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Abstract 

This paper proposes a convolution forest ker-

nel to effectively explore rich structured fea-

tures embedded in a packed parse forest. As 

opposed to the convolution tree kernel, the 

proposed forest kernel does not have to com-

mit to a single best parse tree, is thus able to 

explore very large object spaces and much 

more structured features embedded in a forest. 

This makes the proposed kernel more robust 

against parsing errors and data sparseness is-

sues than the convolution tree kernel. The pa-

per presents the formal definition of convolu-

tion forest kernel and also illustrates the com-

puting algorithm to fast compute the proposed 

convolution forest kernel. Experimental results 

on two NLP applications, relation extraction 

and semantic role labeling, show that the pro-

posed forest kernel significantly outperforms 

the baseline of the convolution tree kernel. 

1 Introduction 

Parse tree and packed forest of parse trees are 

two widely used data structures to represent the 

syntactic structure information of sentences in 

natural language processing (NLP). The struc-

tured features embedded in a parse tree have 

been well explored together with different ma-

chine learning algorithms and proven very useful 

in many NLP applications (Collins and Duffy, 

2002; Moschitti, 2004; Zhang et al., 2007). A 

forest (Tomita, 1987) compactly encodes an ex-

ponential number of parse trees. In this paper, we 

study how to effectively explore structured fea-

tures embedded in a forest using convolution 

kernel (Haussler, 1999). 

As we know, feature-based machine learning 

methods are less effective in modeling highly 

structured objects (Vapnik, 1998), such as parse 

tree or semantic graph in NLP. This is due to the 

fact that it is usually very hard to represent struc-

tured objects using vectors of reasonable dimen-

sions without losing too much information. For 

example, it is computationally infeasible to enu-

merate all subtree features (using subtree a fea-

ture) for a parse tree into a linear feature vector. 

Kernel-based machine learning method is a good 

way to overcome this problem. Kernel methods 

employ a kernel function, that must satisfy the 

properties of being symmetric and positive, to 

measure the similarity between two objects by 

computing implicitly the dot product of certain 

features of the input objects in high (or even in-

finite) dimensional feature spaces without enu-

merating all the features (Vapnik, 1998).  

Many learning algorithms, such as SVM 

(Vapnik, 1998), the Perceptron learning algo-

rithm (Rosenblatt, 1962) and Voted Perceptron 

(Freund and Schapire, 1999), can work directly 

with kernels by replacing the dot product with a 

particular kernel function. This nice property of 

kernel methods, that implicitly calculates the dot 

product in a high-dimensional space over the 

original representations of objects, has made 

kernel methods an effective solution to modeling 

structured objects in NLP. 

In the context of parse tree, convolution tree 

kernel (Collins and Duffy, 2002) defines a fea-

ture space consisting of all subtree types of parse 

trees and counts the number of common subtrees 

as the syntactic similarity between two parse 

trees. The tree kernel has shown much success in 

many NLP applications like parsing (Collins and 

Duffy, 2002), semantic role labeling (Moschitti, 

2004; Zhang et al., 2007), relation extraction 

(Zhang et al., 2006), pronoun resolution (Yang et 

al., 2006), question classification (Zhang and 

Lee, 2003) and machine translation (Zhang and 

Li, 2009), where the tree kernel is used to com-

pute the similarity between two NLP application 

instances that are usually represented by parse 

trees. However, in those studies, the tree kernel 

only covers the features derived from single 1-
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best parse tree. This may largely compromise the 

performance of tree kernel due to parsing errors 

and data sparseness. 

To address the above issues, this paper con-

structs a forest-based convolution kernel to mine 

structured features directly from packed forest. A 

packet forest compactly encodes exponential 

number of n-best parse trees, and thus containing 

much more rich structured features than a single 

parse tree. This advantage enables the forest ker-

nel not only to be more robust against parsing 

errors, but also to be able to learn more reliable 

feature values and help to solve the data sparse-

ness issue that exists in the traditional tree kernel. 

We evaluate the proposed kernel in two real NLP 

applications, relation extraction and semantic 

role labeling. Experimental results on the 

benchmark data show that the forest kernel sig-

nificantly outperforms the tree kernel. 

The rest of the paper is organized as follows. 

Section 2 reviews the convolution tree kernel 

while section 3 discusses the proposed forest 

kernel in details. Experimental results are re-

ported in section 4. Finally, we conclude the pa-

per in section 5. 
 

2 Convolution Kernel over Parse Tree 

Convolution kernel was proposed as a concept of 

kernels for discrete structures by Haussler (1999) 

and related but independently conceived ideas on 

string kernels first presented in (Watkins, 1999). 

The framework defines the kernel function be-

tween input objects as the convolution of “sub-

kernels”, i.e. the kernels for the decompositions 

(parts) of the input objects.  

The parse tree kernel (Collins and Duffy, 2002) 

is an instantiation of convolution kernel over 

syntactic parse trees. Given a parse tree, its fea-

tures defined by a tree kernel are all of its subtree 

types and the value of a given feature is the 

number of the occurrences of the subtree in the 

parse tree. Fig. 1 illustrates a parse tree with all 

of its 11 subtree features covered by the convolu-

tion tree kernel. In the tree kernel, a parse tree T  

is represented by a vector of integer counts of 

each subtree type (i.e., subtree regardless of its 

ancestors, descendants and span covered):  
 

( )T  (# subtreetype1(T), …, # subtreetypen(T))         
 

where # subtreetypei(T) is the occurrence number 

of the i
th
 subtree type in T. The tree kernel counts 

the number of common subtrees as the syntactic 

similarity between two parse trees. Since the 

number of subtrees is exponential with the tree 

size, it is computationally infeasible to directly 

use the feature vector ( )T . To solve this com-

putational issue, Collins and Duffy (2002) pro-

posed the following tree kernel to calculate the 

dot product between the above high dimensional 

vectors implicitly. 
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where N1 and N2 are the sets of nodes in trees T1 

and T2, respectively, and ( )
isubtreeI n  is a function 

that is 1 iff the subtreetypei occurs with root at 

node n and zero otherwise, and 
1 2( , )n n  is the 

number of the common subtrees rooted at n1 and 

n2, i.e., 

 

1 2 1 2( , ) ( ) ( )
i isubtree subtreei

n n I n I n    

 

1 2( , )n n can be computed by the following recur-

sive rules:  
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Figure 1. A parse tree and its 11 subtree features covered by convolution tree kernel 
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Rule 1: if the productions (CFG rules) at 1n  and 

2n  are different, 1 2( , ) 0n n  ; 

 

Rule 2: else if both 1n  and 2n  are pre-terminals 

(POS tags), 1 2( , ) 1n n    ; 

 

Rule 3: else,  
 

1( )

1 2 1 2

1

( , ) (1 ( ( , ), ( , )))
nc n

j

n n ch n j ch n j


     ,  

 

where 1( )nc n is the child number of 1n , ch(n,j) is 

the j
th
 child of node n  and (0< ≤1) is the de-

cay factor in order to make the kernel value less 

variable with respect to the subtree sizes (Collins 

and Duffy, 2002). The recursive Rule 3 holds 

because given two nodes with the same children, 

one can construct common subtrees using these 

children and common subtrees of further 

offspring. The time complexity for computing 

this kernel is 1 2(| | | |)O N N . 

As discussed in previous section, when convo-

lution tree kernel is applied to NLP applications, 

its performance is vulnerable to the errors from 

the single parse tree and data sparseness. In this 

paper, we present a convolution kernel over 

packed forest to address the above issues by ex-

ploring structured features embedded in a forest. 

3 Convolution Kernel over Forest 

In this section, we first illustrate the concept of 

packed forest and then give a detailed discussion 

on the covered feature space, fractional count, 

feature value and the forest kernel function itself. 

3.1 Packed forest of parse trees 

Informally, a packed parse forest, or (packed) 

forest in short, is a compact representation of all 

the derivations (i.e. parse trees) for a given sen-

tence under context-free grammar (Tomita, 1987; 

Billot and Lang, 1989; Klein and Manning, 

2001). It is the core data structure used in natural 

language parsing and other downstream NLP 

applications, such as syntax-based machine 

translation (Zhang et al., 2008; Zhang et al., 

2009a). In parsing, a sentence corresponds to 

exponential number of parse trees with different 

tree probabilities, where a forest can compact all 

the parse trees by sharing their common subtrees 

in a bottom-up manner. Formally, a packed for-

est 𝐹 can be described as a triple: 
 

𝐹 = < 𝑉,𝐸, 𝑆 > 
 

where  𝑉is the set of non-terminal nodes, 𝐸 is the 

set of hyper-edges and 𝑆  is a sentence 
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Figure 2. An example of a packed forest, a hyper-edge and two parse trees covered by the packed forest 
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represented as an ordered word sequence. A hy-

per-edge 𝑒  is a group of edges in a parse tree 

which connects a father node and its all child 

nodes, representing a CFG rule. A non-terminal 

node in a forest is represented as a “label [start, 

end]”, where the “label” is its syntax category 

and “[start, end]” is the span of words it covers. 

As shown in Fig. 2, these two parse trees (𝑇1 

and 𝑇2) can be represented as a single forest by 

sharing their common subtrees (such as NP[3,4] 

and PP[5,7]) and merging common non-terminal 

nodes covering the same span (such as VP[2,7], 

where there are two hyper-edges attach to it). 

Given the definition of forest, we introduce 

the concepts of inside probability β .   and out-

side probability α(. )  that are widely-used in 

parsing (Baker, 1979; Lari and Young, 1990) and 

are also to be used in our kernel calculation. 

 

β 𝑣 𝑝,𝑝  = 𝑃(𝑣 → 𝑆[𝑝]) 
 

β 𝑣 𝑝, 𝑞  =   

 

 
 

 𝑃 𝑒 

𝑒  𝑖𝑠  𝑎  𝑕𝑦𝑝𝑒𝑟 −𝑒𝑑𝑔𝑒  
𝑎𝑡𝑡𝑎𝑐 𝑕𝑒𝑑  𝑡𝑜  𝑣

∙  𝛽(𝑐𝑖[𝑝𝑖 , 𝑞𝑖])

𝑐𝑖 𝑝𝑖 ,𝑞𝑖 𝑖𝑠  𝑎  𝑙𝑒𝑎𝑓  
𝑛𝑜𝑑𝑒  𝑜𝑓  𝑒  

 
 

 

α 𝑟𝑜𝑜𝑡(𝑓) = 1       

α 𝑣 𝑝, 𝑞  =   

 

 
 
 
α 𝑟𝑜𝑜𝑡 𝑒    ∙ 𝑃 𝑒 

𝑒  𝑖𝑠  𝑎  𝑕𝑦𝑝𝑒𝑟 −  
𝑒𝑑𝑔𝑒  𝑎𝑛𝑑  𝑣 
𝑖𝑠  𝑖𝑡𝑠  𝑜𝑛𝑒

 𝑙𝑒𝑎𝑓  𝑛𝑜𝑑𝑒

∙   𝛽(𝑐𝑖[𝑝𝑖 , 𝑞𝑖]))

𝑐𝑖 𝑝𝑖 ,𝑞𝑖 𝑖𝑠  𝑎  
𝑐𝑕𝑖𝑙𝑑𝑟𝑒𝑛  𝑛𝑜𝑑𝑒  
𝑜𝑓  𝑒 𝑒𝑥𝑐𝑒𝑝𝑡  𝑣

 
 

where 𝑣 is a forest node, 𝑆[𝑝] is the 𝑝𝑡𝑕  word of 

input sentence 𝑆, 𝑃(𝑣 → 𝑆[𝑝]) is the probability 

of the CFG rule 𝑣 → 𝑆[𝑝] , 𝑟𝑜𝑜𝑡(. )  returns the 

root node of input structure, [𝑝𝑖 , 𝑞𝑖] is a sub-span 

of  𝑝, 𝑞 , being covered by 𝑐𝑖 , and 𝑃 𝑒 is the 

PCFG probability of 𝑒 . From these definitions, 

we can see that the inside probability is total 

probability of generating words 𝑆 𝑝, 𝑞  from 

non-terminal node 𝑣 𝑝, 𝑞  while the outside 

probability is the total probability of generating 

node 𝑣 𝑝, 𝑞  and words outside 𝑆[𝑝, 𝑞] from the 

root of forest. The inside probability can be cal-

culated using dynamic programming in a bottom-

up fashion while the outside probability can be 

calculated using dynamic programming in a top-

to-down way. 

3.2 Convolution forest kernel 

In this subsection, we first define the feature 

space covered by forest kernel, and then define 

the forest kernel function. 

3.2.1 Feature space, object space and fea-

ture value 

The forest kernel counts the number of common 

subtrees as the syntactic similarity between two 

forests. Therefore, in the same way as tree kernel, 

its feature space is also defined as all the possible 

subtree types that a CFG grammar allows. In a 

forest kernel, forest 𝐹 is represented by a vector 

of fractional counts of each subtree type (subtree 

regardless of its ancestors, descendants and span 

covered):  
 

( )F  (# subtreetype1(F), …,  

              # subtreetypen(F)) 

   = (#subtreetype1(n-best parse trees), …,   (1) 

      # subtreetypen(n-best parse trees))  
 

where # subtreetypei(F) is the occurrence number 

of the i
th
 subtree type (subtreetypei) in forest F, 

i.e., a n-best parse tree lists with a huge n.  

Although the feature spaces of the two kernels 

are the same, their object spaces (tree vs. forest) 

and feature values (integer counts vs. fractional 

counts) differ very much. A forest encodes expo-

nential number of parse trees, and thus contain-

ing exponential times more subtrees than a single 

parse tree. This ensures forest kernel to learn 

more reliable feature values and is also able to 

help to address the data sparseness issues in a 

better way than tree kernel does. Forest kernel is 

also expected to yield more non-zero feature val-

ues than tree kernel. Furthermore, different parse 

tree in a forest represents different derivation and 

interpretation for a given sentence. Therefore, 

forest kernel should be more robust to parsing 

errors than tree kernel. 

In tree kernel, one occurrence of a subtree 

contributes 1 to the value of its corresponding 

feature (subtree type), so the feature value is an 

integer count. However, the case turns out very 

complicated in forest kernel. In a forest, each of 

its parse trees, when enumerated, has its own 
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probability. So one subtree extracted from differ-

ent parse trees should have different fractional 

count with regard to the probabilities of different 

parse trees. Following the previous work (Char-

niak and Johnson, 2005; Huang, 2008), we de-

fine the fractional count of the occurrence of a 

subtree in a parse tree 𝑡𝑖  as  

 

𝑐 𝑠𝑢𝑏𝑡𝑟𝑒𝑒, 𝑡𝑖 =  
0                      𝑖𝑓 𝑠𝑢𝑏𝑡𝑟𝑒𝑒 ∉ 𝑡𝑖  

𝑃 𝑠𝑢𝑏𝑡𝑟𝑒𝑒, 𝑡𝑖|𝑓, 𝑠   𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

 

                           =  
0                         𝑖𝑓 𝑠𝑢𝑏𝑡𝑟𝑒𝑒 ∉ 𝑡𝑖  

𝑃 𝑡𝑖|𝑓, 𝑠                    𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

 

where we have 𝑃 𝑠𝑢𝑏𝑡𝑟𝑒𝑒, 𝑡𝑖|𝑓, 𝑠 = 𝑃 𝑡𝑖|𝑓, 𝑠  if 
𝑠𝑢𝑏𝑡𝑟𝑒𝑒 ∈ 𝑡𝑖 . Then we define the fractional count 

of the occurrence of a subtree in a forest f as 
 

 𝑐 𝑠𝑢𝑏𝑡𝑟𝑒𝑒,𝑓 = 𝑃 𝑠𝑢𝑏𝑡𝑟𝑒𝑒|𝑓, 𝑠  
                            =   𝑃 𝑠𝑢𝑏𝑡𝑟𝑒𝑒, 𝑡𝑖 |𝑓, 𝑠 𝑡𝑖         (2) 

                            =   𝐼𝑠𝑢𝑏𝑡𝑟𝑒𝑒  𝑡𝑖 ∙ 𝑃 𝑡𝑖|𝑓, 𝑠 𝑡𝑖   
 

where 𝐼𝑠𝑢𝑏𝑡𝑟𝑒𝑒  𝑡𝑖  is a binary function that is 1 

iif the 𝑠𝑢𝑏𝑡𝑟𝑒𝑒 ∈ 𝑡𝑖  and zero otherwise. Ob-

viously, it needs exponential time to compute the 

above fractional counts. However, due to the 

property of forest that compactly represents all 

the parse trees, the posterior probability of a 

subtree in a forest, 𝑃 𝑠𝑢𝑏𝑡𝑟𝑒𝑒|𝑓, 𝑠 , can be easi-

ly computed in an Inside-Outside fashion as the 

product of three parts: the outside probability of 

its root node, the probabilities of parse hyper-

edges involved in the subtree, and the inside 

probabilities of its leaf nodes (Lari and Young, 

1990; Mi and Huang, 2008).  

 

𝑐 𝑠𝑢𝑏𝑡𝑟𝑒𝑒,𝑓 = 𝑃 𝑠𝑢𝑏𝑡𝑟𝑒𝑒|𝑓, 𝑠             (3) 
 

=
𝛼𝛽(𝑠𝑢𝑏𝑡𝑟𝑒𝑒)

𝛼𝛽(𝑟𝑜𝑜𝑡 𝑓 )
     

where 
 

𝛼𝛽 𝑠𝑢𝑏𝑡𝑟𝑒𝑒 = 𝛼 𝑟𝑜𝑜𝑡 𝑠𝑢𝑏𝑡𝑟𝑒𝑒         (4) 

∙  𝑃 𝑒 

𝑒∈𝑠𝑢𝑏𝑡𝑟𝑒𝑒

           

∙  𝛽 𝑣 

𝑣∈𝑙𝑒𝑎𝑓  𝑠𝑢𝑏𝑡𝑟𝑒𝑒  

            

and 
 

        𝛼𝛽 𝑟𝑜𝑜𝑡 𝑓  = 𝛼 𝑟𝑜𝑜𝑡 𝑓  ∙ 𝛽 𝑟𝑜𝑜𝑡 𝑓   

       = 𝛽 𝑟𝑜𝑜𝑡 𝑓   
 

where 𝛼 .   and 𝛽(. ) denote the outside and in-

side probabilities. They can be easily obtained 

using the equations introduced at section 3.1.  

Given a subtree, we can easily compute its 

fractional count (i.e. its feature value) directly 

using eq. (3) and (4) without the need of enume-

rating each parse trees as shown at eq. (2)
1
.  

Nonetheless, it is still computationally infeasible 

to directly use the feature vector 𝜙(𝐹) (see eq. 

(1)) by explicitly enumerating all subtrees  al-

though its fractional count is easily calculated. In 

the next subsection, we present the forest kernel 

that implicitly calculates the dot-product between 

two 𝜙(𝐹)s in a polynomial time. 

3.2.2 Convolution forest kernel 

The forest kernel counts the fractional numbers 

of common subtrees as the syntactic similarity 

between two forests. We define the forest kernel 

function 𝐾𝑓 𝑓1 ,𝑓2  in the following way. 
 

   𝐾𝑓 𝑓1 ,𝑓2 =< 𝜙 𝑓1 ,𝜙 𝑓2 >                       (5) 

  =  #𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑡𝑦𝑝𝑒𝑖(𝑓1). #𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑡𝑦𝑝𝑒𝑖(𝑓2)

𝑖

 

  =      𝐼𝑒𝑞  𝑠𝑢𝑏𝑡𝑟𝑒𝑒1, 𝑠𝑢𝑏𝑡𝑟𝑒𝑒2 

𝑠𝑢𝑏𝑡𝑟𝑒𝑒 1∈𝑓1
𝑠𝑢𝑏𝑡𝑟𝑒𝑒 2∈𝑓2

∙ 𝑐 𝑠𝑢𝑏𝑡𝑟𝑒𝑒1,𝑓1 
∙ 𝑐 𝑠𝑢𝑏𝑡𝑟𝑒𝑒2,𝑓2                 

   =   Δ′ 𝑣1 ,𝑣2  𝑣2∈𝑁2𝑣1∈𝑁1
  

 

where 

 𝐼𝑒𝑞  ∙,∙  is a binary function that is 1 iif 

the input two subtrees are identical (i.e. 

they have the same typology and node 

labels) and zero otherwise; 

 𝑐 ∙,∙  is the fractional count defined at 

eq. (3); 

 𝑁1  and 𝑁2  are the sets of nodes in fo-

rests 𝑓1 and 𝑓2; 

 Δ′ 𝑣1,𝑣2  returns the accumulated value 

of products between each two fractional 

counts of the common subtrees rooted at 

𝑣1 and 𝑣2, i.e.,  
 

Δ′ 𝑣1,𝑣2  

=      𝐼𝑒𝑞  𝑠𝑢𝑏𝑡𝑟𝑒𝑒1, 𝑠𝑢𝑏𝑡𝑟𝑒𝑒2 

𝑟𝑜𝑜𝑡  𝑠𝑢𝑏𝑡𝑟𝑒𝑒 1 =𝑣1

𝑟𝑜𝑜𝑡  𝑠𝑢𝑏𝑡𝑟𝑒𝑒 2 =𝑣2

∙ 𝑐 𝑠𝑢𝑏𝑡𝑟𝑒𝑒1,𝑓1     
∙ 𝑐 𝑠𝑢𝑏𝑡𝑟𝑒𝑒2,𝑓2                 

                                                 
1
 It has been proven in parsing literatures (Baker, 

1979; Lari and Young, 1990) that eq. (3) defined by 

Inside-Outside probabilities is exactly to compute the 

sum of those parse tree probabilities that cover the 

subtree of being considered as defined at eq. (2). 
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We next show that Δ′ 𝑣1 ,𝑣2  can be computed 

recursively in a polynomial time as illustrated at 

Algorithm 1. To facilitate discussion, we tempo-

rarily ignore all fractional counts in Algorithm 1. 

Indeed, Algorithm 1 can be viewed as a natural 

extension of convolution kernel from over tree to 

over forest. In forest
2
, a node can root multiple 

hyper-edges and each hyper-edge is independent 

to each other. Therefore, Algorithm 1 iterates 

each hyper-edge pairs with roots at 𝑣1  and 𝑣2 

(line 3-4), and sums over (eq. (7) at line 9) each 

recursively-accumulated sub-kernel scores of 

subtree pairs extended from the hyper-edge pair 
 𝑒1 , 𝑒2  (eq. (6) at line 8). Eq. (7) holds because 

the hyper-edges attached to the same node are 

independent to each other. Eq. (6) is very similar 

to the Rule 3 of tree kernel (see section 2) except 

its inputs are hyper-edges and its further expan-

sion is based on forest nodes. Similar to tree ker-

nel (Collins and Duffy, 2002), eq. (6) holds be-

cause a common subtree by extending from 

(𝑒1 , 𝑒2) can be formed by taking the hyper-edge 

(𝑒1 , 𝑒2), together with a choice at each of their 

leaf nodes of simply taking the non-terminal at 

the leaf node, or any one of the common subtrees 

with root at the leaf node. Thus there are 

 1 + Δ′ 𝑙𝑒𝑎𝑓 𝑒1 , 𝑗 , 𝑙𝑒𝑎𝑓 𝑒2 , 𝑗   possible 

choices at the j
th
 leaf node. In total, there are 

Δ′′  𝑒1 , 𝑒2  (eq. (6)) common subtrees by extend-

ing from (𝑒1 , 𝑒2)  and Δ′ 𝑣1,𝑣2  (eq. (7)) com-

mon subtrees with root at  𝑣1 ,𝑣2 .  
Obviously Δ′ 𝑣1 ,𝑣2  calculated by Algorithm 

1 is a proper convolution kernel since it simply 

counts the number of common subtrees under the 

root  𝑣1 ,𝑣2 . Therefore, 𝐾𝑓 𝑓1,𝑓2  defined at eq. 

(5) and calculated through Δ′ 𝑣1,𝑣2  is also a 

proper convolution kernel. From eq. (5) and Al-

gorithm 1, we can see that each hyper-edge pair 

(𝑒1 , 𝑒2) is only visited at most one time in com-

puting the forest kernel. Thus the time complexi-

ty for computing 𝐾𝑓 𝑓1,𝑓2  is 𝑂(|𝐸1| ∙ |𝐸2|) , 

where 𝐸1  and 𝐸2 are the set of hyper-edges in 

forests 𝑓1  and 𝑓2 , respectively. Given a forest 

and the best parse trees, the number of hyper-

edges is only several times (normally <=3 after 

pruning) than that of tree nodes in the parse tree
3
. 

                                                 
2
 Tree can be viewed as a special case of forest with 

only one hyper-edge attached to each tree node. 
3
 Suppose there are K forest nodes in a forest, each 

node has M associated hyper-edges fan out and each 

hyper-edge has N children. Then the forest is capable 

of encoding 𝑀
𝐾−1

𝑁−1  parse trees at most (Zhang et al., 

2009b). 

Same as tree kernel, forest kernel is running 

more efficiently in practice since only two nodes 

with the same label needs to be further processed 

(line 2 of Algorithm 1). 

Now let us see how to integrate fractional 

counts into forest kernel. According to Algo-

rithm 1 (eq. (7)), we have (𝑒1/𝑒2  are attached to 

𝑣1/𝑣2, respectively) 
 

Δ′ 𝑣1, 𝑣2 =  Δ′′  𝑒1, 𝑒2 𝑒1=𝑒2
  

 

Recall eq. (4), a fractional count consists of 

outside, inside and subtree probabilities. It is 

more straightforward to incorporate the outside 

and subtree probabilities since all the subtrees 

with roots at  𝑣1 , 𝑣2  share the same outside 

probability and each hyper-edge pair is only vi-

sited one time. Thus we can integrate the two 

probabilities into Δ′ 𝑣1,𝑣2  as follows. 
 

     Δ′ 𝑣1,𝑣2 = 𝜆 ∙ 𝛼 𝑣1 ∙ 𝛼 𝑣2  
        ∙   𝑃 𝑒1 ∙ 𝑃 𝑒2 ∙ Δ

′′  𝑒1, 𝑒2  𝑒1=𝑒2
   (8) 

 

where, following tree kernel, a decay factor 

𝜆(0 < 𝜆 ≤ 1) is also introduced in order to make 

the kernel value less variable with respect to the 

subtree sizes (Collins and Duffy, 2002). It func-

tions like multiplying each feature value by 

𝜆𝑠𝑖𝑧𝑒 𝑖 , where 𝑠𝑖𝑧𝑒𝑖  is the number of hyper-edges 

in 𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑖 . 

Algorithm 1.  

Input:  

        𝑓1 ,𝑓2: two packed forests 

        𝑣1 ,𝑣2: any two nodes of 𝑓1 and 𝑓2 

Notation:  

    𝐼𝑒𝑞  ∙,∙ : defined at eq. (5) 

   𝑛𝑙 𝑒1 : number of leaf node of 𝑒1 

   𝑙𝑒𝑎𝑓 𝑒1 , 𝑗 : the j
th
 leaf node of 𝑒1 

Output:  Δ′ 𝑣1,𝑣2  
 

1. Δ′ 𝑣1,𝑣2 = 0 

2. if  𝑣1 . 𝑙𝑎𝑏𝑒𝑙 ≠ 𝑣2 . 𝑙𝑎𝑏𝑒𝑙  exit 

3. for each hyper-edge 𝑒1 attached to 𝑣1 do 

4.      for each hyper-edge 𝑒2 attached to 𝑣2 do 

5.           if 𝐼𝑒𝑞  𝑒1, 𝑒2 == 0 do 

6.                 goto line 3 

7.           else do 

8.                  Δ′′  𝑒1 , 𝑒2  =    1 +
𝑛𝑙  𝑒1 
𝑗=1

                        Δ′ 𝑙𝑒𝑎𝑓 𝑒1 , 𝑗 , 𝑙𝑒𝑎𝑓 𝑒2 , 𝑗     (6) 

9.                   Δ′ 𝑣1,𝑣2  +=  Δ′′  𝑒1, 𝑒2            (7) 

10.            end if  

11.       end for 

12. end for 
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The inside probability is only involved when a 

node does not need to be further expanded. The 

integer 1 at eq. (6) represents such case. So the 

inside probability is integrated into eq. (6) by 

replacing the integer 1 as follows. 
  

 Δ′′  𝑒1, 𝑒2 =   𝛽 𝑙𝑒𝑎𝑓 𝑒1, 𝑗   ∙ 𝛽 𝑙𝑒𝑎𝑓 𝑒2, 𝑗  

𝑛𝑙  𝑒1 

𝑗=1

+
 Δ′ 𝑙𝑒𝑎𝑓 𝑒1 , 𝑗 , 𝑙𝑒𝑎𝑓 𝑒2, 𝑗  

𝛼 𝑙𝑒𝑎𝑓 𝑒1 , 𝑗  ∙ 𝛼 𝑙𝑒𝑎𝑓 𝑒2, 𝑗  
  (9) 

 

where in the last expression the two outside 

probabilities 𝛼 𝑙𝑒𝑎𝑓 𝑒1 , 𝑗   and 𝛼 𝑙𝑒𝑎𝑓 𝑒2 , 𝑗   
are removed. This is because  𝑙𝑒𝑎𝑓 𝑒1 , 𝑗 and 

𝑙𝑒𝑎𝑓 𝑒2 , 𝑗  are not roots of the subtrees of being 

explored (only outside probabilities of the root of 

a subtree should be counted in its fractional 

count), and  Δ′ 𝑙𝑒𝑎𝑓 𝑒1 , 𝑗 , 𝑙𝑒𝑎𝑓 𝑒2 , 𝑗   already 

contains the two outside probabilities of 

𝑙𝑒𝑎𝑓 𝑒1 , 𝑗  and 𝑙𝑒𝑎𝑓 𝑒2 , 𝑗 . 
Referring to eq. (3), each fractional count 

needs to be normalized by 𝛼𝛽(𝑟𝑜𝑜𝑡 𝑓 ). Since 

𝛼𝛽(𝑟𝑜𝑜𝑡 𝑓 ) is independent to each individual 

fractional count, we do the normalization outside 

the recursive function Δ′′  𝑒1 , 𝑒2 . Then we can 

re-formulize eq. (5) as 
 

     𝐾𝑓 𝑓1,𝑓2 =< 𝜙 𝑓1 ,𝜙 𝑓2 >  

=
   Δ′ 𝑣1,𝑣2  𝑣2∈𝑁2𝑣1∈𝑁1

 

𝛼𝛽 𝑟𝑜𝑜𝑡 𝑓1  ∙ 𝛼𝛽 𝑟𝑜𝑜𝑡 𝑓2  
   (10) 

 

Finally, since the size of input forests is not 

constant, the forest kernel value is normalized 

using the following equation.  

 

        𝐾 𝑓 𝑓1,𝑓2 =
   𝐾𝑓 𝑓1,𝑓2 

 𝐾𝑓 𝑓1,𝑓1 ∙ 𝐾𝑓 𝑓2,𝑓2 
     (11) 

 

From the above discussion, we can see that the 

proposed forest kernel is defined together by eqs. 

(11), (10), (9) and (8). Thanks to the compact 

representation of trees in forest and the recursive 

nature of the kernel function, the introduction of 

fractional counts and normalization do not 

change the convolution property and the time 

complexity of the forest kernel. Therefore, the 

forest kernel 𝐾 𝑓 𝑓1 ,𝑓2  is still a proper convolu-

tion kernel with quadratic time complexity. 

3.3 Comparison with previous work 

To the best of our knowledge, this is the first 

work to address convolution kernel over packed 

parse forest. 

Convolution tree kernel is a special case of the 

proposed forest kernel. From feature exploration 

viewpoint, although theoretically they explore 

the same subtree feature spaces (defined recur-

sively by CFG parsing rules), their feature values 

are different. Forest encodes exponential number 

of trees. So the number of subtree instances ex-

tracted from a forest is exponential number of 

times greater than that from its corresponding 

parse tree. The significant difference of the 

amount of subtree instances makes the parame-

ters learned from forests more reliable and also 

can help to address the data sparseness issue. To 

some degree, forest kernel can be viewed as a 

tree kernel with very powerful back-off mechan-

ism. In addition, forest kernel is much more ro-

bust against parsing errors than tree kernel. 

Aiolli et al. (2006; 2007) propose using Direct 

Acyclic Graphs (DAG) as a compact representa-

tion of tree kernel-based models. This can largely 

reduce the computational burden and storage re-

quirements by sharing the common structures 

and feature vectors in the kernel-based model. 

There are a few other previous works done by 

generalizing convolution tree kernels (Kashima 

and Koyanagi, 2003; Moschitti, 2006; Zhang et 

al., 2007). However, all of these works limit 

themselves to single tree structure from modeling 

viewpoint in nature. 

From a broad viewpoint, as suggested by one 

reviewer of the paper, we can consider the forest 

kernel as an alternative solution proposed for the 

general problem of noisy inference pipelines (eg. 

speech translation by composition of FSTs, ma-

chine translation by translating over 'lattices' of 

segmentations (Dyer  et al., 2008) or using parse 

tree info for downstream applications in our cas-

es) . Following this line, Bunescu (2008) and 

Finkel et al. (2006) are two typical related works 

done in reducing cascading noisy. However, our 

works are not overlapped with each other as 

there are two totally different solutions for the 

same general problem. In addition, the main mo-

tivation of this paper is also different from theirs. 

4 Experiments 

Forest kernel has a broad application potential in 

NLP. In this section, we verify the effectiveness 

of the forest kernel on two NLP applications, 

semantic role labeling (SRL) (Gildea, 2002) and 

relation extraction (RE) (ACE, 2002-2006). 

In our experiments, SVM (Vapnik, 1998) is 

selected as our classifier and the one vs. others 

strategy is adopted to select the one with the 
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largest margin as the final answer. In our imple-

mentation, we use the binary SVMLight (Joa-

chims, 1998) and borrow the framework of the 

Tree Kernel Tools (Moschitti, 2004) to integrate 

our forest kernel into the SVMLight. We modify 

Charniak parser (Charniak, 2001) to output a 

packed forest. Following previous forest-based 

studies (Charniak and Johnson, 2005), we use the 

marginal probabilities of hyper-edges (i.e., the 

Viterbi-style inside-outside probabilities and set 

the pruning threshold as 8) for forest pruning. 

4.1 Semantic role labeling 

Given a sentence and each predicate (either a 

target verb or a noun), SRL recognizes and maps 

all the constituents in the sentence into their cor-

responding semantic arguments (roles, e.g., A0 

for Agent, A1 for Patient …) of the predicate or 

non-argument. We use the CoNLL-2005 shared 

task on Semantic Role Labeling (Carreras and 

Ma rquez, 2005) for the evaluation of our forest 

kernel method. To speed up the evaluation 

process, the same as Che et al. (2008), we use a 

subset of the entire training corpus (WSJ sections 

02-05 of the entire sections 02-21) for training, 

section 24 for development and section 23 for 

test, where there are 35 roles including 7 Core 

(A0–A5, AA), 14 Adjunct (AM-) and 14 Refer-

ence (R-) arguments. 

The state-of-the-art SRL methods (Carreras 

and Ma rquez, 2005) use constituents as the labe-

ling units to form the labeled arguments. Due to 

the errors from automatic parsing, it is impossi-

ble for all arguments to find their matching con-

stituents in the single 1-best parse trees. Statistics 

on the training data shows that 9.78% of argu-

ments have no matching constituents using the 

Charniak parser (Charniak, 2001), and the num-

ber increases to 11.76% when using the Collins 

parser (Collins, 1999). In our method, we break 

the limitation of 1-best parse tree and regard each 

span rooted by a single forest node (i.e., a sub-

forest with one or more roots) as a candidate ar-

gument. This largely reduces the unmatched ar-

guments from 9.78% to 1.31% after forest prun-

ing. However, it also results in a very large 

amount of argument candidates that is 5.6 times 

as many as that from 1-best tree. Fortunately, 

after the pre-processing stage of argument prun-

ing (Xue and Palmer, 2004)
4

, although the 

                                                 
4

 We extend (Xue and Palmer, 2004)’s argument 

pruning algorithm from tree-based to forest-based. 

The algorithm is very effective. It can prune out 

around 90% argument candidates in parse tree-based 

amount of unmatched argument increases a little 

bit to 3.1%, its generated total candidate amount 

decreases substantially to only 1.31 times of that 

from 1-best parse tree. This clearly shows the 

advantages of the forest-based method over tree-

based in SRL. 

The best-reported tree kernel method for SRL 

𝐾𝑕𝑦𝑏𝑟𝑖𝑑 = 𝜃 ∙ 𝐾𝑝𝑎𝑡 𝑕 + (1− 𝜃) ∙ 𝐾𝑐𝑠  (0 ≤ 𝜃 ≤

1), proposed by Che et al. (2006)
5
, is adopted as 

our baseline kernel. We implemented the 𝐾𝑕𝑦𝑏𝑟𝑖𝑑  

in tree case (𝐾𝑇−𝑕𝑦𝑏𝑟𝑖𝑑 , using tree kernel to 

compute 𝐾𝑝𝑎𝑡 𝑕  and 𝐾𝑐𝑠 ) and in forest case 

(𝐾𝐹−𝑕𝑦𝑏𝑟𝑖𝑑 , using tree kernel to compute 𝐾𝑝𝑎𝑡 𝑕  

and 𝐾𝑐𝑠 ).  
 

 Precision Recall  F-Score 

𝐾𝑇−𝑕𝑦𝑏𝑟𝑖𝑑  (Tree) 76.02 67.38  71.44 

𝐾𝐹−𝑕𝑦𝑏𝑟𝑖𝑑  (Forest) 79.06 69.12 73.76 

Table 1: Performance comparison of SRL (%) 
 

Table 1 shows that the forest kernel significant-

ly outperforms (𝜒2 test with p=0.01) the tree ker-

nel with an absolute improvement of 2.32 (73.76-

71.42) percentage in F-Score, representing a rela-

tive error rate reduction of 8.19% (2.32/(100-

71.64)). This convincingly demonstrates the ad-

vantage of the forest kernel over the tree kernel. It 

suggests that the structured features represented 

by subtree are very useful to SRL. The perfor-

mance improvement is mainly due to the fact that 

forest encodes much more such structured features 

and the forest kernel is able to more effectively 

capture such structured features than the tree ker-

nel. Besides F-Score, both precision and recall 

also show significantly improvement (𝜒2 test with 

p=0.01). The reason for recall improvement is 

mainly due to the lower rate of unmatched argu-

ment (3.1% only) with only a little bit overhead 

(1.31 times) (see the previous discussion in this 

section). The precision improvement is mainly 

attributed to fact that we use sub-forest to 

represent argument instances, rather than sub-

tree used in tree kernel, where the sub-tree is on-

ly one tree encoded in the sub-forest. 

                                                                          
SRL and thus makes the amounts of positive and neg-

ative training instances (arguments) more balanced. 

We apply the same pruning strategies to forest plus 

our heuristic rules to prune out some of the arguments 

with span overlapped with each other and those ar-

guments with very small inside probabilities, depend-

ing on the numbers of candidates in the span. 
5
 Kpath and Kcs are two standard convolution tree ker-

nels to describe predicate-argument path substructures 

and argument syntactic substructures, respectively. 
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4.2 Relation extraction  

As a subtask of information extraction, relation 

extraction is to extract various semantic relations 

between entity pairs from text. For example, the 

sentence “Bill Gates is chairman and chief soft-

ware architect of Microsoft Corporation” con-

veys the semantic relation “EMPLOY-

MENT.executive” between the entities “Bill 

Gates” (person) and “Microsoft Corporation” 

(company). We adopt the method reported in 

Zhang et al. (2006) as our baseline method as it 

reports the state-of-the-art performance using 

tree kernel-based composite kernel method for 

RE. We replace their tree kernels with our forest 

kernels and use the same experimental settings as 

theirs. We carry out the same five-fold cross va-

lidation experiment on the same subset of ACE 

2004 data (LDC2005T09, ACE 2002-2004) as 

that in Zhang et al. (2006). The data contain 348 

documents and 4400 relation instances.  

In SRL, constituents are used as the labeling 

units to form the labeled arguments. However, 

previous work (Zhang et al., 2006) shows that if 

we use complete constituent (MCT) as done in 

SRL to represent relation instance, there is a 

large performance drop compared with using the 

path-enclosed tree (PT)
6
. By simulating PT, we 

use the minimal fragment of a forest covering the 

two entities and their internal words to represent 

a relation instance by only parsing the span cov-

ering the two entities and their internal words. 
 

 

 Precision  Recall  F-Score 

Zhang et al. (2006):Tree 68.6 59.3 6  63.6 

Ours: Forest  70.3 60.0   64.7 

 

Table 2: Performance Comparison of RE (%) 

over 23 subtypes on the ACE 2004 data 
  
Table 2 compares the performance of the for-

est kernel and the tree kernel on relation extrac-

tion. We can see that the forest kernel significant-

ly outperforms (𝜒2 test with p=0.05) the tree ker-

nel by 1.1 point of F-score. This further verifies 

the effectiveness of the forest kernel method for 

                                                 
6
 MCT is the minimal constituent rooted by the near-

est common ancestor of the two entities under consid-

eration while PT is the minimal portion of the parse 

tree (may not be a complete subtree) containing the 

two entities and their internal lexical words. Since in 

many cases, the two entities and their internal words 

cannot form a grammatical constituent, MCT may 

introduce too many noisy context features and thus 

lead to the performance drop. 

modeling NLP structured data. In summary, we 

further observe the high precision improvement 

that is consistent with the SRL experiments. How-

ever, the recall improvement is not as significant 

as observed in SRL. This is because unlike SRL, 

RE has no un-matching issues in generating rela-

tion instances. Moreover, we find that the perfor-

mance improvement in RE is not as good as that 

in SRL. Although we know that performance is 

task-dependent, one of the possible reasons is 

that SRL tends to be long-distance grammatical 

structure-related while RE is local and semantic-

related as observed from the two experimental 

benchmark data. 

5 Conclusions and Future Work 

Many NLP applications have benefited from the 

success of convolution kernel over parse tree. 

Since a packed parse forest contains much richer 

structured features than a parse tree, we are mo-

tivated to develop a technology to measure the 

syntactic similarity between two forests. 

To achieve this goal, in this paper, we design a 

convolution kernel over packed forest by genera-

lizing the tree kernel. We analyze the object 

space of the forest kernel, the fractional count for 

feature value computing and design a dynamic 

programming algorithm to realize the forest ker-

nel with quadratic time complexity. Compared 

with the tree kernel, the forest kernel is more ro-

bust against parsing errors and data sparseness 

issues. Among the broad potential NLP applica-

tions, the problems in SRL and RE provide two 

pointed scenarios to verify our forest kernel. Ex-

perimental results demonstrate the effectiveness 

of the proposed kernel in structured NLP data 

modeling and the advantages over tree kernel.  

In the future, we would like to verify the forest 

kernel in more NLP applications. In addition, as 

suggested by one reviewer, we may consider res-

caling the probabilities (exponentiating them by 

a constant value) that are used to compute the 

fractional counts. We can sharpen or flatten the 

distributions. This basically says "how seriously 

do we want to take the very best derivation" 

compared to the rest. However, the challenge is 

that we compute the fractional counts together 

with the forest kernel recursively by using the 

Inside-Outside probabilities. We cannot differen-

tiate the individual parse tree’s contribution to a 

fractional count on the fly. One possible solution 

is to do the probability rescaling off-line before 

kernel calculation. This would be a very interest-

ing research topic of our future work. 
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