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Abstract

Tree-to-string systems (and their forest-
based extensions) have gained steady pop-
ularity thanks to their simplicity and effi-
ciency, but there is a major limitation: they
are unable to guarantee the grammatical-
ity of the output, which is explicitly mod-
eled in string-to-tree systems via target-
side syntax. We thus propose to com-
bine the advantages of both, and present
a novel constituency-to-dependency trans-
lation model, which uses constituency
forests on the source side to direct the
translation, and dependency trees on the
target side (as a language model) to en-
sure grammaticality. Medium-scale exper-
iments show an absolute and statistically
significant improvement of +0.7 BLEU
points over a state-of-the-art forest-based
tree-to-string system even with fewer
rules. This is also the first time that a tree-
to-tree model can surpass tree-to-string
counterparts.

Introduction

tree on | examples (partial) | fast | gram. | BLEU

source | Liu06, Huang06 + - +
target | Galley06, Shen08| - + +
both Ding05, Liu09 + + -
both | our work [+ ] + T +

Table 1: A classification and comparison of lin-
guistically syntax-based SMT systems, where
gram. denotes grammaticality of the output.

On one hand, tree-to-string systems (Liu et al.,
2006; Huang et al., 2006) have gained significant
popularity, especially after incorporating packed
forests (Mi et al., 2008; Mi and Huang, 2008; Liu
et al., 2009; Zhang et al., 2009). Compared with
their string-based counterparts, tree-based systems
are much faster in decoding (linear time vs. cu-
bic time, see (Huang et al., 2006)), do not re-
qguire a binary-branching grammar as in string-
based models (Zhang et al., 2006; Huang et al.,
2009), and can have separate grammars for pars-
ing and translation (Huang et al., 2006). However,
they have a major limitation that they do not have a
principled mechanism to guarantee grammatical-

Linguistically syntax-based statistical machineity on the target side, since there is no linguistic
translation models have made promising progres§ee structure of the output.

in recent years. By incorporating the syntactic an- On the other hand, string-to-tree systems ex-
notations of parse trees froothor either side(s)  plicitly model the grammaticality of the output
of the bitext, they are believed better than phraseby using target syntactic trees. Both string-to-
based counterparts in reorderings. Depending ofonstituency system (e.g., (Galley et al., 2006;
the type of input, these models can be broadly diMarcu et al., 2006)) and string-to-dependency
vided into two categories (see Table 1): #tieng- model (Shen et al., 2008) have achieved signif-
basedsystems whose input is a string to be simul-icant improvements over the state-of-the-art for-
taneously parsed and translated by a synchronousally syntax-based system Hiero (Chiang, 2007).
grammar, and theee-basedystems whose input However, those systems also have some limita-
is already a parse tree to be directly converted intdéions that they run slowly (in cubic time) (Huang
a target tree or string. When we also take into acet al., 2006), and do not utilize the useful syntactic

count the type of output (tree or string), ttree-
basedsystems can be divided intioee-to-string
andtree-to-treeefforts.

information on the source side.

We thus combine the advantages of both tree-to-
string and string-to-tree approaches, and propose
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a novel constituency-to-dependency model, whicl2.1  Constituency Forests on the Source Side

uses constituency forests on the source side to dix constituency forest (in Figure 1 left) is a com-
rect translation, and dependency trees on the tafact representation of all the derivations (i.e.,
get side to guarantee grammaticality of the Outparse trees) for a given sentence under a context-
put. In contrast to conventional tree-to-ree apfree grammar (Billot and Lang, 1989).

proaches (Ding and Palmer, 2005; Quirk et al., pore formally, following Huang (2008), such
2005; Xiong et al., 2007; Zhang et al., 2007; 4 constituency forest is a paf. = G/ =

Liu et al., 2009), which only make use of a sin- (v, Hf), whereV/ is the set ohodes and Hf

gle type of trees, our model is able to combinge get ofhyperedges For a given source sen-
two types of trees, outperforming both phrasetencecl.m — ¢1...c,, each node’/ ¢ V7is

based and tree-to-string systems. Current tree-tGg the form of X j, which denotes the recogpnition
tree models (Xiong et al., 2007; Zhang etal., 2007 nonterminalX spanning the substring from po-
Liu et al., 2009) still have not outperformed the sjtions; through; (that is,cit1 ... c;). Each hy-
p_hra_s_e-based system Moses (Koehn et al., Zooaeredgehf e H' is a pair(tails(h!), head (b)),
significantly even with the help of forests. wherehead(hf) € V7 is theconsequent nodeén
Our new constituency-to-dependency modethe deductive step, anils(h/) € (V/)* is the

(Section 2) extracts rules from word-aligned pairsjist of antecedent nodesFor example, the hyper-
of source constituency forests and target deperédgehg in Figure 1 for deduction (*)

dency trees (Section 3), and translates source con-

stituency forests into target dependency trees with NPBy1 CCi2 NPBy3

a set of features (Section 4). Medium data exper- NPo 3 : *)
iments (Section 5) show a statistically significant,

improvement of +0.7 BLEU points over a state-'S notated:

of-the-art forest-based tree-to-string system even
with less translation rules, this is alsg th):a first time ((NPBo,1, CC1.2, NPBy3), NPog).
that a tree-to-tree model can surpass tree-to-stringnere

counterparts. head(h})) = {NPy 3},
and
2 Model tails(hj) = {NPBy1, CCy 2, NPBy 3}.

Figure 1 shows a word-aligned source con-
stituency forest,. and target dependency trég,
our constituency to dependency translation mod
can be formalized as:

The solid line in Figure 1 shows the best parse
etlree, while the dashed one shows the second best
tree. Note that common sub-derivations like those

for the verb VPR 5 are shared, which allows the
forest to represent exponentially many parses in a

P(Fe, De) = Z P(Ce; De) compact structure.
CeeFe We also denote/N (v/) to be the set ofin-
= > ) P (1) coming hyperedgesf nodev/, which represents
C.EF. 0€0 the different ways of deriving/. Take node 185
— Z ZHP(T)’ in Figure 1 for example/N (IPy5) = {h{,hg}.
C.€F. 00 T€0 There is also a distinguishedot node TOP in

each forest, denoting the goal item in parsing,

whereC., is a constituency tree i, o is a deriva-  Which is simply $,, where S is the start symbol
tion that translate§, to D., O is the set of deriva- andm is the sentence length.
tion,  is a constituency to dependency translatio

rule 2 Dependency Trees on the Target Side

A dependency tree for a sentence represents each
According to the reports of Liu et al. (2009), their forest- word and its syntactic dependents through directed
based constituency-to-constituency system achieves a comres, as shown in the following examples. The
parable performance against Moses (Koehn et al., 2007), but__. d ¢ fad d t is that it
a significant improvement of +3.6 BLEU points over the 1- main advantage or a aependency tree IS that it can

best tree-based constituency-to-constituency system. explore the long distance dependency.

1434



1 talk 1P

—_—
a NP 23:VPB _
T — (x1) z3 (With (z2))

x1:NPBCCzx2:NPB
[

2: held yu
Bush talk with Figure 2: Example of the rulg . The Chinese con-
/ AN junctionyli “and” is translated into English prepo-
a Sharon  sition “with”.

3 Rule Extraction

‘We use the lexicon dependency grammar (Hellye extract constituency to dependency rules from
wig, 2006) to express a projective dependencyyord-aligned source constituency forest and target

ple, they will be expressed: tend the tree-to-string rule extraction algorithm of
Mi and Huang (2008) to our scenario. In this sec-
1: (a)talk tion, we first formalize the constituency to string

translation rule (Section 3.1). Then we present
2: (Bush) held ((a) talk) (with (Sharon)) the restrictions for dependency structures as well
formed fragments (Section 3.2). Finally, we de-
where the lexicons in brackets represent the describe our rule extraction algorithm (Section 3.3),
pendencies, while the lexicon out the brackets isractional counts computation and probabilities es-
the head. timation (Section 3.4).
More formally, a dependency tree is also a pair .
D. = G = (v HY). For a given target sen- 3.1 Constituency to Dependency Rule
tencee;,, = e;...e,, each node® € V4is More formally, a constituency to de-
aworde; (1 < i < n), each hyperedgé? ¢ pendency translation rule = is a tuple
H? is a directed argvd,v?) from nodevd to  (lhs(r), rhs(r), ¢(r)), where Ihs(r) is the

i)Y : .
its head noder?. Following the formalization of Source side tree fragment, whose internal nodes

the constituency forest scenario, we denote a pai'e labeled by nonterminal symbols (like NP and
(tails(h?), head(h)) to be a hyperedgl?, where  VP), and whose frontier nodes are labeled by

head(h?) is the head nodeyils(h?) is the node Source language words (like “yu) or variables
Wherehd leaves from. from a set¥ = {ZBl, o, .. }, ThS(T') is expressed
We also denotd,;(v?) andL, (v?) to be the left in the targ_et Ianguage dependency structure with
and right children sequence of nodé from the wordse; (like “with”) and variables from the set
nearest to the farthest respectively. Take the nod& @nd ¢(r) is a mapping fromt’ to nontermi-

vd = *held” for example: nals. Each variable; € X occursexactly oncen
lhs(r) and exactly oncen rhs(r). For example,
Li(vd) ={Bush}, the ruler; in Figure 2,

L,(v9) ={talk, with}.

lhé’(?“l) = |P(NP(I1 CC(yU) 1‘2) 1‘3),

rhs(r1) = (z1) z3 (With (x2)),
Actually, both the constituency forest and the de- ¢(r1) = {1 — NPB, x5 — NPB, z3 — VPB}.
pendency tree can be formalized dsypergraph
G, apair(V, H). We useG/ andG to distinguish
them. For simplicity, we also use. andD, to de- 3-2 Well Formed Dependency Fragment
note a constituency forest and a dependency trdeollowing Shen et al. (2008), we also restrict
respectively. Specifically, the size ofils(h?) of  rhs(r) to bewell formed dependency fragment.
a hyperedgé? in a dependency tree is a constantThe main difference between us is that we use
one. more flexible restrictions. Given a dependency

2.3 Hypergraph
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IPo,5

“(Bush) .. Sharon))” Minimal rules extracted

A\ hi IP (NP(z;:NPB z5:CC x3:NPB) x4:VPB)
N — (1) @4 (22 (3))

IP (SUlNPB CL‘Q:VP) — (Il) T2
VP (.’IIIZPP .ZL'QVPB) — T2 (.’131)
PP (l‘llp $2:NPB)—>$1 (SUQ)

“held .. Sharon))” \I

D —
VPB3,5

/N PP, VPB (VV(juxingle)) z1:NPB)
NS . ~ held ((a)z1)
e o L~ _ “with (sharony’ “held ((a) talk)” e 1

7 , o By NPB (Bust) — Bush
NPBy;  CCi» P2 NPB,3  VV3,  NPBys NPB (huitan) — talk
“Bush” “with, “with” “Sharon” “hele-{(ays)* “talk” cC (yle) - W!th

| ./ | | | P (yt) — with
BusH yu Stalong  juxingle  huitan NPB (Shalong) — Sharon

(Bush) held  ((a)  talk) (with  (Sharon))

Figure 1: Forest-based constituency to dependency rule extraction.

fragmentd;.; composed by the words froirto j,

3.3 Rule Extraction Algorithm

two kinds of well formed structures are defined aSThe algorithm shown in this Section is mainly ex-

follows:
Fixed on one nodev?, ., fixed for short, if it

meets the following conditions:

e the head of?,, is out of [i, j], i.e.: VhY, if

tails(h?) = v, = head(h?) ¢ e;.;.
e the heads of other nodes exceg}, are in
[i, j], i.e.:Vk € [i,j] andvd # vl ., VR if

tails(h?) = vl = head(h?) € e;.;.

Floating with multi nodes M, floating for
short, if it meets the following conditions:

e all nodes inM have a same head node,

i.e.. 3w ¢ [i,4], VAT if tails(h?) € M =
head(h®) = vh.

e the heads of other nodes not id are in
[i, 5], i.e:Vk € [i,j] andv{ ¢ M, VR if
tails(h?) = vl = head(h?) € e;;.

tended from the forest-based tree-to-string extrac-
tion algorithm (Mi and Huang, 2008). We extract
rules from word-aligned source constituency for-
est and target dependency tree pairs (see Figure 1)
in three steps:

(1) frontier set computation,
(2) fragmentation,
(3) composition.

Thefrontier set (Galley et al., 2004) is the po-
tential points to “cut” the forest and dependency
tree pair into fragments, each of which will form a
minimal rule (Galley et al., 2006).

However, not every fragment can be used for
rule extraction, since it may or may not respect
to the restrictions, such as word alignments and
well formed dependency structures. So we say a
fragment isextractable if it respects to all re-
strictions. The root node of every extractable tree

Take the * (Bush) held ((a) talk))(with (Sharon)) fragment corresponds tofaithful structure on
" for example: partial fixed examples are “ (Bush) the target side, in which case there is a “transla-
held ” and “ held ((a) talk)”; while the partial float- tional equivalence” between the subtree rooted at
ing examples are “ (talk) (with (Sharon)) ” and “ the node and the corresponding target structure.
((a) talk) (with (Sharon)) . Please note that theFor example, in Figure 1, every node in the forest
floating structure “ (talk) (with (Sharon)) ” can not is annotated with its corresponding English struc-
be allowed in Shen et al. (2008)’s model. ture. The NB3 node maps to a non-contiguous
The dependency structure “ held ((a))” is not astructure “(Bush)d (with (Sharon))”, the V\ 4
well formed structure, since the head of word “a”node maps to a contiguous but non-faithful struc-
is out of scope of this structure. ture “held ((a) *)".
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Algorithm 1 Forest-based constituency to dependency rule extraction.
Input : Source constituency forest, target dependency tree., and alignmeng
Output: Minimal rule setR

1: fs «— FRONTIER(F,, D,, a) > compute frontier set

2: for eachw! € fs do

3: open «— {(@, {v/})} > initial queue of growing fragments

4 while open # @ do

5: (hs, exps) — open.pop() > extract a fragment

6: if exps = @ then > nothing to expand?

7 generate a rule using fragments > generate a rule

8: R.append()

9 else > incomplete: further expand
10: v« exps.pop() > a non-frontier node
11: for eachh/ € IN(v') do
12: newerps «— exps U (tails(h') \ fs) > expand
13: open.append(hs U {h'}, newexps))

Following Mi and Huang (2008), given a sourcetree fragments, each of which forms a rule with
target sentence pafey.,, e1.,) With an alignment  variables matching the frontier descendant nodes.
a, thespan of nodev/ on source forest is the set For example, the forest in Figure 1 is cut into 10
of target words aligned to leaf nodes undér pieces, each of which corresponds to a minimal

span(v?) 2 {e; € e | Ie; € yield(v'), (c;, e:) € al. rule listed on the right.

where theyield(v7) is all the leaf nodes un- Ou_r rule extraction algorithm is formah_zed in
Algorithm 1. After we compute the frontier set

der v/. For each span(v/), we also denote ) . .
dep(vf) to be its corresponding dependency struc]cs (line 1). We visit gach frontier node’ € /s
on the source constituency forefst, and keep a

ture, which represents the dependency struc- .
ture of all the words inspan(v/). Take the queueopen of growing fragments rooted af . We

span(PPy 3) —{with, Sharon for example, the keep expanding incomplete fragments fropen,
correspohdingdep(P’Pl 5) is “with (Sharon):’ A and extract a rule if a complete fragment is found

dep(v?) isfaithful structure to nodev/ if it meets (Ii_n N 7).' Each fragr_nenln_s in op n i“.:’ associa_tted
the following restrictions: with a list of expansion site€ezps in line 5) being

the subset of leaf nodes of the current fragment
e allwords inspan(v/) form a continuous sub- that arenot in the frontier set. So each fragment
stringe;.;, along hyperedge is associated with

e every word inspan(v/) is onlyaligned to leaf
nodes ofv/, i.e.:Ve; € span(v’), (c;, ei) €

a = ¢ € yield(vf), exps = tails(h') \ fs.

e dep(v?) is a well formed dependency struc-
ture. A fragment is complete if its expansion sites is
For example, node V¥, has a non-faithful empty/(line 6). otherwis_e we pop one expansion
structure (crossed out in Figure 1), since itsnOdeq_) to grow and sp:n-off.new fragments. by
dep(VWV 3.4 — * held ((a) *)" is not a well formed [0llowing hyperedges o', adding new expansion
structuré, where the head of word “a” lies in thes'tes (lines 11-13), until all active fragments are

outside of its words covered. Nodes with faithful COTPIEte andpen queue is empty (line 4).
structure form thdrontier set (shaded nodes in  After we get all the minimal rules, we glue them
Figure 1) which serve as potential cut points fortogether to forntomposed rules following Galley
rule extraction. et al. (2006). For example, the composed rule

Given the frontier set, fragmentation step is toin Figure 2 is glued by the following two minimal
“cut” the forest at all frontier nodes and form rules:
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a target side dependency trBg(o):
IP (NP(x1:NPB 2:CC z3:NPB) 24:VPB)

=)z () of =arg max \ilogP(o]|T)

CC (yl) — with - +A2 log Py (e(0))
+Aslog Pprwm,, (De(0)) (6)

wherez,:CC inr; is replaced withrz accordingly. +Aq1og Pprag, (De(0))

: +A5 log P(Te(0))

3.4 Fractional Counts and Rule Probabilities Al (0) + Alo] + Asle(o)],

Following Mi and Huang (2008), we penalize a
rule » by the posterior probability of the corre-
sponding constituent tree fragmeht (), which

can be computed in an Inside-Outside fashion, be,
ing the product of the outside probability of its
root node, the inside probabilities of its leaf nodes
and the probabilities of hyperedges involved in the

where the first two terms are translation and lan-
guage model probabilities(o) is the target string
(English sentence) for derivatian the third and
forth items are the dependency language model
probabilities on the target side computed with
Wwords and POS tags separatdly (o) is the target
dependency tree af, the fifth one is the parsing

fragment. probability of the source side trég (o) € F,, the
ill(o0) is the penalty for the number of ill-formed
af(lhs(r)) =a(root(r)) dependency structures énand the last two terms
H p(hf> are derivation and trer_wslation Iengt_h_ penalties, re-
Wi e ths(r) ) _spect|vely. The eondltlonal probability (o | 1) -
is decomposes into the product of rule probabili-
11 B’) ties:
vl € leaves(lhs(r)) (o| Te) HP (7)

reo

where root(r) is the root of the ruler, a(v) and ~Where eactP(r) is the product of five probabili-

B(v) are the outside and inside probabilities oftI€S:

nodewv, andleaves(lhs(r)) returns the leaf nodes

of atree fragmenﬂ(zs(r)(. ) P(r) =P(r | ths(r ))Ag P(r| rhs(r))ho
We use fractional counts to compute three con- P(r | root(ths(r)))™ ®)

ditional probabilities for each rule, which will be Prex(Ths(r) | hs(r))™2

used in the next section: Prox (rhs(r) | th(T)))\lg

p _ c(r) where the first three are conditional probabilities
(T ‘ th(T)) - Z N (3) . . .

v/ 1hs (1) =Ihs(r) c(r’) based on fractional counts of rules defined in Sec-

tion 3.4, and the last two are lexical probabilities.

When computing the lexical translation probabili-

c(r : . )
P(r | rhs(r)) = () _ (4) _tles described in (Koehn et_ al., 2003), we only take
Zr’:rhs(r’):rhs(r) c(r’) into accout the terminals in a rule. If there is no
terminal, we set the lexical probability o
The decoding algorithm works in a bottom-up

P(r | root(r)) = e(r) ~. (5) search fashion by traversing each node in forest
2 rtsvoot(r)=root(r) €(T") F,.. We first use pattern-matching algorithm of Mi
et al. (2008) to converf’, into atranslation for-
4 Decoding est each hyperedge of which is associated with a

constituency to dependency translation rule. How-
Given a source foredt,, the decoder searches for ever, pattern-matching failuteat a nodev! will
the best derivation* among the set of all possible ———— ) _
derivationsO. each of which forms a source side Pattern-matching failure at a nodé means there is no
erlve 0 ' X i translation rule can be matchedwdtor no translation hyper-
constituent tre@ (o), a target side string(o), and  edge can be constructeddt
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cut the derivation path and lead to translation fail-the POS tag information on the target side for each
ure. To tackle this problem, we construgiseudo constituency-to-dependency rule. So we will also
translation rule for each parse hypereddd € generate a POS taged dependency tree simulta-
IN (v/) by mapping the CFG rule into a target de-neously at the decoding time. We calculate this
pendency tree using the head rules of Magermadependency language model by simply replacing
(1995). Take the hyperedg% in Figurel for ex- eache; in equation 9 with its tag(e;).

ample, the corresponding pseudo translation rule

is: 5 Experiments

NP(z1:NPB z2:CC x3:NPB) — (x1) (z2) 73, 5.1 Data Preparation
since thex3:NPB is the head word of the CFG Our training corpus consists of 239K sentence
rule: NP— NPB CC NPB. pairs with about 6.9M/8.9M words in Chi-

After the translation forest is constructed, wenese/English, respectively. We first word-align
traverse each node in translation forest also ithem by GIZA++ (Och and Ney, 2000) with re-
bottom-up fashion. For each node, we use thdéinement option “grow-diag-and” (Koehn et al.,
cube pruning technique (Chiang, 2007; Huang 2003), and then parse the Chinese sentences using
and Chiang, 2007) to produce partial hypothesethe parser of Xiong et al. (2005) into parse forests,
and compute all the feature scores including thavhich are pruned into relatively small forests with
dependency language model score (Section 4.13 pruning threshold 3. We also parse the English
If all the nodes are visited, we trace back alongsentences using the parser of Charniak (2000) into
the 1-best derivation at goal itemy S and build  1-best constituency trees, which will be converted
a target side dependency tree. Febest search into dependency trees using Magerman (1995)’s
after getting 1-best derivation, we use the lazy Al-head rules. We also store the POS tag informa-
gorithm 3 of Huang and Chiang (2005) that workstion for each word in dependency trees, and com-
backwards from the root node, incrementally com{ute two different dependency language models
puting the second, third, through thth best alter- for words and POS tags in dependency tree sepa-
natives. rately. Finally, we apply translation rule extraction

algorithm described in Section 3. We use SRI Lan-
4.1 Dependency Language Model Computing guage Modeling Toolkit (Stolcke, 2002) to train a
We compute the score of a dependency languagé-gram language model with Kneser-Ney smooth-
model for a dependency trée, in the same way ing on the first 1/3 of the Xinhua portion of Giga-
proposed by Shen et al. (2008). For each nonteword corpus. At the decoding step, we again parse
minal nodev;‘f = ¢, in D, and its children se- the input sentences into forests and prune them
quenced,; = e, e,...e;; ANd L, = ey, €py..p, with a threshold 10, which will direct the trans-
the probability of a trigram is computed as fol- lation (Section 4).
lows: We use the 2002 NIST MT Evaluation test set

as our development set and the 2005 NIST MT

P(Ly, L, | en§) =P(L; | en8)-P(Ly | €n§), (9)  Evaluation test set as our test set. We evaluate the
translation quality using the BLEU-4 metric (Pap-

where theP(L; | e,§) is decomposed to be: ineni et al., 2002), which is calculated by the script
mteval-v11lb.pl with its default setting which is
P(Ly | en8) =P(ey, | en$) case-insensitive matching afgrams. We use the

-Pley, | ey, €n§) standard minimum error-rate training (Och, 2003)
to tune the feature weights to maximize the sys-

tem’s BLEU score on development set.

(10)

) P(eln | eln—17€ln72)’

We use the suffix § to distinguish the head -2 Results

word and child words in the dependency languagdable 2 shows the results on the test set. Our

model. baseline system is a state-of-the-art forest-based
In order to alleviate the problem of data sparseconstituency-to-string model (Mi et al., 2008), or

we also compute a dependency language modé&brest c2gor short, which translates a source for-

for POS tages over a dependency tree. We storest into a target string by pattern-matching the
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constituency-to-stringc9 rules and the bilin- Rule Set
gual phrasess@y. The baseline system extracts System Type | # BLEU
31.9Mc2srules, 77.9Ms2srules respectively and
achieves a BLEU score of 34.17 on the test.set c2s | 31.9M 34.17

At first, we investigate the influence of differ- s2s | 77.9M
ent rule sets on the performance of baseline sys- forest c2s c2d 13.8M 32.48(1.7)
tem. We first restrict the target side of transla- s2d 9.0M
tion rules to be well-formed structures, and we c2d 13.8M 34.03(0.1)
extract 13.8M constituency-to-dependencd) s2s | 77.9M
rules, which is 43% ot2srules. We also extract c2d | 13.8M 33.25(0.9)
9.0M string-to-dependencys2d rules, which is forest c2d | S2d 9.0M
only 11.6% ofs2srules. Then we conved2dand cad | 13.8M 34.88(0.7)
s2drules toc2s and s2srules separately by re- s2s-dep| 77.9M ' '

moving the target-dependency structures and fee‘leable 2: Statistics of different types of rules ex-

thfem _mto_ the baseline system. As shown in th%racted on training corpus and the BLEU scores
third line in the column of BLEU score, the per- on the test set

formance drops 1.7 BLEU points over baseline
system due to the poorer rule coverage. However,
when we further use ai2srules instead 062d  Collins et al. (2005)). For the first time, a tree-to-
rules in our next experiment, it achieves a BLEUtree model can surpass tree-to-string counterparts
score of 34.03, which is very similar to the base-sjgnificantly even with fewer rules.
line system. Those results suggest that restrictions
on c2srules won't hurt the performance, but re-6 Related Work
strictions ons2swill hurt the translation quality
badly. So we should utilize all the2srules in or-  The concept of packed forest has been used in
der to preserve a good coverage of translation rulg1achine translation for several years. For exam-
set. ple, Huang and Chiang (2007) use forest to char-
The last two lines in Table 2 show the results ofacterize the search space of decoding with in-
our new forest-based constituency-to-dependendigdrated language models. Mi et al. (2008) and
model forest c2dfor short). When we only use Mi and Huang (2008) use forest to direct trans-
c2d and s2drules, our system achieves a BLEU lation and extract rules rather than 1-best tree in
score of 33.25, which is lower than the baselinedrder to weaken the influence of parsing errors,
system in the first line. But, with the same rule setthis is also the first time to use forest directly
our model still outperform the result in the sec-In machine translation. Following this direction,
ond line. This suggests that using dependency lark-iu et al. (2009) and Zhang et al. (2009) apply
guage model really improves the translation qualforest into tree-to-tree (Zhang et al., 2007) and
ity by less than 1 BLEU point. tree-sequence-to-string models(Liu et al., 2007)
In order to utilize all thes2srules and increase respectively. Different from Liu et al. (2009), we
the rule coverage, we parse the target strings dPply forest into a new constituency tree to de-
the s2srules into dependency fragments, and conbendency tree translation model rather than con-
struct thepseudo s2dules E2s-dep Then we Stituency tree-to-tree model.
usec2dands2s-depules to direct the translation. Shen et al. (2008) present a string-to-
With the help of the dependency language modeldependency model. They define the well-formed
our new model achieves a significant improvemenglependency structures to reduce the size of
of +0.7 BLEU points over théorest c2sbaseline translation rule set, and integrate a dependency

system f < 0.05, using thesign-tessuggested by 1anguage model in decoding step to exploit long
accordina o th is of Liu et al. (2008), with distance word relations. This model shows a
ccoraing to the reports or Liu et al. , With a more _: i .

larger training corpus (FBIS plus 30K) bab name entity s!gnlflcapt improvement over the Stat?'Of'the'art
translations (+1 BLEU points if it is used), their forest-basedhierarchical phrase-based system (Chiang, 2005).
constituency-to-constituency model achieves a BLEU scorgCompared with this work, we put fewer restric-
of 30.6, which is similar to Moses (Koehn et al., 2007). So our,. N

1jons on the definition of well-formed dependency

baseline system is much better than the BLEU score (30.6+ i
of the constituency-to-constituency system and Moses. structures in order to extract more rules; the
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