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Abstract

A fundamental step in sentence compre-
hension involves assigning semantic roles
to sentence constituents. To accomplish
this, the listener must parse the sentence,
find constituents that are candidate argu-
ments, and assign semantic roles to those
constituents. Each step depends on prior
lexical and syntactic knowledge. Where
do children learning their first languages
begin in solving this problem? In this pa-
per we focus on the parsing and argument-
identification steps that precede Seman-
tic Role Labeling (SRL) training. We
combine a simplified SRL with an un-
supervised HMM part of speech tagger,
and experiment with psycholinguistically-
motivated ways to label clusters resulting
from the HMM so that they can be used
to parse input for the SRL system. The
results show that proposed shallow rep-
resentations of sentence structure are ro-
bust to reductions in parsing accuracy, and
that the contribution of alternative repre-
sentations of sentence structure to suc-
cessful semantic role labeling varies with
the integrity of the parsing and argument-
identification stages.

1 Introduction

In this paper we present experiments with an au-
tomatic system for semantic role labeling (SRL)
that is designed to model aspects of human lan-
guage acquisition. This simplified SRL system is
inspired by the syntactic bootstrapping theory, and
by an account of syntactic bootstrapping known
as ’structure-mapping’ (Fisher, 1996; Gillette et
al., 1999; Lidz et al., 2003). Syntactic bootstrap-
ping theory proposes that young children use their
very partial knowledge of syntax to guide sen-

tence comprehension. The structure-mapping ac-
count makes three key assumptions: First, sen-
tence comprehension is grounded by the acquisi-
tion of an initial set of concrete nouns. Nouns are
arguably less dependent on prior linguistic knowl-
edge for their acquisition than are verbs; thus chil-
dren are assumed to be able to identify the refer-
ents of some nouns via cross-situational observa-
tion (Gillette et al., 1999). Second, these nouns,
once identified, yield a skeletal sentence structure.
Children treat each noun as a candidate argument,
and thus interpret the number of nouns in the sen-
tence as a cue to its semantic predicate-argument
structure (Fisher, 1996). Third, children represent
sentences in an abstract format that permits gener-
alization to new verbs (Gertner et al., 2006).

The structure-mapping account of early syn-
tactic bootstrapping makes strong predictions, in-
cluding predictions of tell-tale errors. In the sen-
tence “Ellen and John laughed”, an intransitive
verb appears with two nouns. If young chil-
dren rely on representations of sentences as sim-
ple as an ordered set of nouns, then they should
have trouble distinguishing such sentences from
transitive sentences. Experimental evidence sug-
gests that they do: 21-month-olds mistakenly in-
terpreted word order in sentences such as “The girl
and the boy kradded” as conveying agent-patient
roles (Gertner and Fisher, 2006).

Previous computational experiments with a
system for automatic semantic role labeling
(BabySRL: (Connor et al., 2008)) showed that
it is possible to learn to assign basic semantic
roles based on the shallow sentence representa-
tions proposed by the structure-mapping view.
Furthermore, these simple structural features were
robust to drastic reductions in the integrity of
the semantic-role feedback (Connor et al., 2009).
These experiments showed that representations of
sentence structure as simple as ‘first of two nouns’
are useful, but the experiments relied on perfect
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knowledge of arguments and predicates as a start
to classification.

Perfect built-in parsing finesses two problems
facing the human learner. The first problem in-
volves classifying words by part-of-speech. Pro-
posed solutions to this problem in the NLP and
human language acquisition literatures focus on
distributional learning as a key data source (e.g.,
(Mintz, 2003; Johnson, 2007)). Importantly,
infants are good at learning distributional pat-
terns (Gomez and Gerken, 1999; Saffran et al.,
1996). Here we use a fairly standard Hidden
Markov Model (HMM) to generate clusters of
words that occur in similar distributional contexts
in a corpus of input sentences.

The second problem facing the learner is
more contentious: Having identified clusters of
distributionally-similar words, how do children
figure out what role these clusters of words should
play in a sentence interpretation system? Some
clusters contain nouns, which are candidate ar-
guments; others contain verbs, which take argu-
ments. How is the child to know which are which?
In order to use the output of the HMM tagger to
process sentences for input to an SRL model, we
must find a way to automatically label the clusters.

Our strategies for automatic argument and pred-
icate identification, spelled out below, reflect core
claims of the structure-mapping theory: (1) The
meanings of some concrete nouns can be learned
without prior linguistic knowledge; these concrete
nouns are assumed based on their meanings to be
possible arguments; (2) verbs are identified, not
primarily by learning their meanings via observa-
tion, but rather by learning about their syntactic
argument-taking behavior in sentences.

By using the HMM part-of-speech tagger in this
way, we can ask how the simple structural fea-
tures that we propose children start with stand up
to reductions in parsing accuracy. In doing so, we
move to a parser derived from a particular theoret-
ical account of how the human learner might clas-
sify words, and link them into a system for sen-
tence comprehension.

2 Model

We model language learning as a Semantic Role
Labeling (SRL) task (Carreras and Màrquez,
2004). This allows us to ask whether a learner,
equipped with particular theoretically-motivated
representations of the input, can learn to under-

stand sentences at the level of who did what to
whom. The architecture of our system is similar
to a previous approach to modeling early language
acquisition (Connor et al., 2009), which is itself
based on the standard architecture of a full SRL
system (e.g. (Punyakanok et al., 2008)).

This basic approach follows a multi-stage
pipeline, with each stage feeding in to the next.
The stages are: (1) Parsing the sentence, (2) Iden-
tifying potential predicates and arguments based
on the parse, (3) Classifying role labels for each
potential argument relative to a predicate, (4) Ap-
plying constraints to find the best labeling of ar-
guments for a sentence. In this work we attempt
to limit the knowledge available at each stage to
the automatic output of the previous stage, con-
strained by knowledge that we argue is available
to children in the early stages of language learn-
ing.

In the parsing stage we use an unsupervised
parser based on Hidden Markov Models (HMM),
modeling a simple ‘predict the next word’ parser.
Next the argument identification stage identifies
HMM states that correspond to possible argu-
ments and predicates. The candidate arguments
and predicates identified in each input sentence are
passed to an SRL classifier that uses simple ab-
stract features based on the number and order of
arguments to learn to assign semantic roles.

As input to our learner we use samples of
natural child directed speech (CDS) from the
CHILDES corpora (MacWhinney, 2000). During
initial unsupervised parsing we experiment with
incorporating knowledge through a combination
of statistical priors favoring a skewed distribution
of words into classes, and an initial hard cluster-
ing of the vocabulary into function and content
words. The argument identifier uses a small set
of frequent nouns to seed argument states, relying
on the assumptions that some concrete nouns can
be learned as a prerequisite to sentence interpreta-
tion, and are interpreted as candidate arguments.

The SRL classifier starts with noisy largely un-
supervised argument identification, and receives
feedback based on annotation in the PropBank
style; in training, each word identified as an argu-
ment receives the true role label of the phrase that
word is part of. This represents the assumption
that learning to interpret sentences is naturally su-
pervised by the fit of the learner’s predicted mean-
ing with the referential context. The provision

990



of perfect ‘gold-standard’ feedback over-estimates
the real child’s access to this supervision, but al-
lows us to investigate the consequences of noisy
argument identification for SRL performance. We
show that even with imperfect parsing, a learner
can identify useful abstract patterns for sentence
interpretation. Our ultimate goal is to ‘close the
loop’ of this system, by using learning in the SRL
system to improve the initial unsupervised parse
and argument identification.

The training data were samples of parental
speech to three children (Adam, Eve, and
Sarah; (Brown, 1973)), available via CHILDES.
The SRL training corpus consists of parental utter-
ances in samples Adam 01-20 (child age 2;3 - 3;1),
Eve 01-18 (1;6 - 2;2), and Sarah 01-83 (2;3 - 3;11).
All verb-containing utterances without symbols
indicating disfluencies were automatically parsed
with the Charniak parser (Charniak, 1997), anno-
tated using an existing SRL system (Punyakanok
et al., 2008) and then errors were hand-corrected.
The final annotated sample contains about 16,730
propositions, with 32,205 arguments.

3 Unsupervised Parsing

As a first step of processing, we feed the learner
large amounts of unlabeled text and expect it to
learn some structure over this data that will facil-
itate future processing. The source of this text
is child directed speech collected from various
projects in the CHILDES repository1. We re-
moved sentences with fewer than three words or
markers of disfluency. In the end we used 160
thousand sentences from this set, totaling over 1
million tokens and 10 thousand unique words.

The goal of the parsing stage is to give the
learner a representation permitting it to generalize
over word forms. The exact parse we are after is
a distributional and context-sensitive clustering of
words based on sequential processing. We chose
an HMM based parser for this since, in essence
the HMM yields an unsupervised POS classifier,
but without names for states. An HMM trained
with expectation maximization (EM) is analogous
to a simple process of predicting the next word in a
stream and correcting connections accordingly for
each sentence.

1We used parts of the Bloom (Bloom, 1970; Bloom,
1973), Brent (Brent and Siskind, 2001), Brown (Brown,
1973), Clark (Clark, 1978), Cornell, MacWhin-
ney (MacWhinney, 2000), Post (Demetras et al., 1986)
and Providence (Demuth et al., 2006) collections.

With HMM we can also easily incorporate ad-
ditional knowledge during parameter estimation.
The first (and simplest) parser we used was an
HMM trained using EM with 80 hidden states.
The number of hidden states was made relatively
large to increase the likelihood of clusters corre-
sponding to a single part of speech, while preserv-
ing some degree of generalization.

Johnson (2007) observed that EM tends to cre-
ate word clusters of uniform size, which does
not reflect the way words cluster into parts of
speech in natural languages. The addition of pri-
ors biasing the system toward a skewed alloca-
tion of words to classes can help. The second
parser was an 80 state HMM trained with Varia-
tional Bayes EM (VB) incorporating Dirichlet pri-
ors (Beal, 2003).2

In the third and fourth parsers we experi-
ment with enriching the HMM POS-tagger with
other psycholinguistically plausible knowledge.
Words of different grammatical categories dif-
fer in their phonological as well as in their dis-
tributional properties (e.g., (Kelly, 1992; Mon-
aghan et al., 2005; Shi et al., 1998)); combining
phonological and distributional information im-
proves the clustering of words into grammatical
categories. The phonological difference between
content and function words is particularly strik-
ing (Shi et al., 1998). Even newborns can cate-
gorically distinguish content and function words,
based on the phonological difference between the
two classes (Shi et al., 1999). Human learners may
treat content and function words as distinct classes
from the start.

To implement this division into function and
content words3, we start with a list of function
word POS tags4 and then find words that appear
predominantly with these POS tags, using tagged
WSJ data (Marcus et al., 1993). We allocated a
fixed number of states for these function words,
and left the rest of the states for the rest of the
words. This amounts to initializing the emission
matrix for the HMM with a block structure; words
from one class cannot be emitted by states al-
located to the other class. This trick has been
used before in speech recognition work (Rabiner,

2We tuned the prior using the same set of 8 value pairs
suggested by Gao and Johnson (2008), using a held out set of
POS-tagged CDS to evaluate final performance.

3We also include a small third class for punctuation,
which is discarded.

4TO,IN,EX,POS,WDT,PDT,WRB,MD,CC,DT,RP,UH
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1989), and requires far fewer resources than the
full tagging dictionary that is often used to intel-
ligently initialize an unsupervised POS classifier
(e.g. (Brill, 1997; Toutanova and Johnson, 2007;
Ravi and Knight, 2009)).

Because the function and content word preclus-
tering preceded parameter estimation, it can be
combined with either EM or VB learning. Al-
though this initial split forces sparsity on the emis-
sion matrix and allows more uniform sized clus-
ters, Dirichlet priors may still help, if word clus-
ters within the function or content word subsets
vary in size and frequency. The third parser was
an 80 state HMM trained with EM estimation,
with 30 states pre-allocated to function words;
the fourth parser was the same except that it was
trained with VB EM.

3.1 Parser Evaluation
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Figure 1: Unsupervised Part of Speech results, match-
ing states to gold POS labels. All systems use 80 states, and
comparison is to gold labeled CDS text, which makes up a
subset of the HMM training data. Variation of Information is
an information-theoretic measure summing mutual informa-
tion between tags and states, proposed by (Meilă, 2002), and
first used for Unsupervised Part of Speech in (Goldwater and
Griffiths, 2007). Smaller numbers are better, indicating less
information lost in moving from the HMM states to the gold
POS tags. Note that incorporating function word precluster-
ing allows both EM and VB algorithms to achieve the same
performance with an order of magnitude fewer sentences.

We first evaluate these parsers (the first stage
of our SRL system) on unsupervised POS tag-
ging. Figure 1 shows the performance of the four
systems using Variation of Information to mea-
sure match between gold states and unsupervised
parsers as we vary the amount of text they receive.
Each point on the graph represents the average re-
sult over 10 runs of the HMM with different sam-
ples of the unlabeled CDS. Another common mea-
sure for unsupervised POS (when there are more

states than tags) is a many to one greedy mapping
of states to tags. It is known that EM gives a better
many to one score than VB trained HMM (John-
son, 2007), and likewise we see that here: with
all data EM gives 0.75 matching, VB gives 0.74,
while both EM+Funct and VB+Funct reach 0.80.

Adding the function/content word split to the
HMM structure improves both EM and VB esti-
mation in terms of both tag matching accuracy and
information. However, these measures look at the
parser only in isolation. What is more important to
us is how useful the provided word clusters are for
future semantic processing. In the next sections
we use the outputs of our four parsers to identify
arguments and predicates.

4 Argument Identification

The unsupervised parser provides a state label for
each word in each sentence; the goal of the ar-
gument identification stage is to use these states
to label words as potential arguments, predicates
or neither. As described in the introduction, core
premises of the structure-mapping account offer
routes whereby we could label some HMM states
as argument or predicate states.

The structure-mapping account holds that sen-
tence comprehension is grounded in the learning
of an initial set of nouns. Children are assumed
to identify the referents of some concrete nouns
via cross-situational learning (Gillette et al., 1999;
Smith and Yu, 2008). Children then assume, by
virtue of the meanings of these nouns, that they are
candidate arguments. This is a simple form of se-
mantic bootstrapping, requiring the use of built-in
links between semantics and syntax to identify the
grammatical type of known words (Pinker, 1984).
We use a small set of known nouns to transform
unlabeled word clusters into candidate arguments
for the SRL: HMM states that are dominated by
known names for animate or inanimate objects are
assumed to be argument states.

Given text parsed by the HMM parser and a
list of known nouns, the argument identifier pro-
ceeds in multiple steps as illustrated in figure 2.
The first stage identifies as argument states those
states that appear at least half the time in the train-
ing data with known nouns. This use of a seed
list and distributional clustering is similar to Proto-
type Driven Learning (Haghighi and Klein, 2006),
except we are only providing information on one
specific class.
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Algorithm ARGUMENT STATE IDENTIFICATION
INPUT: Parsed Text T = list of (word, state) pairs

Set of concrete nouns N
OUTPUT: Set of argument states A

Argument count likelihood ArgLike(s, c)

Identify Argument States
Let freq(s) = |{(∗, s) ∈ T}|
Let freqN (s) = |{(w, s) ∈ T |w ∈ N}|

For each s:
If freqN (s) ≥ freq(s)/2

Add s to A

Collect Per Sentence Argument Count statistics
For each Sentence S ∈ T :

Let Arg(S) = |{(w, s) ∈ S|s ∈ A}|
For (w, s) ∈ S s.t. s /∈ A

Increment ArgCount(s, Arg(S))

For each s /∈ A, and argument count c:
ArgLike(s, c) = ArgCount(s, c)/freq(s)

(a) Argument Identification

Algorithm PREDICATE STATE IDENTIFICATION
INPUT: Parsed Sentence S = list of (word, state) pairs

Set of argument states A
Sentence Argument Count ArgLike(s, c)

OUTPUT: Most likely predicate (v, sv)

Find Number of arguments in sentence
Let Arg(S) = |{(w, s) ∈ S|s ∈ A}|

Find Non-argument state in sentence most likely
to appear with this number of arguments

(v, sv) = argmax(w,s)∈SArgLike(s, Arg(S))

(b) Predicate Identification

Figure 2: Argument identification algorithm. This is a two
stage process: argument state identification based on statis-
tics collected over entire text and per sentence predicate iden-
tification.

As a list of known nouns we collected all those
nouns that appear three times or more in the child
directed speech training data and judged to be ei-
ther animate or inanimate nouns. The full set of
365 nouns covers over 93% of noun occurences
in our data. In upcoming sections we experiment
with varying the number of seed nouns used from
this set, selecting the most frequent set of nouns.
Reflecting the spoken nature of the child directed
speech, the most frequent nouns are pronouns,
but beyond the top 10 we see nouns naming peo-
ple (‘daddy’, ‘ursula’) and object nouns (‘chair’,
‘lunch’).

What about verbs? A typical SRL model iden-
tifies candidate arguments and tries to assign roles
to them relative to each verb in the sentence. In
principle one might suppose that children learn
the meanings of verbs via cross-situational ob-
servation just as they learn the meanings of con-
crete nouns. But identifying the meanings of

verbs is much more troublesome. Verbs’ mean-
ings are abstract, therefore harder to identify based
on scene information alone (Gillette et al., 1999).
As a result, early vocabularies are dominated by
nouns (Gentner, 2006). On the structure-mapping
account, learners identify verbs, and begin to de-
termine their meanings, based on sentence struc-
ture cues. Verbs take noun arguments; thus, learn-
ers could learn which words are verbs by detect-
ing each verb’s syntactic argument-taking behav-
ior. Experimental evidence provides some support
for this procedure: 2-year-olds keep track of the
syntactic structures in which a new verb appears,
even without a concurrent scene that provides cues
to the verb’s semantic content (Yuan and Fisher,
2009).

We implement this behavior by identifying as
predicate states the HMM states that appear com-
monly with a particular number of previously
identified arguments. First, we collect statistics
over the entire HMM training corpus regarding
how many arguments are identified per sentence,
and which states that are not identified as argu-
ment states appear with each number of argu-
ments. Next, for each parsed sentence that serves
as SRL input, the algorithm chooses as the most
likely predicate the word whose state is most likely
to appear with the number of arguments found in
the current input sentence. Note that this algo-
rithm assumes exactly one predicate per sentence.
Implicitly, the argument count likelihood divides
predicate states up into transitive and intransitive
predicates based on appearances in the simple sen-
tences of CDS.

4.1 Argument Identification Evaluation
Figure 3 shows argument and predicate identifi-
cation accuracy for each of the four parsers when
provided with different numbers of known nouns.
The known word list is very skewed with its most
frequent members dominating the total noun oc-
currences in the data. The ten most frequent
words5 account for 60% of the total noun occur-
rences. We achieve the different occurrence cov-
erage numbers of figure 3 by using the most fre-
quent N words from the list that give the specific
coverage6. Pronouns refer to people or objects,
but are abstract in that they can refer to any person
or object. The inclusion of pronouns in our list of

5you, it, I, what, he, me, ya, she, we, her
6N of 5, 10, 30, 83, 227 cover 50%, 60%, 70%, 80%,

90% of all noun occurrences
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Figure 3: Effect of number of concrete nouns for seeding
argument identification with various unsupervised parsers.
Argument identification accuracy is computed against true ar-
gument boundaries from hand labeled data. The upper set of
results show primary argument (A0-4) identification F1, and
bottom lines show predicate identification F1.

known nouns represents the assumption that tod-
dlers have already identified pronouns as referen-
tial terms. Even 19-month-olds assign appropri-
ately different interpretations to novel verbs pre-
sented in simple transitive versus intransitive sen-
tences with pronoun arguments (“He’s kradding
him!” vs. “He’s kradding!”; (Yuan et al., 2007)).
In ongoing work we experiment with other meth-
ods of identifying seed nouns.

Two groups of curves appear in figure 3: the
upper group shows the primary argument iden-
tification accuracy and the bottom group shows
the predicate identification accuracy. We evaluate
compared to gold tagged data with true argument
and predicate boundaries. The primary argument
(A0-4) identification accuracy is the F1 value, with
precision calculated as the proportion of identified
arguments that appear as part of a true argument,
and recall as the proportion of true arguments that
have some state identified as an argument. F1 is
calculated similarly for predicate identification, as
one state per sentence is identified as the predicate.

As shown in figure 3, argument identification F1
is higher than predicate identification (which is to
be expected, given that predicate identification de-
pends on accurate arguments), and as we add more
seed nouns the argument identification improves.
Surprisingly, despite the clear differences in un-
supervised POS performance seen in figure 1, the
different parsers do not yield very different argu-
ment and predicate identification. As we will see
in the next section, however, when the arguments
identified in this step are used to train SRL clas-

sifier, distinctions between parsers reappear, sug-
gesting that argument identification F1 masks sys-
tematic patterns in the errors.

5 Testing SRL Performance

Finally, we used the results of the previous pars-
ing and argument-identification stages in training
a simplified SRL classifier (BabySRL), equipped
with sets of features derived from the structure-
mapping account. For argument classification we
used a linear classifier trained with a regularized
perceptron update rule (Grove and Roth, 2001).
In the results reported below the BabySRL did
not use sentence-level inference for the final clas-
sification, every identified argument is classified
independently; thus multiple nouns can have the
same role. In what follows, we compare the per-
formance of the BabySRL across the four parsers.
We evaluated SRL performance by testing the
BabySRL with constructed sentences like those
used for the experiments with children described
in the Introduction. All test sentences contained a
novel verb, to test the model’s ability to general-
ize.

We examine the performance of four versions
of the BabySRL, varying in the features used to
represent sentences. All four versions include
lexical features consisting of the target argument
and predicate (as identified in the previous steps).
The baseline model has only these lexical features
(Lexical). Following Connor et al. (2008; 2009),
the key feature type we propose is noun pattern
features (NounPat). Noun pattern features indi-
cate how many nouns there are in the sentence and
which noun the target is. For example, in “You
dropped it!”, ‘you’ has a feature active indicating
that it is the first of two nouns, while ‘it’ has a fea-
ture active indicating that it is the second of two
nouns. We compared the behavior of noun pat-
tern features to another simple representation of
word order, position relative to the verb (VerbPos).
In the same example sentence, ‘you’ has a feature
active indicating that it is pre-verbal; for ‘it’ a fea-
ture is active indicating that it is post-verbal. A
fourth version of the BabySRL (Combined) used
both NounPat and VerbPos features.

We structured our tests of the BabySRL to test
the predictions of the structure-mapping account.
(1) NounPat features will improve the SRL’s abil-
ity to interpret simple transitive test sentences
containing two nouns and a novel verb, relative
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to a lexical baseline. Like 21-month-old chil-
dren (Gertner et al., 2006), the SRL should inter-
pret the first noun as an agent and the second as
a patient. (2) Because NounPat features represent
word order solely in terms of a sequence of nouns,
an SRL equipped with these features will make the
errors predicted by the structure-mapping account
and documented in children (Gertner and Fisher,
2006). (3) NounPat features permit the SRL to
assign different roles to the subjects of transitive
and intransitive sentences that differ in their num-
ber of nouns. This effect follows from the nature
of the NounPat features: These features partition
the training data based on the number of nouns,
and therefore learn separately the likely roles of
the ‘1st of 1 noun’ and the ‘1st of 2 nouns’.

These patterns contrast with the behavior of the
VerbPos features: When the BabySRL was trained
with perfect parsing, VerbPos promoted agent-
patient interpretations of transitive test sentences,
and did so even more successfully than Noun-
Pat features did, reflecting the usefulness of po-
sition relative to the verb in understanding English
sentences. In addition, VerbPos features elimi-
nated the errors with two-noun intransitive sen-
tences. Given test sentences such as ‘You and
Mommy krad’, VerbPos features represented both
nouns as pre-verbal, and therefore identified both
as likely agents. However, VerbPos features did
not help the SRL assign different roles to the
subjects of simple transitive and intransitive sen-
tences: ‘Mommy’ in ‘Mommy krads you’ and
’Mommy krads’ are both represented simply as
pre-verbal.

To test the system’s predictions on transitive and
intransitive two noun sentences, we constructed
two test sentence templates: ‘A krads B’ and ‘A
and B krad’, where A and B were replaced with
familiar animate nouns. The animate nouns were
selected from all three children’s data in the train-
ing set and paired together in the templates such
that all pairs are represented.

Figure 4 shows SRL performance on test sen-
tences containing a novel verb and two animate
nouns. Each plot shows the proportion of test sen-
tences that were assigned an agent-patient (A0-
A1) role sequence; this sequence is correct for
transitive sentences but is an error for two-noun
intransitive sentences. Each group of bars shows
the performance of the BabySRL trained using one
of the four parsers, equipped with each of our four

feature sets. The top and bottom panels in Figure 4
differ in the number of nouns provided to seed the
argument identification stage. The top row shows
performance with 10 seed nouns (the 10 most fre-
quent nouns, mostly animate pronouns), and the
bottom row shows performance with 365 concrete
(animate or inanimate) nouns treated as known.
Relative to the lexical baseline, NounPat features
fared well: they promoted the assignment of A0-
A1 interpretations to transitive sentences, across
all parser versions and both sets of known nouns.
Both VB estimation and the content-function word
split increased the ability of NounPat features to
learn that the first of two nouns was an agent, and
the second a patient. The NounPat features also
promote the predicted error with two-noun intran-
sitive sentences (Figures 4(b), 4(d)). Despite the
relatively low accuracy of predicate identification
noted in section 4.1, the VerbPos features did suc-
ceed in promoting an A0A1 interpretation for tran-
sitive sentences containing novel verbs relative to
the lexical baseline. In every case the performance
of the Combined model that includes both Noun-
Pat and VerbPos features exceeds the performance
of either NounPat or VerbPos alone, suggesting
both contribute to correct predictions for transitive
sentences. However, the performance of VerbPos
features did not improve with parsing accuracy as
did the performance of the NounPat features. Most
strikingly, the VerbPos features did not eliminate
the predicted error with two-noun intransitive sen-
tences, as shown in panels 4(b) and 4(d). The
Combined model predicted an A0A1 sequence for
these sentences, showing no reduction in this error
due to the participation of VerbPos features.

Table 1 shows SRL performance on the same
transitive test sentences (‘A krads B’), compared
to simple one-noun intransitive sentences (‘A
krads’). To permit a direct comparison, the table
reports the proportion of transitive test sentences
for which the first noun was assigned an agent
(A0) interpretation, and the proportion of intran-
sitive test sentences with the agent (A0) role as-
signed to the single noun in the sentence. Here we
report only the results from the best-performing
parser (trained with VB EM, and content/function
word pre-clustering), compared to the same clas-
sifiers trained with gold standard argument iden-
tification. When trained on arguments identified
via the unsupervised POS tagger, noun pattern
features promoted agent interpretations of tran-
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Two Noun Transitive, % Agent First One Noun Intransitive, % Agent Prediction
Lexical NounPat VerbPos Combine Lexical NounPat VerbPos Combine

VB+Funct 10 seed 0.48 0.61 0.55 0.71 0.48 0.57 0.56 0.59
VB+Funct 365 seed 0.22 0.64 0.41 0.74 0.23 0.33 0.43 0.41
Gold Arguments 0.16 0.41 0.69 0.77 0.17 0.18 0.70 0.58

Table 1: SRL result comparison when trained with best unsupervised argument identifier versus trained with gold arguments.
Comparison is between agent first prediction of two noun transitive sentences vs. one noun intransitive sentences. The unsu-
pervised arguments lead the classifier to rely more on noun pattern features; when the true arguments and predicate are known
the verb position feature leads the classifier to strongly indicate agent first in both settings.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

EM VB EM+Funct VB+Funct Gold

%
A

0A
1

Lexical
NounPat
VerbPos
Combine

(a) Two Noun Transitive Sentence, 10 seed nouns

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

EM VB EM+Funct VB+Funct Gold
%

A
0A

1

Lexical
NounPat
VerbPos
Combine

(b) Two Noun Intransitive Sentence, 10 seed nouns

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

EM VB EM+Funct VB+Funct Gold

%
A

0A
1

Lexical
NounPat
VerbPos
Combine

(c) Two Noun Transitive Sentence, 365 seed nouns

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

EM VB EM+Funct VB+Funct Gold

%
A

0A
1

Lexical
NounPat
VerbPos
Combine
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Figure 4: SRL classification performance on transitive and intransitive test sentences containing two nouns and a novel
verb. Performance with gold-standard argument identification is included for comparison. Across parses, noun pattern features
promote agent-patient (A0A1) interpretations of both transitive (“You krad Mommy”) and two-noun intransitive sentences
(“You and Mommy krad”); the latter is an error found in young children. Unsupervised parsing is less accurate in identifying
the verb, so verb position features fail to eliminate errors with two-noun intransitive sentences.

sitive subjects, but not for intransitive subjects.
This differentiation between transitive and intran-
sitive sentences was clearer when more known
nouns were provided. Verb position features, in
contrast, promote agent interpretations of subjects
weakly with unsupervised argument identification,
but equally for transitive and intransitive.

Noun pattern features were robust to increases
in parsing noise. The behavior of verb position
features suggests that variations in the identifiabil-
ity of different parts of speech can affect the use-
fulness of alternative representations of sentence

structure. Representations that reflect the posi-
tion of the verb may be powerful guides for un-
derstanding simple English sentences, but repre-
sentations reflecting only the number and order of
nouns can dominate early in acquisition, depend-
ing on the integrity of parsing decisions.

6 Conclusion and Future Work

The key innovation in the present work is the
combination of unsupervised part-of-speech tag-
ging and argument identification to permit learn-
ing in a simplified SRL system. Children do not
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have the luxury of treating part-of-speech tagging
and semantic role labeling as separable tasks. In-
stead, they must learn to understand sentences
starting from scratch, learning the meanings of
some words, and using those words and their pat-
terns of arrangement into sentences to bootstrap
their way into more mature knowledge.

We have created a first step toward modeling
this incremental process. We combined unsuper-
vised parsing with minimal supervision to begin to
identify arguments and predicates. An SRL clas-
sifier used simple representations built from these
identified arguments to extract useful abstract pat-
terns for classifying semantic roles. Our results
suggest that multiple simple representations of
sentence structure could co-exist in the child’s sys-
tem for sentence comprehension; representations
that will ultimately turn out to be powerful guides
to role identification may be less powerful early in
acquisition because of the noise introduced by the
unsupervised parsing.

The next step is to ‘close the loop’, using higher
level semantic feedback to improve the earlier ar-
gument identification and parsing stages. Per-
haps with the help of semantic feedback the sys-
tem can automatically improve predicate identifi-
cation, which in turn allows it to correct the ob-
served intransitive sentence error. This approach
will move us closer to the goal of using initial sim-
ple structural patterns and natural observation of
the world (semantic feedback) to bootstrap more
and more sophisticated representations of linguis-
tic structure.
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