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Abstract

Strictly Piecewise (SP) languages are a
subclass of regular languages which en-
code certain kinds of long-distance de-
pendencies that are found in natural lan-
guages. Like the classes in the Chom-
sky and Subregular hierarchies, there are
many independently converging character-
izations of the SP class (Rogers et al., to
appear). Here we define SP distributions
and show that they can be efficiently esti-
mated from positive data.

1 Introduction

Long-distance dependencies in natural language
are of considerable interest. Although much at-
tention has focused on long-distance dependencies
which are beyond the expressive power of models
with finitely many states (Chomsky, 1956; Joshi,
1985; Shieber, 1985; Kobele, 2006), there are
some long-distance dependencies in natural lan-
guage which permit finite-state characterizations.
For example, although it is well-known that vowel
and consonantal harmony applies across any ar-
bitrary number of intervening segments (Ringen,
1988; Baković, 2000; Hansson, 2001; Rose and
Walker, 2004) and that phonological patterns are
regular (Johnson, 1972; Kaplan and Kay, 1994),
it is less well-known that harmony patterns are
largely characterizable by the Strictly Piecewise
languages, a subregular class of languages with
independently-motivated, converging characteri-
zations (see Heinz (2007, to appear) and especially
Rogers et al. (2009)).

As shown by Rogers et al. (to appear), the
Strictly Piecewise (SP) languages, which make
distinctions on the basis of (potentially) discon-
tiguous subsequences, are precisely analogous to
the Strictly Local (SL) languages (McNaughton
and Papert, 1971; Rogers and Pullum, to appear),

which make distinctions on the basis of contigu-
ous subsequences. The Strictly Local languages
are the formal-language theoretic foundation for
n-gram models (Garcia et al., 1990), which are
widely used in natural language processing (NLP)
in part because such distributions can be estimated
from positive data (i.e. a corpus) (Jurafsky and
Martin, 2008). N -gram models describe prob-
ability distributions over all strings on the basis
of the Markov assumption (Markov, 1913): that
the probability of the next symbol only depends
on the previous contiguous sequence of length
n − 1. From the perspective of formal language
theory, these distributions are perhaps properly
called Strictlyk-Local distributions (SLk) where
k = n. It is well-known that one limitation of the
Markov assumption is its inability to express any
kind of long-distance dependency.

This paper defines Strictlyk-Piecewise (SPk)
distributions and shows how they too can be effi-
ciently estimated from positive data. In contrast
with the Markov assumption, our assumption is
that the probability of the next symbol is condi-
tioned on the previous set of discontiguous subse-
quences of lengthk − 1 in the string. While this
suggests the model has too many parameters (one
for each subset of all possible subsequences), in
fact the model has on the order of|Σ|k+1 parame-
ters because of an independence assumption: there
is no interaction between different subsequences.
As a result, SP distributions are efficiently com-
putable even though they condition the probabil-
ity of the next symbol on the occurrences of ear-
lier (possibly very distant) discontiguous subse-
quences. Essentially, these SP distributions reflect
a kind of long-term memory.

On the other hand, SP models have no short-
term memory and are unable to make distinctions
on the basis of contiguous subsequences. We do
not intend SP models to replacen-gram models,
but instead expect them to be used alongside of
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them. Exactly how this is to be done is beyond the
scope of this paper and is left for future research.

Since SP languages are the analogue of SL lan-
guages, which are the formal-language theoretical
foundation forn-gram models, which are widely
used in NLP, it is expected that SP distributions
and their estimation will also find wide applica-
tion. Apart from their interest to problems in the-
oretical phonology such as phonotactic learning
(Coleman and Pierrehumbert, 1997; Hayes and
Wilson, 2008; Heinz, to appear), it is expected that
their use will have application, in conjunction with
n-gram models, in areas that currently use them;
e.g. augmentative communication (Newell et al.,
1998), part of speech tagging (Brill, 1995), and
speech recognition (Jelenik, 1997).
§2 provides basic mathematical notation.§3

provides relevant background on the subregular hi-
erarchy. §4 describes automata-theoretic charac-
terizations of SP languages.§5 defines SP distri-
butions. §6 shows how these distributions can be
efficiently estimated from positive data and pro-
vides a demonstration.§7 concludes the paper.

2 Preliminaries

We start with some mostly standard notation.Σ
denotes a finite set of symbols and a string over
Σ is a finite sequence of symbols drawn from
that set. Σk, Σ≤k, Σ≥k, and Σ∗ denote all
strings over this alphabet of lengthk, of length
less than or equal tok, of length greater than
or equal tok, and of any finite length, respec-
tively. ǫ denotes the empty string.|w| denotes
the length of stringw. The prefixes of a string
w are Pfx(w) = {v : ∃u ∈ Σ∗ such thatvu = w}.
When discussing partial functions, the notation↑
and↓ indicates that the function is undefined, re-
spectively is defined, for particular arguments.

A languageL is a subset ofΣ∗. A stochastic
languageD is a probability distribution overΣ∗.
The probabilityp of word w with respect toD is
written PrD(w) = p. Recall that all distributions
D must satisfy

∑

w∈Σ∗ PrD(w) = 1. If L is lan-
guage thenPrD(L) =

∑

w∈L PrD(w).
A Deterministic Finite-state Automaton(DFA)

is a tupleM = 〈Q,Σ, q0, δ, F 〉 whereQ is the
state set,Σ is the alphabet,q0 is the start state,
δ is a deterministic transition function with do-
main Q × Σ and codomainQ, F is the set of
accepting states. Let̂d : Q × Σ∗ → Q be
the (partial) path function ofM, i.e., d̂(q, w)

is the (unique) state reachable from stateq

via the sequencew, if any, or d̂(q, w)↑ other-
wise. The language recognized by a DFAM is

L(M)
def
= {w ∈ Σ∗ | d̂(q0, w)↓ ∈ F}.

A state isusefuliff for all q ∈ Q, there exists
w ∈ Σ∗ such thatδ(q0, w) = q and there exists
w ∈ Σ∗ such thatδ(q, w) ∈ F . Uselessstates
are not useful. DFAs without useless states are
trimmed.

Two stringsw andv over Σ are distinguished
by a DFAM iff d̂(q0, w) 6= d̂(q0, v). They are
Nerode equivalentwith respect to a languageL
if and only if wu ∈ L ⇐⇒ vu ∈ L for
all u ∈ Σ∗. All DFAs which recognizeL must
distinguish strings which are inequivalent in this
sense, but no DFA recognizingL necessarily dis-
tinguishes any strings which are equivalent. Hence
the number of equivalence classes of strings over
Σ modulo Nerode equivalence with respect toL

gives a (tight) lower bound on the number of states
required to recognizeL.

A DFA is minimal if the size of its state set
is minimal among DFAs accepting the same lan-
guage. Theproduct of n DFAs M1 . . .Mn is
given by the standard construction over the state
spaceQ1 × . . .×Qn (Hopcroft et al., 2001).

A Probabilistic Deterministic Finite-
state Automaton (PDFA) is a tuple
M = 〈Q,Σ, q0, δ, F, T 〉 where Q is the state
set, Σ is the alphabet,q0 is the start state,δ is
a deterministic transition function,F and T are
the final-state and transition probabilities. In
particular,T : Q × Σ → R

+ andF : Q → R
+

such that

for all q ∈ Q, F (q) +
∑

a∈Σ

T (q, a) = 1. (1)

Like DFAs, for all w ∈ Σ∗, there is at most one
state reachable fromq0. PDFAs are typically rep-
resented as labeled directed graphs as in Figure 1.

A PDFA M generates a stochastic language
DM. If it exists, the (unique)pathfor a wordw =
a0 . . . ak belonging toΣ∗ through a PDFA is a
sequence〈(q0, a0), (q1, a1), . . . , (qk, ak)〉, where
qi+1 = δ(qi, ai). The probability a PDFA assigns
tow is obtained by multiplying the transition prob-
abilities with the final probability alongw’s path if
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A:2/10

b:2/10
c:3/10

B:4/9
a:3/10

a:2/9
b:2/9
c:1/9

Figure 1: A picture of a PDFA with states labeled
A and B. The probabilities of T and F are located
to the right of the colon.

it exists, and zero otherwise.

PrDM(w) =

(

k
∏

i=1

T (qi−1, ai−1)

)

·F (qk+1) (2)

if d̂(q0, w)↓ and 0 otherwise

A probability distribution isregular deterministic
iff there is a PDFA which generates it.

The structural componentsof a PDFAM are
its statesQ, its alphabetΣ, its transitionsδ, and
its initial stateq0. By structureof a PDFA, we
mean its structural components. Each PDFAM
defines a family of distributions given by the pos-
sible instantiations ofT and F satisfying Equa-
tion 1. These distributions have|Q|· (|Σ| + 1) in-
dependent parameters (since for each state there
are |Σ| possible transitions plus the possibility of
finality.)

We define the product of PDFA in terms ofco-
emission probabilities(Vidal et al., 2005a).

Definition 1 LetA be a vector of PDFAs and let
|A| = n. For each 1 ≤ i ≤ n let Mi =
〈Qi,Σ, q0i, δi, Fi, Ti〉 be theith PDFA inA. The
probability thatσ is co-emitted fromq1, . . . , qn in
Q1, . . . , Qn, respectively, is

CT (〈σ, q1 . . . qn〉) =
n
∏

i=1

Ti(qi, σ).

Similarly, the probability that a word simultane-
ously ends atq1 ∈ Q1 . . . qn ∈ Qn is

CF (〈q1 . . . qn〉) =

n
∏

i=1

Fi(qi).

Then
⊗

A = 〈Q,Σ, q0, δ, F, T 〉 where

1. Q, q0, andδ are defined as with DFA product.

2. For all 〈q1 . . . qn〉 ∈ Q, let
Z(〈q1 . . . qn〉) =

CF (〈q1 . . . qn〉) +
∑

σ∈Σ

CT (〈σ, q1 . . . qn〉)

be thenormalization term; and

(a) let F (〈q1 . . . qn〉) = CF (〈q1 ... qn〉)
Z(〈q1 ... qn〉)

;
and

(b) for all σ ∈ Σ, let
T (〈q1 . . . qn〉, σ) = CT (〈σ, q1 ... qn〉)

Z(〈q1 ... qn〉)

In other words, the numerators ofT andF are de-
fined to be the co-emission probabilities (Vidal et
al., 2005a), and division byZ ensures thatM de-
fines a well-formed probability distribution. Sta-
tistically speaking, the co-emission product makes
an independence assumption: the probability ofσ

being co-emitted fromq1, . . . , qn is exactly what
one expects if there is no interaction between the
individual factors; that is, between the probabil-
ities of σ being emitted from anyqi. Also note
order of product is irrelevant up to renaming of
the states, and so therefore we also speak of tak-
ing the product of a set of PDFAs (as opposed to
an ordered vector).

Estimating regular deterministic distributionsis
well-studied problem (Vidal et al., 2005a; Vidal et
al., 2005b; de la Higuera, in press). We limit dis-
cussion to cases when the structure of the PDFA is
known. LetS be a finite sample of words drawn
from a regular deterministic distributionD. The
problem is to estimate parametersT andF of M
so thatDM approachesD. We employ the widely-
adopted maximum likelihood (ML) criterion for
this estimation.

(T̂ , F̂ ) = argmax
T,F

(

∏

w∈S

PrM(w)

)

(3)

It is well-known that ifD is generated by some
PDFAM′ with the same structural components as
M, then optimizing the ML estimate guarantees
thatDM approachesD as the size ofS goes to
infinity (Vidal et al., 2005a; Vidal et al., 2005b;
de la Higuera, in press).

The optimization problem (3) is simple for de-
terministic automata with known structural com-
ponents. Informally, the corpus is passed through
the PDFA, and the paths of each word through the
corpus are tracked to obtain counts, which are then
normalized by state. LetM = 〈Q,Σ, δ, q0, F, T 〉
be the PDFA whose parameters F and T are to be
estimated. For all statesq ∈ Q and symbolsa ∈
Σ, The ML estimation of the probability ofT (q, a)
is obtained by dividing the number of times this
transition is used in parsing the sampleS by the
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A:2

b:2
c:3

B:4
a:3

a:2
b:2
c:1

Figure 2: The automata shows the counts
obtained by parsing M with sample
S = {ab, bba, ǫ, cab, acb, cc}.

SL SP

LT PT

LTT

SF

FO

Reg MSO

Prop

+1 <

Figure 3: Parallel Sub-regular Hierarchies.

number of times stateq is encountered in the pars-
ing of S. Similarly, the ML estimation ofF (q) is
obtained by calculating the relative frequency of
stateq being final with stateq being encountered
in the parsing ofS. For both cases, the division is
normalizing; i.e. it guarantees that there is a well-
formed probability distribution at each state. Fig-
ure 2 illustrates the counts obtained for a machine
M with sampleS = {ab, bba, ǫ, cab, acb, cc}.1

Figure 1 shows the PDFA obtained after normaliz-
ing these counts.

3 Subregular Hierarchies

Within the class of regular languages there are
dual hierarchies of language classes (Figure 3),
one in which languages are defined in terms of
their contiguous substrings(up to some lengthk,
known ask-factors), starting with the languages
that areLocally Testable in the Strict Sense(SL),
and one in which languages are defined in terms
of their not necessarily contiguoussubsequences,
starting with the languages that arePiecewise

1Technically, this acceptor is neither a simple DFA or
PDFA; rather, it has been called a Frequency DFA. We do
not formally define them here, see (de la Higuera, in press).

Testable in the Strict Sense(SP). Each language
class in these hierarchies has independently mo-
tivated, converging characterizations and each has
been claimed to correspond to specific, fundamen-
tal cognitive capabilities (McNaughton and Pa-
pert, 1971; Brzozowski and Simon, 1973; Simon,
1975; Thomas, 1982; Perrin and Pin, 1986; Garcı́a
and Ruiz, 1990; Beauquier and Pin, 1991; Straub-
ing, 1994; Garcı́a and Ruiz, 1996; Rogers and Pul-
lum, to appear; Kontorovich et al., 2008; Rogers et
al., to appear).

Languages in the weakest of these classes are
defined only in terms of the set of factors (SL)
or subsequences (SP) which are licensed to oc-
cur in the string (equivalently the complement of
that set with respect toΣ≤k, the forbidden fac-
torsor forbidden subsequences). For example, the
set containing the forbidden 2-factors{ab, ba} de-
fines a Strictly 2-Local language which includes
all strings except those with contiguous substrings
{ab, ba}. Similarly since the parameters ofn-
gram models (Jurafsky and Martin, 2008) assign
probabilities to symbols given the preceding con-
tiguous substrings up to lengthn− 1, we say they
describe Strictlyn-Local distributions.

These hierarchies have a very attractive model-
theoretic characterization. TheLocally Testable
(LT) andPiecewise Testablelanguages are exactly
those that are definable by propositional formulae
in which the atomic formulae are blocks of sym-
bols interpreted factors (LT) or subsequences (PT)
of the string. The languages that are testable in the
strict sense (SL and SP) are exactly those that are
definable by formulae of this sort restricted to con-
junctions of negative literals. Going the other way,
the languages that are definable by First-Order for-
mulae with adjacency (successor) but not prece-
dence (less-than) are exactly theLocally Thresh-
old Testable(LTT) languages. TheStar-Freelan-
guages are those that are First-Order definable
with precedence alone (adjacency being FO defin-
able from precedence). Finally, by extending to
Monadic Second-Order formulae (with either sig-
nature, since they are MSO definable from each
other), one obtains the full class of Regular lan-
guages (McNaughton and Papert, 1971; Thomas,
1982; Rogers and Pullum, to appear; Rogers et al.,
to appear).

The relation between strings which is funda-
mental along the Piecewise branch is thesubse-
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quencerelation, which is a partial order onΣ∗:

w ⊑ v
def
⇐⇒ w = ε or w = σ1 · · · σn and

(∃w0, . . . , wn ∈ Σ∗)[v = w0σ1w1 · · · σnwn].

in which case we sayw is asubsequenceof v.
Forw ∈ Σ∗, let

Pk(w)
def
= {v ∈ Σk | v ⊑ w} and

P≤k(w)
def
= {v ∈ Σ≤k | v ⊑ w},

the set of subsequences of lengthk, respectively
length no greater thank, of w. Let Pk(L) and
P≤k(L) be the natural extensions of these to sets
of strings. Note that P0(w) = {ε}, for all w ∈ Σ∗,
that P1(w) is the set of symbols occurring inw and
that P≤k(L) is finite, for allL ⊆ Σ∗.

Similar to the Strictly Local languages, Strictly
Piecewise languages are defined only in terms of
the set of subsequences (up to some lengthk)
which are licensed to occur in the string.

Definition 2 (SPk Grammar, SP) A SPk gram-
mar is a pairG = 〈Σ, G〉 whereG ⊆ Σk. The
language licensed by aSPk grammar is

L(G)
def
= {w ∈ Σ∗ | P≤k(w) ⊆ P≤k(G)}.

A language is SPk iff it is L(G) for some SPk
grammarG. It is SP iff it is SPk for somek.

This paper is primarily concerned with estimat-
ing Strictly Piecewise distributions, but first we
examine in greater detail properties of SP lan-
guages, in particular DFA representations.

4 DFA representations of SP Languages

Following Sakarovitch and Simon (1983),
Lothaire (1997) and Kontorovich, et al. (2008),
we call the set of strings that containw as a
subsequence theprincipal shuffle ideal2 of w:

SI(w) = {v ∈ Σ∗ | w ⊑ v}.

Theshuffle idealof a set of strings is defined as

SI(S) = ∪w∈SSI(w)

Rogers et al. (to appear) establish that the SP lan-
guages have a variety of characteristic properties.

Theorem 1 The following are equivalent:3

2Properly SI(w) is the principal ideal generated by{w}
wrt the inverse of⊑.

3For a complete proof, see Rogers et al. (to appear). We
only note that 5 implies 1 by DeMorgan’s theorem and the
fact that every shuffle ideal is finitely generated (see also
Lothaire (1997)).

1

b
c

2
a

b
c

Figure 4: The DFA representation ofSI(aa).

1. L =
⋂

w∈S [SI(w)], S finite,

2. L ∈ SP

3. (∃k)[P≤k(w) ⊆ P≤k(L) ⇒ w ∈ L],

4. w ∈ L andv ⊑ w ⇒ v ∈ L (L is subse-
quence closed),

5. L = SI(X), X ⊆ Σ∗ (L is the complement
of a shuffle ideal).

The DFA representation of the complement of a
shuffle ideal is especially important.

Lemma 1 Let w ∈ Σk, w = σ1 · · · σk,
and M

SI(w)
= 〈Q,Σ, q0, δ, F 〉, where Q =

{i | 1 ≤ i ≤ k}, q0 = 1, F = Q and for all
qi ∈ Q,σ ∈ Σ:

δ(qi, σ) =







qi+1 if σ = σi andi < k,

↑ if σ = σi andi = k,

qi otherwise.

ThenM
SI(w) is a minimal, trimmed DFA that rec-

ognizes the complement ofSI(w), i.e., SI(w) =
L(M

SI(w)).

Figure 4 illustrates the DFA representation of
the complement of SI(aa) with Σ = {a, b, c}. It is
easy to verify that the machine in Figure 4 accepts
all and only those words which do not contain an
aa subsequence.

For any SPk languageL = L(〈Σ, G〉) 6= Σ∗,
the first characterization (1) in Theorem 1 above
yields a non-deterministic finite-state representa-
tion of L, which is a setA of DFA representations
of complements of principal shuffle ideals of the
elements ofG. The trimmed automata product of
this set yields a DFA, with the properties below
(Rogers et al., to appear).

Lemma 2 LetM be a trimmed DFA recognizing
a SPk language constructed as described above.
Then:

1. All states ofM are accepting states:F = Q.
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a
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b

a

c

a

b

b

c

b

b
a

b

ǫ ǫ,a

ǫ,b

ǫ,c

ǫ,a,b

ǫ,b,c

ǫ,a,c

ǫ,a,b,c

Figure 5: The DFA representation of the of the
SP language given byG = 〈{a, b, c}, {aa, bc}〉.
Names of the states reflect subsets of subse-
quences up to length 1 of prefixes of the language.
Note this DFA is trimmed, but not minimal.

2. For all q1, q2 ∈ Q and σ ∈ Σ, if d̂(q1, σ)↑
and d̂(q1, w) = q2 for somew ∈ Σ∗ then
d̂(q2, σ)↑. (Missing edges propagate down.)

Figure 5 illustrates with the DFA representa-
tion of the of the SP2 language given byG =
〈{a, b, c}, {aa, bc}〉. It is straightforward to ver-
ify that this DFA is identical (modulo relabeling of
state names) to one obtained by the trimmed prod-
uct of the DFA representations of the complement
of the principal shuffle ideals ofaa andbc, which
are the prohibited subsequences.

States in the DFA in Figure 5 correspond to the
subsequences up to length 1 of the prefixes of the
language. With this in mind, it follows that the
DFA of Σ∗ = L(Σ,Σk) has states which corre-
spond to the subsequences up to lengthk − 1 of
the prefixes ofΣ∗. Figure 6 illustrates such a DFA
whenk = 2 andΣ = {a, b, c}.

In fact, these DFAs reveal the differences be-
tween SP languages and PT languages: they are
exactly those expressed in Lemma 2. Within the
state space defined by the subsequences up to
lengthk − 1 of the prefixes of the language, if the
conditions in Lemma 2 are violated, then the DFAs
describe languages that are PT but not SP. Pictori-
ally, PT2 languages are obtained by arbitrarily re-
moving arcs, states, and the finality of states from
the DFA in Figure 6, andSP2 ones are obtained by
non-arbitrarily removing them in accordance with
Lemma 2. The same applies straightforwardly for
anyk (see Definition 3 below).

a

b

c

a b

c

b a

c

c

a

b

a
b

c

a
c b

b
c

a

a
b
c

ǫ ǫ,a

ǫ,b

ǫ,c

ǫ,a,b

ǫ,b,c

ǫ,a,c

ǫ,a,b,c

Figure 6: A DFA representation of the of the SP2

language given byG = 〈{a, b, c},Σ2〉. Names
of the states reflect subsets of subsequences up to
length 1 of prefixes of the language. Note this
DFA is trimmed, but not minimal.

5 SP Distributions

In the same way that SL distributions (n-gram
models) generalize SL languages, SP distributions
generalize SP languages. Recall that SP languages
are characterizable by the intersection of the com-
plements of principal shuffle ideals. SP distribu-
tions are similarly characterized.

We begin with Piecewise-Testable distributions.

Definition 3 A distribution D is k-Piecewise

Testable (writtenD ∈ PTDk)
def
⇐⇒ D can be de-

scribed by a PDFAM = 〈Q,Σ, q0, δ, F, T 〉 with

1. Q = {P≤k−1(w) : w ∈ Σ∗}

2. q0 = P≤k−1(ǫ)

3. For all w ∈ Σ∗ and all σ ∈ Σ,
δ(P≤k−1(w), a) = P≤k−1(wa)

4. F andT satisfy Equation 1.

In other words, a distribution isk-Piecewise
Testable provided it can be represented by a PDFA
whose structural components are the same (mod-
ulo renaming of states) as those of the DFA dis-
cussed earlier where states corresponded to the
subsequences up to lengthk − 1 of the prefixes
of the language. The DFA in Figure 6 shows the
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structure of a PDFA which describes a PT2 distri-
bution as long as the assigned probabilities satisfy
Equation 1.

The following lemma follows directly from the
finite-state representation of PTk distributions.

Lemma 3 Let D belong toPTDk and letM =
〈Q,Σ, q0, δ, F, T 〉 be a PDFA representingD de-
fined according to Definition 3.

PrD(σ1 . . . σn) = T (P≤k−1(ǫ), σ1) ·




∏

2≤i≤n

T (P≤k−1(σ1 . . . σi−1), σi)



 (4)

· F (P≤k−1(w))

PTk distributions have2|Σ|
k−1

(|Σ|+1) parameters
(since there are2|Σ|

k−1

states and|Σ|+ 1 possible
events, i.e. transitions and finality).

Let Pr(σ | #) andPr(# | P≤k(w)) denote
the probability (according to someD ∈ PTDk)
that a word begins withσ and ends after observ-
ing P≤k(w). Then Equation 4 can be rewritten in
terms of conditional probability as

PrD(σ1 . . . σn) = Pr(σ1 | #) ·




∏

2≤i≤n

Pr(σi | P≤k−1(σ1 . . . σi−1))



(5)

· Pr(# | P≤k−1(w))

Thus, the probability assigned to a word depends
not on the observed contiguous sequences as in a
Markov model, but on observed subsequences.

Like SP languages, SP distributions can be de-
fined in terms of the product of machines very sim-
ilar to the complement of principal shuffle ideals.

Definition 4 Letw ∈ Σk−1 andw = σ1 · · · σk−1.
Mw = 〈Q,Σ, q0, δ, F, T 〉 is a w-subsequence-
distinguishing PDFA (w-SD-PDFA) iff
Q = Pfx(w), q0 = ǫ, for all u ∈ Pfx(w)
and eachσ ∈ Σ,

δ(u, σ) = uσ iff uσ ∈ Pfx(w) and
u otherwise

andF andT satisfy Equation 1.

Figure 7 shows the structure ofMa which is
almost the same as the complement of the princi-
pal shuffle ideal in Figure 4. The only difference
is the additional self-loop labeleda on the right-
most state labeleda. Ma defines a family of dis-
tributions overΣ∗, and its states distinguish those

b
c

a
a

a
b
c

ǫ

Figure 7: The structure of PDFAMa. It is the
same (modulo state names) as the DFA in Figure 4
except for the self-loop labeleda on statea.

strings which containa (statea) from those that
do not (stateǫ). A set of PDFAs isa k-set of SD-
PDFAs iff, for each w ∈ Σ≤k−1, it contains ex-
actly onew-SD-PDFA.

In the same way that missing edges propagate
down in DFA representations of SP languages
(Lemma 2), the final and transitional probabili-
ties must propagate down in PDFA representa-
tions of SPk distributions. In other words, the fi-
nal and transitional probabilities at states further
along paths beginning at the start state must be de-
termined by final and transitional probabilities at
earlier states non-increasingly. This is captured by
defining SP distributions as a product ofk-sets of
SD-PDFAs (see Definition 5 below).

While the standard product based on co-
emission probability could be used for this pur-
pose, we adopt a modified version of it defined
for k-sets of SD-PDFAs: thepositive co-emission
probability. The automata product based on the
positive co-emission probability not only ensures
that the probabilities propagate as necessary, but
also that such probabilities are made on the ba-
sis of observed subsequences, and not unobserved
ones. This idea is familiar fromn-gram models:
the probability ofσn given the immediately pre-
ceding sequenceσ1 . . . σn−1 does not depend on
the probability ofσn given the other(n− 1)-long
sequences which do not immediately precede it,
though this is a logical possibility.

Let A be a k-set of SD-PDFAs. For each
w ∈ Σ≤k−1, letMw = 〈Qw,Σ, q0w, δw, Fw, Tw〉
be thew-subsequence-distinguishing PDFA inA.
The positive co-emission probability thatσ is si-
multaneously emitted from statesqǫ, . . . , qu from
the statesetsQǫ, . . . Qu, respectively, of each SD-
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PDFA inA is

PCT (〈σ, qǫ . . . qu〉) =
∏

qw∈〈qǫ...qu〉
qw=w

Tw(qw, σ) (6)

Similarly, the probability that a word simultane-
ously ends atn statesqǫ ∈ Qǫ, . . . , qu ∈ Qu is

PCF (〈qǫ . . . qu〉) =
∏

qw∈〈qǫ...qu〉
qw=w

Fw(qw) (7)

In other words, the positive co-emission proba-
bility is the product of the probabilities restricted
to those assigned to the maximal states in each
Mw. For example, consider a2-set of SD-
PDFAsA with Σ = {a, b, c}. A contains four
PDFAsMǫ,Ma,Mb,Mc. Consider stateq =
〈ǫ, ǫ, b, c〉 ∈

⊗

A (this is the state labeledǫ, b, c in
Figure 6). Then

CT (a, q) = Tǫ(ǫ, a)· Ta(ǫ, a)· Tb(b, a)· Tc(c, a)

but

PCT (a, q) = Tǫ(ǫ, a)· Tb(b, a)· Tc(c, a)

since in PDFAMa, the stateǫ is not the maximal
state.

The positive co-emission product (⊗+) is de-
fined just as with co-emission probabilities, sub-
stituting PCT and PCF for CT and CF, respec-
tively, in Definition 1. The definition of⊗+ en-
sures that the probabilities propagate on the basis
of observed subsequences, and not on the basis of
unobserved ones.

Lemma 4 Let k ≥ 1 and letA be ak-set of SD-
PDFAs. Then⊗+S defines a well-formed proba-
bility distribution overΣ∗.

Proof Since Mǫ belongs toA, it is always
the case that PCT and PCF are defined. Well-
formedness follows from the normalization term
as in Definition 1. ⊣⊣⊣

Definition 5 A distributionD is k-Strictly Piece-

wise (writtenD ∈ SPDk)
def
⇐⇒ D can be described

by a PDFA which is the positive co-emission
product of ak-set of subsequence-distinguishing
PDFAs.

By Lemma 4, SP distributions are well-formed.
Unlike PDFAs for PT distributions, which distin-
guish2|Σ|

k−1

states, the number of states in ak-
set of SD-PDFAs is

∑

i<k(i + 1)|Σ|i, which is

Θ(|Σ|k+1). Furthermore, since each SD-PDFA
only has one state contributing|Σ|+1 probabilities

to the product, and since there are|Σ≤k| = |Σ|k−1
|Σ|−1

many SD-PDFAs in ak-set, there are

|Σ|k − 1

|Σ| − 1
· (|Σ|+ 1) =

|Σ|k+1 + |Σ|k − |Σ| − 1

|Σ| − 1

parameters, which isΘ(|Σ|k).

Lemma 5 LetD ∈ SPDk. ThenD ∈ PTDk.

Proof Since D ∈ SPDk, there is ak-set of
subsequence-distinguishing PDFAs. The product
of this set has the same structure as the PDFA
given in Definition 3. ⊣⊣⊣

Theorem 2 A distributionD ∈ SPDk if D can
be described by a PDFAM = 〈Q,Σ, q0, δ, F, T 〉
satisfying Definition 3 and the following.

For all w ∈ Σ∗ and allσ ∈ Σ, let

Z(w) =
∏

s∈P≤k−1(w)

F (P≤k−1(s)) +

∑

σ′∈Σ





∏

s∈P≤k−1(w)

T (P≤k−1(s), σ
′)



 (8)

(This is the normalization term.) Then T must sat-
isfy: T (P≤k−1(w), σ) =

∏

s∈P≤k−1(w) T (P≤k−1(s), σ)

Z(w)
(9)

and F must satisfy:F (P≤k−1(w)) =

∏

s∈P≤k−1(w) F (P≤k−1(s))

Z(w)
(10)

Proof That SPDk satisfies Definition 3 Follows
directly from Lemma 5. Equations 8-10 follow
from the definition of positive co-emission proba-
bility. ⊣⊣⊣

The way in which final and transitional proba-
bilities propagate down in SP distributions is re-
flected in the conditional probability as defined by
Equations 9 and 10. In terms of conditional prob-
ability, Equations 9 and 10 mean that the prob-
ability that σi follows a sequenceσ1 . . . σi−1 is
not only a function ofP≤k−1(σ1 . . . σi−1) (Equa-
tion 4) but further that it is a function of each
subsequence inσ1 . . . σi−1 up to lengthk − 1.

893



In particular,Pr(σi | P≤k−1(σ1 . . . σi−1)) is ob-
tained by substitutingPr(σi | P≤ k−1(s)) for
T (P≤ k−1(s), σ) and Pr(# | P≤ k−1(s)) for
F (P≤k−1(s)) in Equations 8, 9 and 10. For ex-
ample, for aSP2 distribution, the probability of
a given P≤1(bc) (stateǫ, b, c in Figure 6) is the
normalized product of the probabilities ofa given
P≤1(ǫ), a givenP≤1(b), anda givenP≤1(c).

To summarize, SP and PT distributions are reg-
ular deterministic. Unlike PT distributions, how-
ever, SP distributions can be modeled with only
Θ(|Σ|k) parameters andΘ(|Σ|k+1) states. This
is true even though SP distributions distinguish
2|Σ|

k−1

states! Since SP distributions can be rep-
resented by a single PDFA, computingPr(w) oc-
curs in onlyΘ(|w|) for such PDFA. While such
PDFA might be too large to be practical,Pr(w)
can also be computed from thek-set of SD-PDFAs
in Θ(|w|k) (essentially building the path in the
product machine on the fly using Equations 4, 8, 9
and 10).

6 Estimating SP Distributions

The problem of ML estimation of SPk distribu-
tions is reduced to estimating the parameters of the
SD-PDFAs. Training (counting and normaliza-
tion) occurs over each of these machines (i.e. each
machine parses the entire corpus), which gives the
ML estimates of the parameters of the distribution.
It trivially follows that this training successfully
estimates anyD ∈ SPDk.

Theorem 3 For anyD ∈ SPDk, let D generate
sampleS. LetA be thek-set of SD-PDFAs which
describes exactlyD. Then optimizing the MLE of
S with respect to eachM ∈ A guarantees that the
distribution described by the positive co-emission
product of

⊗+A approachesD as |S| increases.

Proof The MLE estimate ofS with respect to
SPDk returns the parameter values that maximize
the likelihood ofS. The parameters ofD ∈ SPDk

are found on the maximal states of eachM ∈ A.
By definition, eachM ∈ A describes a proba-
bility distribution overΣ∗, and similarly defines
a family of distributions. Therefore finding the
MLE of S with respect to SPDk means finding the
MLE estimate ofS with respect to each of the fam-
ily of distributions which eachM ∈ A defines,
respectively.

Optimizing the ML estimate ofS for each
M ∈ A means that as|S| increases, the estimates
T̂M and F̂M approach the true valuesTM and

FM. It follows that as|S| increases,̂TN

+A and

F̂N

+A approach the true values ofTN

+A and
FN

+A and consequentlyDN

+ A approachesD. ⊣⊣⊣

We demonstrate learning long-distance depen-
dencies by estimating SP2 distributions given a
corpus from Samala (Chumash), a language with
sibilant harmony.4 There are two classes of sibi-
lants in Samala: [-anterior] sibilants like [s] and
[
>
ts] and [+anterior] sibilants like [S] and [

>
tS].5

Samala words are subject to a phonological pro-
cess wherein the last sibilant requires earlier sibi-
lants to have the same value for the feature [an-
terior], no matter how many sounds intervene
(Applegate, 1972). As a consequence of this
rule, there are generally no words in Samala
where [-anterior] sibilants follow [+anterior]. E.g.
[StojonowonowaS] ‘it stood upright’ (Applegate
1972:72) is licit but not *[Stojonowonowas].

The results of estimatingD ∈ SPD2 with
the corpus is shown in Table 6. The results
clearly demonstrate the effectiveness of the model:
the probability of a [α anterior] sibilant given
P≤1([-α anterior]) sounds is orders of magnitude
less than givenP≤1(α anterior]) sounds.

x
Pr(x | P≤1(y))

s
>
ts S

>
tS

s 0.0335 0.0051 0.0011 0.0002
⁀ts 0.0218 0.0113 0.0009 0.

y S 0.0009 0. 0.0671 0.0353
>
tS 0.0006 0. 0.0455 0.0313

Table 1: Results of SP2 estimation on the Samala
corpus. Only sibilants are shown.

7 Conclusion

SP distributions are the stochastic version of SP
languages, which model long-distance dependen-
cies. Although SP distributions distinguish2|Σ|

k−1

states, they do so with tractably many parameters
and states because of an assumption that distinct
subsequences do not interact. As shown, these
distributions are efficiently estimable from posi-
tive data. As previously mentioned, we anticipate
these models to find wide application in NLP.

4The corpus was kindly provided by Dr. Richard Apple-
gate and drawn from his 2007 dictionary of Samala.

5Samala actually contrasts glottalized, aspirated, and
plain variants of these sounds (Applegate, 1972). These la-
ryngeal distinctions are collapsed here for easier exposition.
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