaller resource.
Yet, its rules are mostly complementary to those
from WordNet. This added value is demon-
strated by the 19% recall increase for the union of
FRED and WordNet rule-sets compared to Word-
Net alone. FRED provides mainly argument map-
pings for non-substitutable WordNet relations, e.g.
‘attack.n on X ⇒ attack.v X’, but also lexical re-
lations that are missing from WordNet, e.g. ‘am-
bush.v⇒ attack.v’.

Overall, our experiment shows that the rule-
base generated by FRED seems an appropri-
ate complementary resource to the widely used
WordNet-based rules in semantic inference and
expansion over predicates. This suggestion is es-
pecially appealing since our rule-set performs well
even when a WSD module is not applied.

5 Conclusions

We presented FRED, a novel algorithm for gener-
ating entailment rules solely from the information
contained in FrameNet. Our experiment showed
that FRED’s rules perform substantially better
than LexPar, the only prior rule-set derived from
FrameNet. In addition, FRED’s rule-set largely
complements the rules generated from WordNet
because it contains argument mappings between
non-substitutable predicates, which are missing
from WordNet, as well as lexical relations that are
not included in WordNet.

In future work we plan to investigate combin-
ing FrameNet and WordNet rule-sets in a transitive
manner, instead of their simple union.
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