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Abstract which make distinctions on the basis of contigu-

ous subsequences. The Strictly Local languages
Strictly Piecewise (SP) languages are a are the formal-language theoretic foundation for
subclass of regular languages which en-  ,,_gram models (Garcia et al., 1990), which are
code certain kinds of long-distance de-  jidely used in natural language processing (NLP)
pendencies that are found in natural lan-  jn part because such distributions can be estimated
guages. Like the classes in the Chom-  from positive data (i.e. a corpus) (Jurafsky and
sky and Subregular hierarchies, there are  \artin, 2008). N-gram models describe prob-
many independently converging character-  apjlity distributions over all strings on the basis
izations of the SP class (Rogers et al., to  of the Markov assumption (Markov, 1913): that
appear). Here we define SP distributions  the probability of the next symbol only depends
and show that they can be efficiently esti-  on the previous contiguous sequence of length
mated from positive data. n — 1. From the perspective of formal language
theory, these distributions are perhaps properly
called Strictly k-Local distributions (Sk) where

Long-distance dependencies in natural languagé = - It is well-known that one limitation of the
are of considerable interest. Although much atMarkov assumption is its inability to express any
tention has focused on long-distance dependenciddnd of long-distance dependency.
which are beyond the expressive power of models This paper defines Strictly-Piecewise (SP)
with finitely many states (Chomsky, 1956; Joshi,distributions and shows how they too can be effi-
1985; Shieber, 1985; Kobele, 2006), there areiently estimated from positive data. In contrast
some long-distance dependencies in natural larwith the Markov assumption, our assumption is
guage which permit finite-state characterizationsthat the probability of the next symbol is condi-
For example, although it is well-known that vowel tioned on the previous set of discontiguous subse-
and consonantal harmony applies across any aguences of lengttt — 1 in the string. While this
bitrary number of intervening segments (Ringensuggests the model has too many parameters (one
1988; Bakovic, 2000; Hansson, 2001; Rose andor each subset of all possible subsequences), in
Walker, 2004) and that phonological patterns ardact the model has on the order|af{**! parame-
regular (Johnson, 1972; Kaplan and Kay, 1994)ters because of anindependence assumption: there
it is less well-known that harmony patterns areis no interaction between different subsequences.
largely characterizable by the Strictly PiecewiseAs a result, SP distributions are efficiently com-
languages, a subregular class of languages withutable even though they condition the probabil-
independently-motivated, converging characteriity of the next symbol on the occurrences of ear-
zations (see Heinz (2007, to appear) and especialler (possibly very distant) discontiguous subse-
Rogers et al. (2009)). qguences. Essentially, these SP distributions reflect
As shown by Rogers et al. (to appear), theakind of long-term memory.
Strictly Piecewise (SP) languages, which make On the other hand, SP models have no short-
distinctions on the basis of (potentially) discon-term memory and are unable to make distinctions
tiguous subsequences, are precisely analogous tm the basis of contiguous subsequences. We do
the Strictly Local (SL) languages (McNaughton not intend SP models to replaeegram models,
and Papert, 1971; Rogers and Pullum, to appearput instead expect them to be used alongside of

1 Introduction
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them. Exactly how this is to be done is beyond thes the (unique) state reachable from state

scope of this paper and is left for future research.via the sequencev, if any, or cZ(q,w)T other-
Since SP languages are the analogue of SL larwise. The language recognized by a DPA is

guages, which are the formal-language theoretical,(M) £ {w € ¥* | d(qo, w)| € F}.

foundation forn-gram models, which are widely

used in NLP, it is expected that SP distributions
and their estimation will also find wide applica- w € ¥ such thati(g,w) € F. Uselessstates

tion. Apart from their interest to problems in the- .
. . . are not useful. DFAs without useless states are

oretical phonology such as phonotactic Iearnmq immed
(Coleman and Pierrehumbert, 1997; Hayes anJ
Wilson, 2008; Heinz, to appear), it is expected that Two stringsw and v over X are distinguished
their use will have application, in conjunction with by @ DFA M iff d(qo,w) # d(qo,v). They are
n-gram models, in areas that currently use themiNerode equivalentith respect to a languagé
e.g. augmentative communication (Newell et al.jf and only if wu € L <= wvu € L for
1998), part of speech tagging (Brill, 1995), andall u € ¥*. All DFAs which recognizel. must
speech recognition (Jelenik, 1997). distinguish strings which are inequivalent in this

§2 provides basic mathematical notatior§3 ~ Sense, but no DFA recognizing necessarily dis-
provides relevant background on the subregular hitinguishes any strings which are equivalent. Hence
erarchy. §4 describes automata-theoretic characthe number of equivalence classes of strings over
terizations of SP language§5 defines SP distri- £ modulo Nerode equivalence with respectito
butions. §6 shows how these distributions can begdives a (tight) lower bound on the number of states

efficiently estimated from positive data and pro-required to recognizé.

A state isusefuliff for all ¢ € @, there exists
w € ¥* such thatd(qy, w) = ¢ and there exists

vides a demonstratior§7 concludes the paper. A DFA is minimal if the size of its state set
o is minimal among DFAs accepting the same lan-
2 Preliminaries guage. Theproduct of n DFAS M ... M, is

We start with some mostly standard notaticn given by the standard construction over the state

denotes a finite set of symbols and a string ove?pace@1 X ... X Qn (Hopcroft et al., 2001).

Y is a finite sequence of symbols drawn from A  Probabilistic ~ Deterministic  Finite-

that set. ¢, ©<F ¥2F and ©* denote all state Automaton (PDFA) is a tuple

strings over this alphabet of length of length M = (Q,X%,qo,0, F,T) where @ is the state

less than or equal td, of length greater than set, Y is the alphabetg is the start state§ is

or equal tok, and of any finite length, respec- a deterministic transition functionf” and 7" are

tively. e denotes the empty stringlw| denotes the final-state and transition probabilities. In

the length of stringw. The prefixes of a string particular,7 : Q x ¥ — Rt andF : Q — R*

w are Piw) = {v : Ju € ¥* such thabu = w}.  such that

When discussing partial functions, the notation

and | indicates that the function is undefined, re-

spectively is defined, for particular arguments. forallq € Q, F(q) + Z T(q,a)=1. (1)
A languagelL is a subset ob*. A stochastic a€ys

languageD is a probability distribution oveE*.

The probabilityp of word w with respect taD is

written Prp(w) = p. Recall that all distributions Like DFAs, for allw € 7, there is at most one

D must satisfy) " . Prp(w) = 1. If Lis lan- state reachable fromy. PDFAs are typically rep-

guage therPrD(Luie— S, Pro(w) resented as labeled directed graphs as in Figure 1.
we )

A Deterministic Finite-state AutomatqiDFA) A PDFA M generates a stochastic language
is a tupleM = (Q, X, qo,0, F) where@ is the  Dyy. Ifit exists, the (uniquepathfor a wordw =
state setX is the alphabety is the start state, ag... a; belonging toX* through a PDFA is a
0 is a deterministic transition function with do- sequence((qo, ao), (g1,a1),- ., (qx,ax)), Where
main @@ x ¥ and codomain®, F is the set of ¢;11 = d(g;,a;). The probability a PDFA assigns
accepting states. Lef : Q x ©* — @ be tow isobtained by multiplying the transition prob-
the (partial) path function ofM, i.e., d(¢,w) abilities with the final probability along’s path if
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be thenormalization termand

(@) let F((q1 ... gn) = o=t
and
(b) forallo € 3, let

T({q1 - gun),0) = CT-tetal)

Figure 1: A picture of a PDFA with states labeled In other words, the numerators bfand /" are de-
A and B. The probabilities of T and F are locatedfined to be the co-emission probabilities (Vidal et

to the right of the colon. al., 2005a), and division by ensures that1 de-
fines a well-formed probability distribution. Sta-
it exists. and zero otherwise. tistically speaking, the co-emission product makes

N an independence assumption: the probability of
B being co-emitted fromgy, ..., ¢, is exactly what
Prp,(w) = (1:[1 T(gi-1, ai—l)) Flar+) () one expects if there is no interaction between the
= . individual factors; that is, between the probabil-
if d(qo,w)] and O otherwise ities of o being emitted from any;. Also note
order of product is irrelevant up to renaming of
the states, and so therefore we also speak of tak-
ing the product of a set of PDFAs (as opposed to

A probability distribution isregular deterministic
iff there is a PDFA which generates it.
The structural componentsf a PDFAM are

its statesQ), its alphabet:, its transitionss, and an OV‘?'ere‘?' vector). S
its initial stateqo. By structureof a PDFA, we Estimating regular deterministic distributiofs

mean its structural components. Each PDFA well-studied problem (Vidal et al., 2005a; Vidal et

defines a family of distributions given by the pos-&!-» 2005b; de la Higuera, in press). We limit dis-
sible instantiations of” and F* satisfying Equa- cussion to cases when the structure of the PDFA is

tion 1. These distributions hay@)|- (|| + 1) in- known. LetS be a finite sample of words drawn

dependent parameters (since for each state thef@Mm @ regular deterministic distributio®. The
are|X| possible transitions plus the possibility of Problem is to estimate parametérsand 17 of M
finality.) so thatD ,, approache®. We employ the widely-

We define the product of PDFA in terms cb- adopted maximum likelihood (ML) criterion for
emission probabilitiegVvidal et al., 2005a). this estimation.

Definition 1 Let A be a vector of PDFAs and let o
Al = n. Foreachl < i < nlet M; = (T, F) = argmax H Pry(w) (3)
(Qi,%, qoi, 6, F,, T;) be theith PDFA in A. The LE Nwes
robability thato is co-emitted fro in , I
221 Qy resopectively i ML -5 It is well-known that if D is generated by some
gy ns )

PDFA M’ with the same structural components as
M, then optimizing the ML estimate guarantees
that Dy, approache® as the size of5 goes to
infinity (Vidal et al., 2005a; Vidal et al., 2005b;
de la Higuera, in press).

The optimization problem (3) is simple for de-

CT((o,q1 - qn) = [ Tilai, o).
=1

Similarly, the probability that a word simultane-
ouslyendsaty, € Q1 ... ¢, € Qy iS

L terministic automata with known structural com-
CF({a1 - @) = HFZ'(%)' ponents. Informally, the corpus is passed through
=1 the PDFA, and the paths of each word through the
Then® A = (Q, %, qo, 0, F, T') where corpus are tracked to obtain counts, which are then

1. Q, qo, andé are defined as with DFA product. hormalized by state. LeM = (Q, %, 6, qo, F, T)
be the PDFA whose parameters F and T are to be

2. For al (q...qn) € Q let  ggiimated. For all statese  and symbols: €
Z({q1 -+ qn)) = 52, The ML estimation of the probability af (¢, a)

CF(q ... qn)) + Z CT(o,q1 ... qn)) is obtained by dividing the number of times this

et transition is used in parsing the sam@leby the
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Testable in the Strict Seng8P). Each language
class in these hierarchies has independently mo-
tivated, converging characterizations and each has
been claimed to correspond to specific, fundamen-
tal cognitive capabilities (McNaughton and Pa-
pert, 1971; Brzozowski and Simon, 1973; Simon,
1975; Thomas, 1982; Perrin and Pin, 1986; Garcia
and Ruiz, 1990; Beauquier and Pin, 1991; Straub-
Figure 2: The automata shows the count§ng, 1994; Garcia and Ruiz, 1996; Rogers and Pul-
obtained by parsing M with sample |ym, to appear; Kontorovich et al., 2008; Rogers et

S = {ab, bba, €, cab, acb, cc}. al., to appear).
Reg MSO Languages in the weakest of these classes are
defined only in terms of the set of factors (SL)
SF or subsequences (SP) which are licensed to oc-
FO cur in the string (equivalently the complement of
LTT T that set with respect t&=*, the forbidden fac-
| tors or forbidden subsequended-or example, the
L‘T P‘T Prop set containing the forbidden 2-factofsb, ba} de-
\ \ fines a Strictly 2-Local language which includes
| | all strings except those with contiguous substrings
S'{ SP {ab,ba}. Similarly since the parameters of
+ <

gram models (Jurafsky and Martin, 2008) assign
probabilities to symbols given the preceding con-
Figure 3: Parallel Sub-regular Hierarchies.  tiguous substrings up to length— 1, we say they
describe Strictlyz-Local distributions.

number of times stateis encountered in the pars-  These hierarchies have a very attractive model-
ing of S. Similarly, the ML estimation of'(¢) is  theoretic characterization. THeocally Testable
obtained by calculating the relative frequency of(LT) andPiecewise Testablanguages are exactly
stateq being final with state; being encountered those that are definable by propositional formulae
in the parsing ofS. For both cases, the division is in which the atomic formulae are blocks of sym-
normalizing i.e. it guarantees that there is a well- bols interpreted factors (LT) or subsequences (PT)
formed probability distribution at each state. Fig-of the string. The languages that are testable in the
ure 2 illustrates the counts obtained for a machingtrict sense (SL and SP) are exactly those that are
M with sampleS = {ab, bba, ¢, cab, ach, cc}.1 definable by formulae of this sort restricted to con-
Figure 1 shows the PDFA obtained after normalizjunctions of negative literals. Going the other way,

ing these counts. the languages that are definable by First-Order for-
_ _ mulae with adjacency (successor) but not prece-
3 Subregular Hierarchies dence (less-than) are exactly thecally Thresh-

- old TestablgLTT) languages. Thé&tar-Freelan-
Within the class of regular languages there are gLTT) languag

. . . uages are those that are First-Order definable
dual hierarchies of language classes (Figure 3J. . : : .

. . : . ith precedence alone (adjacency being FO defin-
one in which languages are defined in terms o

their contiguous substring&up to some lengtt, able from precedence). Finally, by extending to

N . Monadic Second-Order formulae (with either sig-
known ask-factorg, starting with the languages

. ) nature, since they are MSO definable from each
that arel.ocally Testable in the Strict Seng8L), other), one obtains the full class of Regular lan-

and one n which Iar?guageg are defined in termauages (McNaughton and Papert, 1971; Thomas,
of their not necessarily contiguogsibsequences

- i : ) 1982; Rogers and Pullum, to appear; Rogers et al.,
starting with the languages that aRiecewise 0 appearg)J uliu pp g

Technically, this acceptor is neither a simple DFA or . . . .
PDFA,; rather, it has been called a Frequency DFA. We do The relation between strings which is funda-

not formally define them here, see (de la Higuera, in press). mental along the Piecewise branch is gubse-
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guencerelation, which is a partial order on*:

def
wCovES w=¢ec0rw=o01---0, and

(Fwo, ..., wy, € ) [v = woorwy - - - opwy)].

in which case we say is asubsequencef v.
Forw € X%, let

Py (w) &

P<r(w)

the set of subsequences of lengthrespectively
length no greater thah, of w. Let P,(L) and

{vex*|vC w)and
d:ef{veESkMQw},

P<x(L) be the natural extensions of these to sets 3.

of strings. Note that Rw) = {¢}, for all w € £*,
that R (w) is the set of symbols occurring inand
that P (L) is finite, for all L C ¥*.

Similar to the Strictly Local languages, Strictly 5.
Piecewise languages are defined only in terms of

the set of subsequences (up to some lerigth
which are licensed to occur in the string.
Definition 2 (SB, Grammar, SPH A SB, gram-
mar is a pairG = (X,G) whereG C ¥*. The
language licensed by &P, grammar is

def

L(G) = {w e £ | P<x(w) C P<x(G)}.

A language is SPiff it is L(G) for some SR
grammarg. Itis SP iff itis SR, for somek.

This paper is primarily concerned with estimat-
ing Strictly Piecewise distributions, but first we
examine in greater detail properties of SP lan-rhen g

guages, in particular DFA representations.

4 DFA representations of SP Languages

Following Sakarovitch and Simon (1983),

Lothaire (1997) and Kontorovich, et al. (2008),

we call the set of strings that contain as a
subsequence th@incipal shuffle ided of w:

Sl(w) = {v e ¥ | wC v}.
Theshuffle ideabf a set of strings is defined as

SI(S) = UpesSl(w)

C

A
O

Figure 4: The DFA representation 8f(aa).

1. L = yes[Si(w)], S finite,

2. L €SP

(Fk)[P<k(w) C P<(L) = w € L],

4. w € Landv C w = v € L (L is subse-
quence closed

L =SI(X), X C ¥* (L is the complement
of a shuffle ideal).

The DFA representation of the complement of a
shuffle ideal is especially important.

Lemmallet w € XF, w o1 Ok,

and Mg,y (Q,%,q0,6, F), where Q =
{i|1<i<k}, o = 1, F = Q and for all
qi € Q,0 € X
giv1 ifo=o;andi < k,
§(gi,o) =14 1 if o = o; andi = k,
di otherwise.

Sl(w)
ognizes the complement 8f(w), i.e., Sl(w)

Figure 4 illustrates the DFA representation of
the complement of $ta) with ¥ = {a, b, c}. Itis
easy to verify that the machine in Figure 4 accepts
all and only those words which do not contain an
aa Subsequence.

For any SR languageL = L((X,G)) # X%,
the first characterization (1) in Theorem 1 above
yields a non-deterministic finite-state representa-
tion of L, which is a set4 of DFA representations
of complements of principal shuffle ideals of the

is a minimal, trimmed DFA that rec-

Rogers etal. (to appear) establish that the SP langements ofz. The trimmed automata product of
guages have a variety of characteristic propertiesinis set yields a DFA, with the properties below

Theorem 1 The following are equivalen:

2Properly S{w) is the principal ideal generated Hyv}
wrt the inverse of-.
3For a complete proof, see Rogers et al. (to appear).

W(ﬁ'hen:

only note that 5 implies 1 by DeMorgan’s theorem and the

(Rogers et al., to appear).

Lemma 2 Let M be a trimmed DFA recognizing
a SP, language constructed as described above.

fact that every shuffle ideal is finitely generated (see also

Lothaire (1997)).
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Figure 5: The DFA representation of the of the
SP language given by = ({a,b,c}, {aa,bc}).
Names of the states reflect subsets of subse-
quences up to length 1 of prefixes of the language.
Note this DFA is trimmed, but not minimal. Figure 6: A DFA representation of the of the SP
language given by = ({a,b,c},>%). Names
A of the states reflect subsets of subsequences up to
2. For qll q1,92 € Qando € %, if d(ql,J)T

length 1 of prefixes of the language. Note this
and d(q;,w) = g¢o for somew € ¥* then

. g DFA is trimmed, but not minimal.
d(q2,0)7. (Missing edges propagate down.)

Figure 5 illustrates with the DFA representa-5 SP Distributions

tion of the of the SP language given by = S
({a,b, ¢}, {aa,bc}). ltis straightforward to ver- In the same way that SL distributions (n-gram

ify that this DFA is identical (modulo relabeling of Models) generalize SL languages, SP distributions
state names) to one obtained by the trimmed progd€neralize SPlanguages. Recall that SP languages
uct of the DFA representations of the complemenf'® characterizable by the intersection of the com-
of the principal shuffle ideals afa andbe, which plements of principal shuffle ideals. SP distribu-

are the prohibited subsequences. tions are similarly characterized.
States in the DFA in Figure 5 correspond to the We begin with Piecewise-Testable distributions.

subsequences up to length 1 of the prefixes of thPefinition 3 A distribution D is k-Piecewise

language. With this in mind, it follows that the Togtaple (writterD € PTDy) g D can be de-

DFA of ¥* = L(X,¥*) has states which corre- scribed by a PDFAM = (Q, %, ¢, 8, F, T) with
spond to the subsequences up to lenigth 1 of B

the prefixes of:*. Figure 6 illustrates suchaDFA 1. Q = {P<;_;(w) : w € ¥*}
whenk = 2 and¥ = {a, b, c}.

In fact, these DFAs reveal the differences be- 2 q0 = P<k—1(¢)
tween SP languages ano! PT Ianguages.' they are Foralw € ¥ and all 0 € %,
exactly those expressed in Lemma 2. Within the 5(P _p
state space defined by the subsequences up to (P<g-1(w), a) = Pej—1(wa)
lengthk — 1 of the prefixes of the language, ifthe 4 and 7 satisfy Equation 1.
conditions in Lemma 2 are violated, then the DFAs
describe languages that are PT but not SP. Pictorln other words, a distribution igk-Piecewise
ally, PT5 languages are obtained by arbitrarily re-Testable provided it can be represented by a PDFA
moving arcs, states, and the finality of states fronwhose structural components are the same (mod-
the DFA in Figure 6, and P, ones are obtained by ulo renaming of states) as those of the DFA dis-
non-arbitrarily removing them in accordance withcussed earlier where states corresponded to the
Lemma 2. The same applies straightforwardly forsubsequences up to length— 1 of the prefixes
anyk (see Definition 3 below). of the language. The DFA in Figure 6 shows the
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structure of a PDFA which describes afdistri-

bution as long as the assigned probabilities satisfy

Equation 1.
The following lemma follows directly from the
finite-state representation of Pd@istributions.

Lemma 3 Let D belong toPTD, and letM =
(Q,%,q0,6,F,T) be a PDFA representin@® de-
fined according to Definition 3.

Prp(oy...0n) =T (P<g-1(€),01) -

H T(P<p—1(o1...0i-1),04) | (4)

2<i<n

- F(P<j—1(w))

PT, distributions have/™" ™" (|| +1) parameters
(since there are™!“"" states and®| + 1 possible
events, i.e. transitions and finality).

Let Pr(o | #) and Pr(# | P<x(w)) denote
the probability (according to som® € PTDy)
that a word begins witls and ends after observ-
ing P<x(w). Then Equation 4 can be rewritten in
terms of conditional probability as

Prp(oy...0n) = Pr(oy | #) -

I Proi| P<i—i(or...0i-1)) | (B)

2<i<n

- Pr(# | P<p—1(w))

Figure 7: The structure of PDFA1,. Itis the
same (modulo state names) as the DFA in Figure 4
except for the self-loop labeledon stateu.

strings which contair (statea) from those that
do not (state:). A set of PDFAs isa k-set of SD-
PDFAsiff, for eachw € £=F-1 it contains ex-
actly onew-SD-PDFA.

In the same way that missing edges propagate
down in DFA representations of SP languages
(Lemma 2), the final and transitional probabili-
ties must propagate down in PDFA representa-
tions of SR, distributions. In other words, the fi-
nal and transitional probabilities at states further
along paths beginning at the start state must be de-
termined by final and transitional probabilities at
earlier states non-increasingly. This is captured by
defining SP distributions as a product/etets of
SD-PDFAs (see Definition 5 below).

Thus, the probability assigned to a word depends While the standard product based on co-
not on the observed contiguous sequences as ingmission probability could be used for this pur-

Markov model, but on observed subsequences.

pose, we adopt a modified version of it defined

Like SP languages, SP distributions can be defor k-sets of SD-PDFAs: thpositive co-emission

fined in terms of the product of machines very sim-

ilar to the complement of principal shuffle ideals.
Definition 4 Letw € ©*tandw = o1 -+ - op_1.
M, = (Q,%,q,0,F,T) is a w-subsequence-
distinguishing PDFA (w-SD-PDFA)  iff
Q = Pfx(w), g9 = ¢ for all u € Pfx(w)
and eaclv € 3,

d(u,0) = wuo iff uo € Pfx(w) and
u otherwise

and F andT satisfy Equation 1.
Figure 7 shows the structure d#, which is

probability. The automata product based on the
positive co-emission probability not only ensures
that the probabilities propagate as necessary, but
also that such probabilities are made on the ba-
sis of observed subsequences, and not unobserved
ones. This idea is familiar from-gram models:

the probability ofo,, given the immediately pre-
ceding sequence; . ..o, 1 does not depend on
the probability ofo,, given the othe(n — 1)-long
sequences which do not immediately precede it,
though this is a logical possibility.

Let A be ak-set of SD-PDFAs. For each

almost the same as the complement of the princiw € X<F71 let My, = (Qu, 2, qows 6w, Fio, T

pal shuffle ideal in Figure 4. The only difference
is the additional self-loop labeled on the right-
most state labeled. M, defines a family of dis-
tributions over:*, and its states distinguish those
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The positive co-emission probability thatis si-
multaneously emitted from states ..., g, from
the stateset§)., . .. Q., respectively, of each SD-



PDFAIn Ais O(|Z[*+1). Furthermore, since each SD-PDFA
only has one state contributingj|+1 probabilities

PCT((0,qc ... qu)) = Tow(qu, 6 :
(o @) 6<1_[ > (4w, ) (8) to the product, and since there aash| = l\ZE‘Ik— !
e many SD-PDFAs in &-set, there are
Similarly, the probability that a word simultane- |3+ — 1 IS+ 4 Sk = 2] -1
ously ends at statesy. € Q.. ..., qu € Qq is 5[ T (2l +1) = =1
PCF({ge - qu) = <1_I >Fw(qw> (7) parameters, which i9(|3|%).
quw€{ge---qu
qu=w Lemmab5 LetD € SPD,. ThenD € PTD;.

In other words, the positive co-emission proba-proof Since D ¢ SPD,, there is ak-set of

bility is the product of the probabilities restricted gypsequence-distinguishing PDFAs. The product

to those assigned to the maximal states in each this set has the same structure as the PDFA
M,,. For example, consider a-set of SD- given in Definition 3. 4

PDFAs A with ¥ = {a,b,c}. A contains four
PDFAs M, M, My, M.. Consider statey = o _
(e,€,b,¢) € ® A (this is the state labeledb, ¢ in Theorem 2 A distribution D € SPD, if D can

Figure 6). Then be described by a PDFAM = (Q, %, qo, 0, F, T)
satisfying Definition 3 and the following.
CT(a,q) = Te(e, a) To(e,a) Ty(b,a)- Te(c,a) Forall w € £* and allo € 2, let
but Zwy= [ F(Pa(s) +
PCT(a,q) = T.(e,a)- Ty(b,a) Te(c,a) s€P<k—1(w)
since in PDFAM,,, the state: is not the maximal Z ( H T(P<k1(s),a')) @)
state.
o'ex SEPSk_l(’UJ)

The positive co-emission produckt) is de-
fined just as with co-emission probabilities, sub-(This is the normalization term.) Then T must sat-
stituting PCT and PCF for CT and CF, respec-sfy: T(P<p—1(w),0) =
tively, in Definition 1. The definition ofv* en-
sures that the probabilities propagate on the basis Hsep<k71(w) T(P<p-1(s),0)
of observed subsequences, and not on the basis of Z(w) ©)
unobserved ones.

Lemma4 Letk > 1 and letA be ak-set of SD- and Fmust satisfyl"(P<j 1 (w)) =
PDFAs. Thenx ™S defines a well-formed proba- F(P s
bility distribution overy*. Hoepay o FP<r1())

Z(w) (10)

Proof Since M, belongs to .4, it is always

the case that PCT and PCF are defined. WellProof That SPI) satisfies Definition 3 Follows

formedness follows from the normalization termdirectly from Lemma 5. Equations 8-10 follow

as in Definition 1. < from the definition of positive co-emission proba-
bility. —

Definition 5 A distributionD is k-Strictly Piece-
The way in which final and transitional proba-

def

wise (writtenD € SPD;) <= D can be described pjjities propagate down in SP distributions is re-
by a PDFA which is the positive co-emissionfiacted in the conditional probability as defined by
product of ak-set of subsequence-distinguishing Equations 9 and 10. In terms of conditional prob-
PDFAs. ability, Equations 9 and 10 mean that the prob-
By Lemma 4, SP distributions are well-formed. ability that o; follows a sequence;...o; 1 is
Unlike PDFAs for PT distributions, which distin- not only a function ofP<j_;(o; ...0;—1) (Equa-
guish 2IZI*7" states, the number of states ika  tion 4) but further that it is a function of each

set of SD-PDFAs isy_,_,(i + 1)|Z|°, which is  subsequence i@ ...0;—1 up to lengthk — 1.
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In particular, Pr(o; | P<gx—1(01...04-1)) is ob-  Fy,. It follows that as|S]| increasesT®+A and

tained by substitutingPr(c; | P<-1(s)) for Fig+ 4 approach the true values dfg+ , and
T(P< k-1(s),0) and Pr(# | P<y-1(s)) for Fg+ 4 and consequenttPg . , approache®. -
F(P<_1(s)) in Equations 8, 9 and 10. For ex-
amP'e’ for aSP, distribution', th? probabi_lity of We demonstrate learning long-distance depen-
a given P (be) (statee, b, c in Figure 6) is the  yoncjas by estimating SRiistributions given a
normallzed_ product of the propabllltles ofgiven corpus from Samala (Chumash), a language with
P<1(e), a given P<y (b), anda given P<y (c). sibilant harmony. There are two classes of sibi-
To summarize, SP and PT distributions are reg, s in samala: [-anterior] sibilants like [s] and
ular deterministic. Unlike PT distributions, how- [%] and [+anterior] sibilants like [| and [th] 5
ever, SP distributions can be modeled with onlyg '
O(|Z|*) parameters an®(|X|*+1) states. This

is true even though SP distributions distinguish
oIzFt

amala words are subject to a phonological pro-
cess wherein the last sibilant requires earlier sibi-
lants to have the same value for the feature [an-

states! _Since SP distributioris can be rep'terior], no matter how many sounds intervene
resented by a single PDFA, computifi(w) 0C-  (apgjegate, 1972). As a consequence of this

curs in only®(Jw|) for such PDFA. While such o " there are generally no words in Samala
PDFA might be too large to be practicatr(w)  \nere [-anterior] sibilants follow [+anterior]. E.g.
can also be computed from theset of SD-PDFAS vy wonowaf] ‘it stood upright (Applegate

in ©(|w|*) (essentially building the path in the 1972:72) is licit but not *[tojonowonowas].

product machine on the fly using Equations 4,8,9 115 (esults of estimating® € SPD, with

and 10). the corpus is shown in Table 6. The results
clearly demonstrate the effectiveness of the model:
the probability of a § anterior] sibilant given
The problem of ML estimation of SPdistribu-  p_, ([-« anterior]) sounds is orders of magnitude
tions is reduced to estimating the parameters of thgyss than giverP< (o anterior) sounds.
SD-PDFAs. Training (counting and normaliza-

6 Estimating SP Distributions

tion) occurs over each of these machines (i.e. eagh P P X

machine parses the entire corpus), which gives the r(@] P<i(y) s & [ i
ML estimates of the parameters of the distribution s 0.0335 0.0051] 0.00I1 0.0002
It trivially follows that this training successfully | tis 8-83(1)8 0-8113 8-82391’ 0%353
estimates an> € SPD. if 00006 0. | 00455 0.0313

Theorem 3 For any D € SPD,, let D generate o
sampleS. Let.A be thek-set of SD-PDFAs which Table 1: Resul_ts_ of SPestimation on the Samala
describes exactlfp. Then optimizing the MLE of COrpus. Only sibilants are shown.
S with respect to eacM € A guarantees that the
distribution described by the positivg co—emission7 Conclusion
product of® " A approachesD as|S| increases.
SP distributions are the stochastic version of SP

Proof The MLE estimate of5' with respect to languages, which model long-distance dependen-
SPD, returns the parameter values that maximize_. guages, 9 i

. . . . . . ik—l
the likelihood of. The parameters dp € SPD, g[Zfe:\ Iiﬂgugdzssz S\I/isttr:ltt)rlgtl:?gts)ldlrsr::]r? UIS<’tl¥rameters
are found on the maximal states of eakh ¢ A. ' y y yp

By definition, eachM € A describes a proba- and states because of an assumption that distinct

e . - , subsequences do not interact. As shown, these
bility distribution over.”, and similarly defines distributions are efficiently estimable from posi-
a family of distributions. Therefore finding the y P

. o tive data. As previously mentioned, we anticipate
MLE of 5 with respect to SPpmeans finding the these modelsrf[o find W?/de application in NLP P
MLE estimate ofS with respect to each of the fam- P '
ily of distributions which eachM € A defines,
respectively. “The corpus was kindly provided by Dr. Richard Apple-

Optimizing the ML estimate ofS for each 9ate and drawn from his 2007 dictionary of Samala.

Me A that . th timat ®Samala actually contrasts glottalized, aspirated, and
. € mAeanS a a$S| Increases, the estimates plain variants of these sounds (Applegate, 1972). These la-
Tx and F), approach the true valueéBy, and ryngeal distinctions are collapsed here for easier exposit
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