
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 875–885,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

Convolution Kernel over Packed Parse Forest

Min Zhang Hui Zhang Haizhou Li

Institute for Infocomm Research

A-STAR, Singapore

{mzhang,vishz,hli}@i2r.a-star.edu.sg

Abstract

This paper proposes a convolution forest ker-

nel to effectively explore rich structured fea-

tures embedded in a packed parse forest. As

opposed to the convolution tree kernel, the

proposed forest kernel does not have to com-

mit to a single best parse tree, is thus able to

explore very large object spaces and much

more structured features embedded in a forest.

This makes the proposed kernel more robust

against parsing errors and data sparseness is-

sues than the convolution tree kernel. The pa-

per presents the formal definition of convolu-

tion forest kernel and also illustrates the com-

puting algorithm to fast compute the proposed

convolution forest kernel. Experimental results

on two NLP applications, relation extraction

and semantic role labeling, show that the pro-

posed forest kernel significantly outperforms

the baseline of the convolution tree kernel.

1 Introduction

Parse tree and packed forest of parse trees are

two widely used data structures to represent the

syntactic structure information of sentences in

natural language processing (NLP). The struc-

tured features embedded in a parse tree have

been well explored together with different ma-

chine learning algorithms and proven very useful

in many NLP applications (Collins and Duffy,

2002; Moschitti, 2004; Zhang et al., 2007). A

forest (Tomita, 1987) compactly encodes an ex-

ponential number of parse trees. In this paper, we

study how to effectively explore structured fea-

tures embedded in a forest using convolution

kernel (Haussler, 1999).

As we know, feature-based machine learning

methods are less effective in modeling highly

structured objects (Vapnik, 1998), such as parse

tree or semantic graph in NLP. This is due to the

fact that it is usually very hard to represent struc-

tured objects using vectors of reasonable dimen-

sions without losing too much information. For

example, it is computationally infeasible to enu-

merate all subtree features (using subtree a fea-

ture) for a parse tree into a linear feature vector.

Kernel-based machine learning method is a good

way to overcome this problem. Kernel methods

employ a kernel function, that must satisfy the

properties of being symmetric and positive, to

measure the similarity between two objects by

computing implicitly the dot product of certain

features of the input objects in high (or even in-

finite) dimensional feature spaces without enu-

merating all the features (Vapnik, 1998).

Many learning algorithms, such as SVM

(Vapnik, 1998), the Perceptron learning algo-

rithm (Rosenblatt, 1962) and Voted Perceptron

(Freund and Schapire, 1999), can work directly

with kernels by replacing the dot product with a

particular kernel function. This nice property of

kernel methods, that implicitly calculates the dot

product in a high-dimensional space over the

original representations of objects, has made

kernel methods an effective solution to modeling

structured objects in NLP.

In the context of parse tree, convolution tree

kernel (Collins and Duffy, 2002) defines a fea-

ture space consisting of all subtree types of parse

trees and counts the number of common subtrees

as the syntactic similarity between two parse

trees. The tree kernel has shown much success in

many NLP applications like parsing (Collins and

Duffy, 2002), semantic role labeling (Moschitti,

2004; Zhang et al., 2007), relation extraction

(Zhang et al., 2006), pronoun resolution (Yang et

al., 2006), question classification (Zhang and

Lee, 2003) and machine translation (Zhang and

Li, 2009), where the tree kernel is used to com-

pute the similarity between two NLP application

instances that are usually represented by parse

trees. However, in those studies, the tree kernel

only covers the features derived from single 1-

875

best parse tree. This may largely compromise the

performance of tree kernel due to parsing errors

and data sparseness.

To address the above issues, this paper con-

structs a forest-based convolution kernel to mine

structured features directly from packed forest. A

packet forest compactly encodes exponential

number of n-best parse trees, and thus containing

much more rich structured features than a single

parse tree. This advantage enables the forest ker-

nel not only to be more robust against parsing

errors, but also to be able to learn more reliable

feature values and help to solve the data sparse-

ness issue that exists in the traditional tree kernel.

We evaluate the proposed kernel in two real NLP

applications, relation extraction and semantic

role labeling. Experimental results on the

benchmark data show that the forest kernel sig-

nificantly outperforms the tree kernel.

The rest of the paper is organized as follows.

Section 2 reviews the convolution tree kernel

while section 3 discusses the proposed forest

kernel in details. Experimental results are re-

ported in section 4. Finally, we conclude the pa-

per in section 5.

2 Convolution Kernel over Parse Tree

Convolution kernel was proposed as a concept of

kernels for discrete structures by Haussler (1999)

and related but independently conceived ideas on

string kernels first presented in (Watkins, 1999).

The framework defines the kernel function be-

tween input objects as the convolution of “sub-

kernels”, i.e. the kernels for the decompositions

(parts) of the input objects.

The parse tree kernel (Collins and Duffy, 2002)

is an instantiation of convolution kernel over

syntactic parse trees. Given a parse tree, its fea-

tures defined by a tree kernel are all of its subtree

types and the value of a given feature is the

number of the occurrences of the subtree in the

parse tree. Fig. 1 illustrates a parse tree with all

of its 11 subtree features covered by the convolu-

tion tree kernel. In the tree kernel, a parse tree T

is represented by a vector of integer counts of

each subtree type (i.e., subtree regardless of its

ancestors, descendants and span covered):

()T  (# subtreetype1(T), …, # subtreetypen(T))

where # subtreetypei(T) is the occurrence number

of the i
th
 subtree type in T. The tree kernel counts

the number of common subtrees as the syntactic

similarity between two parse trees. Since the

number of subtrees is exponential with the tree

size, it is computationally infeasible to directly

use the feature vector ()T . To solve this com-

putational issue, Collins and Duffy (2002) pro-

posed the following tree kernel to calculate the

dot product between the above high dimensional

vectors implicitly.

1 1 2 2

1 1 2 2

1 2 1 2

1 2

1 2

1 2

(,) (), ()

 # () # ()

 () ()

 (,)

i i

i i

i

subtree subtree

i n N n N

n N n N

K T T T T

subtreetype T subtreetype T

I n I n

n n

 

 

 

 



   
    

   

 







  

 

where N1 and N2 are the sets of nodes in trees T1

and T2, respectively, and ()
isubtreeI n is a function

that is 1 iff the subtreetypei occurs with root at

node n and zero otherwise, and
1 2(,)n n is the

number of the common subtrees rooted at n1 and

n2, i.e.,

1 2 1 2(,) () ()
i isubtree subtreei

n n I n I n  

1 2(,)n n can be computed by the following recur-

sive rules:

IN

in the bank

DT NN

PP

IN

the bank

DT NN

PP

IN

in bank

DT NN

PP

IN

in the

DT NN

PP

IN

in

DT NN

PP

IN

the

DT

PP

NN IN

bank

DT NN

PP

IN DT NN

PP

IN

in

the bank

DT NN

IN

in the bank

DT NN

PP

Figure 1. A parse tree and its 11 subtree features covered by convolution tree kernel

876

Rule 1: if the productions (CFG rules) at 1n and

2n are different, 1 2(,) 0n n  ;

Rule 2: else if both 1n and 2n are pre-terminals

(POS tags), 1 2(,) 1n n    ;

Rule 3: else,

1()

1 2 1 2

1

(,) (1 ((,), (,)))
nc n

j

n n ch n j ch n j


     ,

where 1()nc n is the child number of 1n , ch(n,j) is

the j
th
 child of node n and (0< ≤1) is the de-

cay factor in order to make the kernel value less

variable with respect to the subtree sizes (Collins

and Duffy, 2002). The recursive Rule 3 holds

because given two nodes with the same children,

one can construct common subtrees using these

children and common subtrees of further

offspring. The time complexity for computing

this kernel is 1 2(| | | |)O N N .

As discussed in previous section, when convo-

lution tree kernel is applied to NLP applications,

its performance is vulnerable to the errors from

the single parse tree and data sparseness. In this

paper, we present a convolution kernel over

packed forest to address the above issues by ex-

ploring structured features embedded in a forest.

3 Convolution Kernel over Forest

In this section, we first illustrate the concept of

packed forest and then give a detailed discussion

on the covered feature space, fractional count,

feature value and the forest kernel function itself.

3.1 Packed forest of parse trees

Informally, a packed parse forest, or (packed)

forest in short, is a compact representation of all

the derivations (i.e. parse trees) for a given sen-

tence under context-free grammar (Tomita, 1987;

Billot and Lang, 1989; Klein and Manning,

2001). It is the core data structure used in natural

language parsing and other downstream NLP

applications, such as syntax-based machine

translation (Zhang et al., 2008; Zhang et al.,

2009a). In parsing, a sentence corresponds to

exponential number of parse trees with different

tree probabilities, where a forest can compact all

the parse trees by sharing their common subtrees

in a bottom-up manner. Formally, a packed for-

est 𝐹 can be described as a triple:

𝐹 = < 𝑉,𝐸, 𝑆 >

where 𝑉is the set of non-terminal nodes, 𝐸 is the

set of hyper-edges and 𝑆 is a sentence

NNP[1,1] VV[2,2] NN[4,4] IN[5,5]

John saw a man

NP[3,4]

in the bank

DT[3,3] DT[6,6] NN[7,7]

PP[5,7]

VP[2,4] NP[3,7]

VP[2,7]

IP[1,7]

NNP VV NN IN DT NN

John saw a man in the bank

DT

VP

NP

VP

IP

PP

NNP VV NN IN DT NN

John saw a man in the bank

DT

NP

NP

VP

IP

PP

IP[1,7]

VP[2,7]

NNP[1,1]

a) A Forest f

b) A Hyper-edge e

c) A Parse Tree T1

d) A Parse Tree T2

Figure 2. An example of a packed forest, a hyper-edge and two parse trees covered by the packed forest

877

represented as an ordered word sequence. A hy-

per-edge 𝑒 is a group of edges in a parse tree

which connects a father node and its all child

nodes, representing a CFG rule. A non-terminal

node in a forest is represented as a “label [start,

end]”, where the “label” is its syntax category

and “[start, end]” is the span of words it covers.

As shown in Fig. 2, these two parse trees (𝑇1

and 𝑇2) can be represented as a single forest by

sharing their common subtrees (such as NP[3,4]

and PP[5,7]) and merging common non-terminal

nodes covering the same span (such as VP[2,7],

where there are two hyper-edges attach to it).

Given the definition of forest, we introduce

the concepts of inside probability β . and out-

side probability α(.) that are widely-used in

parsing (Baker, 1979; Lari and Young, 1990) and

are also to be used in our kernel calculation.

β 𝑣 𝑝,𝑝 = 𝑃(𝑣 → 𝑆[𝑝])

β 𝑣 𝑝, 𝑞 =

 𝑃 𝑒

𝑒 𝑖𝑠 𝑎 𝑕𝑦𝑝𝑒𝑟 −𝑒𝑑𝑔𝑒
𝑎𝑡𝑡𝑎𝑐 𝑕𝑒𝑑 𝑡𝑜 𝑣

∙ 𝛽(𝑐𝑖[𝑝𝑖 , 𝑞𝑖])

𝑐𝑖 𝑝𝑖 ,𝑞𝑖 𝑖𝑠 𝑎 𝑙𝑒𝑎𝑓
𝑛𝑜𝑑𝑒 𝑜𝑓 𝑒

α 𝑟𝑜𝑜𝑡(𝑓) = 1

α 𝑣 𝑝, 𝑞 =

α 𝑟𝑜𝑜𝑡 𝑒 ∙ 𝑃 𝑒

𝑒 𝑖𝑠 𝑎 𝑕𝑦𝑝𝑒𝑟 −
𝑒𝑑𝑔𝑒 𝑎𝑛𝑑 𝑣
𝑖𝑠 𝑖𝑡𝑠 𝑜𝑛𝑒

 𝑙𝑒𝑎𝑓 𝑛𝑜𝑑𝑒

∙ 𝛽(𝑐𝑖[𝑝𝑖 , 𝑞𝑖]))

𝑐𝑖 𝑝𝑖 ,𝑞𝑖 𝑖𝑠 𝑎
𝑐𝑕𝑖𝑙𝑑𝑟𝑒𝑛 𝑛𝑜𝑑𝑒
𝑜𝑓 𝑒 𝑒𝑥𝑐𝑒𝑝𝑡 𝑣

where 𝑣 is a forest node, 𝑆[𝑝] is the 𝑝𝑡𝑕 word of

input sentence 𝑆, 𝑃(𝑣 → 𝑆[𝑝]) is the probability

of the CFG rule 𝑣 → 𝑆[𝑝] , 𝑟𝑜𝑜𝑡(.) returns the

root node of input structure, [𝑝𝑖 , 𝑞𝑖] is a sub-span

of 𝑝, 𝑞 , being covered by 𝑐𝑖 , and 𝑃 𝑒 is the

PCFG probability of 𝑒 . From these definitions,

we can see that the inside probability is total

probability of generating words 𝑆 𝑝, 𝑞 from

non-terminal node 𝑣 𝑝, 𝑞 while the outside

probability is the total probability of generating

node 𝑣 𝑝, 𝑞 and words outside 𝑆[𝑝, 𝑞] from the

root of forest. The inside probability can be cal-

culated using dynamic programming in a bottom-

up fashion while the outside probability can be

calculated using dynamic programming in a top-

to-down way.

3.2 Convolution forest kernel

In this subsection, we first define the feature

space covered by forest kernel, and then define

the forest kernel function.

3.2.1 Feature space, object space and fea-

ture value

The forest kernel counts the number of common

subtrees as the syntactic similarity between two

forests. Therefore, in the same way as tree kernel,

its feature space is also defined as all the possible

subtree types that a CFG grammar allows. In a

forest kernel, forest 𝐹 is represented by a vector

of fractional counts of each subtree type (subtree

regardless of its ancestors, descendants and span

covered):

()F  (# subtreetype1(F), …,

 # subtreetypen(F))

 = (#subtreetype1(n-best parse trees), …, (1)

 # subtreetypen(n-best parse trees))

where # subtreetypei(F) is the occurrence number

of the i
th
 subtree type (subtreetypei) in forest F,

i.e., a n-best parse tree lists with a huge n.

Although the feature spaces of the two kernels

are the same, their object spaces (tree vs. forest)

and feature values (integer counts vs. fractional

counts) differ very much. A forest encodes expo-

nential number of parse trees, and thus contain-

ing exponential times more subtrees than a single

parse tree. This ensures forest kernel to learn

more reliable feature values and is also able to

help to address the data sparseness issues in a

better way than tree kernel does. Forest kernel is

also expected to yield more non-zero feature val-

ues than tree kernel. Furthermore, different parse

tree in a forest represents different derivation and

interpretation for a given sentence. Therefore,

forest kernel should be more robust to parsing

errors than tree kernel.

In tree kernel, one occurrence of a subtree

contributes 1 to the value of its corresponding

feature (subtree type), so the feature value is an

integer count. However, the case turns out very

complicated in forest kernel. In a forest, each of

its parse trees, when enumerated, has its own

878

probability. So one subtree extracted from differ-

ent parse trees should have different fractional

count with regard to the probabilities of different

parse trees. Following the previous work (Char-

niak and Johnson, 2005; Huang, 2008), we de-

fine the fractional count of the occurrence of a

subtree in a parse tree 𝑡𝑖 as

𝑐 𝑠𝑢𝑏𝑡𝑟𝑒𝑒, 𝑡𝑖 =
0 𝑖𝑓 𝑠𝑢𝑏𝑡𝑟𝑒𝑒 ∉ 𝑡𝑖

𝑃 𝑠𝑢𝑏𝑡𝑟𝑒𝑒, 𝑡𝑖|𝑓, 𝑠 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 =
0 𝑖𝑓 𝑠𝑢𝑏𝑡𝑟𝑒𝑒 ∉ 𝑡𝑖

𝑃 𝑡𝑖|𝑓, 𝑠 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

where we have 𝑃 𝑠𝑢𝑏𝑡𝑟𝑒𝑒, 𝑡𝑖|𝑓, 𝑠 = 𝑃 𝑡𝑖|𝑓, 𝑠 if
𝑠𝑢𝑏𝑡𝑟𝑒𝑒 ∈ 𝑡𝑖 . Then we define the fractional count

of the occurrence of a subtree in a forest f as

 𝑐 𝑠𝑢𝑏𝑡𝑟𝑒𝑒,𝑓 = 𝑃 𝑠𝑢𝑏𝑡𝑟𝑒𝑒|𝑓, 𝑠
 = 𝑃 𝑠𝑢𝑏𝑡𝑟𝑒𝑒, 𝑡𝑖 |𝑓, 𝑠 𝑡𝑖 (2)

 = 𝐼𝑠𝑢𝑏𝑡𝑟𝑒𝑒 𝑡𝑖 ∙ 𝑃 𝑡𝑖|𝑓, 𝑠 𝑡𝑖

where 𝐼𝑠𝑢𝑏𝑡𝑟𝑒𝑒 𝑡𝑖 is a binary function that is 1

iif the 𝑠𝑢𝑏𝑡𝑟𝑒𝑒 ∈ 𝑡𝑖 and zero otherwise. Ob-

viously, it needs exponential time to compute the

above fractional counts. However, due to the

property of forest that compactly represents all

the parse trees, the posterior probability of a

subtree in a forest, 𝑃 𝑠𝑢𝑏𝑡𝑟𝑒𝑒|𝑓, 𝑠 , can be easi-

ly computed in an Inside-Outside fashion as the

product of three parts: the outside probability of

its root node, the probabilities of parse hyper-

edges involved in the subtree, and the inside

probabilities of its leaf nodes (Lari and Young,

1990; Mi and Huang, 2008).

𝑐 𝑠𝑢𝑏𝑡𝑟𝑒𝑒,𝑓 = 𝑃 𝑠𝑢𝑏𝑡𝑟𝑒𝑒|𝑓, 𝑠 (3)

=
𝛼𝛽(𝑠𝑢𝑏𝑡𝑟𝑒𝑒)

𝛼𝛽(𝑟𝑜𝑜𝑡 𝑓)

where

𝛼𝛽 𝑠𝑢𝑏𝑡𝑟𝑒𝑒 = 𝛼 𝑟𝑜𝑜𝑡 𝑠𝑢𝑏𝑡𝑟𝑒𝑒 (4)

∙ 𝑃 𝑒

𝑒∈𝑠𝑢𝑏𝑡𝑟𝑒𝑒

∙ 𝛽 𝑣

𝑣∈𝑙𝑒𝑎𝑓 𝑠𝑢𝑏𝑡𝑟𝑒𝑒

and

 𝛼𝛽 𝑟𝑜𝑜𝑡 𝑓 = 𝛼 𝑟𝑜𝑜𝑡 𝑓 ∙ 𝛽 𝑟𝑜𝑜𝑡 𝑓

 = 𝛽 𝑟𝑜𝑜𝑡 𝑓

where 𝛼 . and 𝛽(.) denote the outside and in-

side probabilities. They can be easily obtained

using the equations introduced at section 3.1.

Given a subtree, we can easily compute its

fractional count (i.e. its feature value) directly

using eq. (3) and (4) without the need of enume-

rating each parse trees as shown at eq. (2)
1
.

Nonetheless, it is still computationally infeasible

to directly use the feature vector 𝜙(𝐹) (see eq.

(1)) by explicitly enumerating all subtrees al-

though its fractional count is easily calculated. In

the next subsection, we present the forest kernel

that implicitly calculates the dot-product between

two 𝜙(𝐹)s in a polynomial time.

3.2.2 Convolution forest kernel

The forest kernel counts the fractional numbers

of common subtrees as the syntactic similarity

between two forests. We define the forest kernel

function 𝐾𝑓 𝑓1 ,𝑓2 in the following way.

 𝐾𝑓 𝑓1 ,𝑓2 =< 𝜙 𝑓1 ,𝜙 𝑓2 > (5)

 = #𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑡𝑦𝑝𝑒𝑖(𝑓1). #𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑡𝑦𝑝𝑒𝑖(𝑓2)

𝑖

 = 𝐼𝑒𝑞 𝑠𝑢𝑏𝑡𝑟𝑒𝑒1, 𝑠𝑢𝑏𝑡𝑟𝑒𝑒2

𝑠𝑢𝑏𝑡𝑟𝑒𝑒 1∈𝑓1
𝑠𝑢𝑏𝑡𝑟𝑒𝑒 2∈𝑓2

∙ 𝑐 𝑠𝑢𝑏𝑡𝑟𝑒𝑒1,𝑓1
∙ 𝑐 𝑠𝑢𝑏𝑡𝑟𝑒𝑒2,𝑓2

 = Δ′ 𝑣1 ,𝑣2 𝑣2∈𝑁2𝑣1∈𝑁1

where

 𝐼𝑒𝑞 ∙,∙ is a binary function that is 1 iif

the input two subtrees are identical (i.e.

they have the same typology and node

labels) and zero otherwise;

 𝑐 ∙,∙ is the fractional count defined at

eq. (3);

 𝑁1 and 𝑁2 are the sets of nodes in fo-

rests 𝑓1 and 𝑓2;

 Δ′ 𝑣1,𝑣2 returns the accumulated value

of products between each two fractional

counts of the common subtrees rooted at

𝑣1 and 𝑣2, i.e.,

Δ′ 𝑣1,𝑣2

= 𝐼𝑒𝑞 𝑠𝑢𝑏𝑡𝑟𝑒𝑒1, 𝑠𝑢𝑏𝑡𝑟𝑒𝑒2

𝑟𝑜𝑜𝑡 𝑠𝑢𝑏𝑡𝑟𝑒𝑒 1 =𝑣1

𝑟𝑜𝑜𝑡 𝑠𝑢𝑏𝑡𝑟𝑒𝑒 2 =𝑣2

∙ 𝑐 𝑠𝑢𝑏𝑡𝑟𝑒𝑒1,𝑓1
∙ 𝑐 𝑠𝑢𝑏𝑡𝑟𝑒𝑒2,𝑓2

1
 It has been proven in parsing literatures (Baker,

1979; Lari and Young, 1990) that eq. (3) defined by

Inside-Outside probabilities is exactly to compute the

sum of those parse tree probabilities that cover the

subtree of being considered as defined at eq. (2).

879

We next show that Δ′ 𝑣1 ,𝑣2 can be computed

recursively in a polynomial time as illustrated at

Algorithm 1. To facilitate discussion, we tempo-

rarily ignore all fractional counts in Algorithm 1.

Indeed, Algorithm 1 can be viewed as a natural

extension of convolution kernel from over tree to

over forest. In forest
2
, a node can root multiple

hyper-edges and each hyper-edge is independent

to each other. Therefore, Algorithm 1 iterates

each hyper-edge pairs with roots at 𝑣1 and 𝑣2

(line 3-4), and sums over (eq. (7) at line 9) each

recursively-accumulated sub-kernel scores of

subtree pairs extended from the hyper-edge pair
 𝑒1 , 𝑒2 (eq. (6) at line 8). Eq. (7) holds because

the hyper-edges attached to the same node are

independent to each other. Eq. (6) is very similar

to the Rule 3 of tree kernel (see section 2) except

its inputs are hyper-edges and its further expan-

sion is based on forest nodes. Similar to tree ker-

nel (Collins and Duffy, 2002), eq. (6) holds be-

cause a common subtree by extending from

(𝑒1 , 𝑒2) can be formed by taking the hyper-edge

(𝑒1 , 𝑒2), together with a choice at each of their

leaf nodes of simply taking the non-terminal at

the leaf node, or any one of the common subtrees

with root at the leaf node. Thus there are

 1 + Δ′ 𝑙𝑒𝑎𝑓 𝑒1 , 𝑗 , 𝑙𝑒𝑎𝑓 𝑒2 , 𝑗 possible

choices at the j
th
 leaf node. In total, there are

Δ′′ 𝑒1 , 𝑒2 (eq. (6)) common subtrees by extend-

ing from (𝑒1 , 𝑒2) and Δ′ 𝑣1,𝑣2 (eq. (7)) com-

mon subtrees with root at 𝑣1 ,𝑣2 .
Obviously Δ′ 𝑣1 ,𝑣2 calculated by Algorithm

1 is a proper convolution kernel since it simply

counts the number of common subtrees under the

root 𝑣1 ,𝑣2 . Therefore, 𝐾𝑓 𝑓1,𝑓2 defined at eq.

(5) and calculated through Δ′ 𝑣1,𝑣2 is also a

proper convolution kernel. From eq. (5) and Al-

gorithm 1, we can see that each hyper-edge pair

(𝑒1 , 𝑒2) is only visited at most one time in com-

puting the forest kernel. Thus the time complexi-

ty for computing 𝐾𝑓 𝑓1,𝑓2 is 𝑂(|𝐸1| ∙ |𝐸2|) ,

where 𝐸1 and 𝐸2 are the set of hyper-edges in

forests 𝑓1 and 𝑓2 , respectively. Given a forest

and the best parse trees, the number of hyper-

edges is only several times (normally <=3 after

pruning) than that of tree nodes in the parse tree
3
.

2
 Tree can be viewed as a special case of forest with

only one hyper-edge attached to each tree node.
3
 Suppose there are K forest nodes in a forest, each

node has M associated hyper-edges fan out and each

hyper-edge has N children. Then the forest is capable

of encoding 𝑀
𝐾−1

𝑁−1 parse trees at most (Zhang et al.,

2009b).

Same as tree kernel, forest kernel is running

more efficiently in practice since only two nodes

with the same label needs to be further processed

(line 2 of Algorithm 1).

Now let us see how to integrate fractional

counts into forest kernel. According to Algo-

rithm 1 (eq. (7)), we have (𝑒1/𝑒2 are attached to

𝑣1/𝑣2, respectively)

Δ′ 𝑣1, 𝑣2 = Δ′′ 𝑒1, 𝑒2 𝑒1=𝑒2

Recall eq. (4), a fractional count consists of

outside, inside and subtree probabilities. It is

more straightforward to incorporate the outside

and subtree probabilities since all the subtrees

with roots at 𝑣1 , 𝑣2 share the same outside

probability and each hyper-edge pair is only vi-

sited one time. Thus we can integrate the two

probabilities into Δ′ 𝑣1,𝑣2 as follows.

 Δ′ 𝑣1,𝑣2 = 𝜆 ∙ 𝛼 𝑣1 ∙ 𝛼 𝑣2
 ∙ 𝑃 𝑒1 ∙ 𝑃 𝑒2 ∙ Δ

′′ 𝑒1, 𝑒2 𝑒1=𝑒2
 (8)

where, following tree kernel, a decay factor

𝜆(0 < 𝜆 ≤ 1) is also introduced in order to make

the kernel value less variable with respect to the

subtree sizes (Collins and Duffy, 2002). It func-

tions like multiplying each feature value by

𝜆𝑠𝑖𝑧𝑒 𝑖 , where 𝑠𝑖𝑧𝑒𝑖 is the number of hyper-edges

in 𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑖 .

Algorithm 1.

Input:

 𝑓1 ,𝑓2: two packed forests

 𝑣1 ,𝑣2: any two nodes of 𝑓1 and 𝑓2

Notation:

 𝐼𝑒𝑞 ∙,∙ : defined at eq. (5)

 𝑛𝑙 𝑒1 : number of leaf node of 𝑒1

 𝑙𝑒𝑎𝑓 𝑒1 , 𝑗 : the j
th
 leaf node of 𝑒1

Output: Δ′ 𝑣1,𝑣2

1. Δ′ 𝑣1,𝑣2 = 0

2. if 𝑣1 . 𝑙𝑎𝑏𝑒𝑙 ≠ 𝑣2 . 𝑙𝑎𝑏𝑒𝑙 exit

3. for each hyper-edge 𝑒1 attached to 𝑣1 do

4. for each hyper-edge 𝑒2 attached to 𝑣2 do

5. if 𝐼𝑒𝑞 𝑒1, 𝑒2 == 0 do

6. goto line 3

7. else do

8. Δ′′ 𝑒1 , 𝑒2 = 1 +
𝑛𝑙 𝑒1
𝑗=1

 Δ′ 𝑙𝑒𝑎𝑓 𝑒1 , 𝑗 , 𝑙𝑒𝑎𝑓 𝑒2 , 𝑗 (6)

9. Δ′ 𝑣1,𝑣2 += Δ′′ 𝑒1, 𝑒2 (7)

10. end if

11. end for

12. end for

880

The inside probability is only involved when a

node does not need to be further expanded. The

integer 1 at eq. (6) represents such case. So the

inside probability is integrated into eq. (6) by

replacing the integer 1 as follows.

 Δ′′ 𝑒1, 𝑒2 = 𝛽 𝑙𝑒𝑎𝑓 𝑒1, 𝑗 ∙ 𝛽 𝑙𝑒𝑎𝑓 𝑒2, 𝑗

𝑛𝑙 𝑒1

𝑗=1

+
 Δ′ 𝑙𝑒𝑎𝑓 𝑒1 , 𝑗 , 𝑙𝑒𝑎𝑓 𝑒2, 𝑗

𝛼 𝑙𝑒𝑎𝑓 𝑒1 , 𝑗 ∙ 𝛼 𝑙𝑒𝑎𝑓 𝑒2, 𝑗
 (9)

where in the last expression the two outside

probabilities 𝛼 𝑙𝑒𝑎𝑓 𝑒1 , 𝑗 and 𝛼 𝑙𝑒𝑎𝑓 𝑒2 , 𝑗
are removed. This is because 𝑙𝑒𝑎𝑓 𝑒1 , 𝑗 and

𝑙𝑒𝑎𝑓 𝑒2 , 𝑗 are not roots of the subtrees of being

explored (only outside probabilities of the root of

a subtree should be counted in its fractional

count), and Δ′ 𝑙𝑒𝑎𝑓 𝑒1 , 𝑗 , 𝑙𝑒𝑎𝑓 𝑒2 , 𝑗 already

contains the two outside probabilities of

𝑙𝑒𝑎𝑓 𝑒1 , 𝑗 and 𝑙𝑒𝑎𝑓 𝑒2 , 𝑗 .
Referring to eq. (3), each fractional count

needs to be normalized by 𝛼𝛽(𝑟𝑜𝑜𝑡 𝑓). Since

𝛼𝛽(𝑟𝑜𝑜𝑡 𝑓) is independent to each individual

fractional count, we do the normalization outside

the recursive function Δ′′ 𝑒1 , 𝑒2 . Then we can

re-formulize eq. (5) as

 𝐾𝑓 𝑓1,𝑓2 =< 𝜙 𝑓1 ,𝜙 𝑓2 >

=
 Δ′ 𝑣1,𝑣2 𝑣2∈𝑁2𝑣1∈𝑁1

𝛼𝛽 𝑟𝑜𝑜𝑡 𝑓1 ∙ 𝛼𝛽 𝑟𝑜𝑜𝑡 𝑓2
 (10)

Finally, since the size of input forests is not

constant, the forest kernel value is normalized

using the following equation.

 𝐾 𝑓 𝑓1,𝑓2 =
 𝐾𝑓 𝑓1,𝑓2

 𝐾𝑓 𝑓1,𝑓1 ∙ 𝐾𝑓 𝑓2,𝑓2
 (11)

From the above discussion, we can see that the

proposed forest kernel is defined together by eqs.

(11), (10), (9) and (8). Thanks to the compact

representation of trees in forest and the recursive

nature of the kernel function, the introduction of

fractional counts and normalization do not

change the convolution property and the time

complexity of the forest kernel. Therefore, the

forest kernel 𝐾 𝑓 𝑓1 ,𝑓2 is still a proper convolu-

tion kernel with quadratic time complexity.

3.3 Comparison with previous work

To the best of our knowledge, this is the first

work to address convolution kernel over packed

parse forest.

Convolution tree kernel is a special case of the

proposed forest kernel. From feature exploration

viewpoint, although theoretically they explore

the same subtree feature spaces (defined recur-

sively by CFG parsing rules), their feature values

are different. Forest encodes exponential number

of trees. So the number of subtree instances ex-

tracted from a forest is exponential number of

times greater than that from its corresponding

parse tree. The significant difference of the

amount of subtree instances makes the parame-

ters learned from forests more reliable and also

can help to address the data sparseness issue. To

some degree, forest kernel can be viewed as a

tree kernel with very powerful back-off mechan-

ism. In addition, forest kernel is much more ro-

bust against parsing errors than tree kernel.

Aiolli et al. (2006; 2007) propose using Direct

Acyclic Graphs (DAG) as a compact representa-

tion of tree kernel-based models. This can largely

reduce the computational burden and storage re-

quirements by sharing the common structures

and feature vectors in the kernel-based model.

There are a few other previous works done by

generalizing convolution tree kernels (Kashima

and Koyanagi, 2003; Moschitti, 2006; Zhang et

al., 2007). However, all of these works limit

themselves to single tree structure from modeling

viewpoint in nature.

From a broad viewpoint, as suggested by one

reviewer of the paper, we can consider the forest

kernel as an alternative solution proposed for the

general problem of noisy inference pipelines (eg.

speech translation by composition of FSTs, ma-

chine translation by translating over 'lattices' of

segmentations (Dyer et al., 2008) or using parse

tree info for downstream applications in our cas-

es) . Following this line, Bunescu (2008) and

Finkel et al. (2006) are two typical related works

done in reducing cascading noisy. However, our

works are not overlapped with each other as

there are two totally different solutions for the

same general problem. In addition, the main mo-

tivation of this paper is also different from theirs.

4 Experiments

Forest kernel has a broad application potential in

NLP. In this section, we verify the effectiveness

of the forest kernel on two NLP applications,

semantic role labeling (SRL) (Gildea, 2002) and

relation extraction (RE) (ACE, 2002-2006).

In our experiments, SVM (Vapnik, 1998) is

selected as our classifier and the one vs. others

strategy is adopted to select the one with the

881

largest margin as the final answer. In our imple-

mentation, we use the binary SVMLight (Joa-

chims, 1998) and borrow the framework of the

Tree Kernel Tools (Moschitti, 2004) to integrate

our forest kernel into the SVMLight. We modify

Charniak parser (Charniak, 2001) to output a

packed forest. Following previous forest-based

studies (Charniak and Johnson, 2005), we use the

marginal probabilities of hyper-edges (i.e., the

Viterbi-style inside-outside probabilities and set

the pruning threshold as 8) for forest pruning.

4.1 Semantic role labeling

Given a sentence and each predicate (either a

target verb or a noun), SRL recognizes and maps

all the constituents in the sentence into their cor-

responding semantic arguments (roles, e.g., A0

for Agent, A1 for Patient …) of the predicate or

non-argument. We use the CoNLL-2005 shared

task on Semantic Role Labeling (Carreras and

Ma rquez, 2005) for the evaluation of our forest

kernel method. To speed up the evaluation

process, the same as Che et al. (2008), we use a

subset of the entire training corpus (WSJ sections

02-05 of the entire sections 02-21) for training,

section 24 for development and section 23 for

test, where there are 35 roles including 7 Core

(A0–A5, AA), 14 Adjunct (AM-) and 14 Refer-

ence (R-) arguments.

The state-of-the-art SRL methods (Carreras

and Ma rquez, 2005) use constituents as the labe-

ling units to form the labeled arguments. Due to

the errors from automatic parsing, it is impossi-

ble for all arguments to find their matching con-

stituents in the single 1-best parse trees. Statistics

on the training data shows that 9.78% of argu-

ments have no matching constituents using the

Charniak parser (Charniak, 2001), and the num-

ber increases to 11.76% when using the Collins

parser (Collins, 1999). In our method, we break

the limitation of 1-best parse tree and regard each

span rooted by a single forest node (i.e., a sub-

forest with one or more roots) as a candidate ar-

gument. This largely reduces the unmatched ar-

guments from 9.78% to 1.31% after forest prun-

ing. However, it also results in a very large

amount of argument candidates that is 5.6 times

as many as that from 1-best tree. Fortunately,

after the pre-processing stage of argument prun-

ing (Xue and Palmer, 2004)
4

, although the

4

 We extend (Xue and Palmer, 2004)’s argument

pruning algorithm from tree-based to forest-based.

The algorithm is very effective. It can prune out

around 90% argument candidates in parse tree-based

amount of unmatched argument increases a little

bit to 3.1%, its generated total candidate amount

decreases substantially to only 1.31 times of that

from 1-best parse tree. This clearly shows the

advantages of the forest-based method over tree-

based in SRL.

The best-reported tree kernel method for SRL

𝐾𝑕𝑦𝑏𝑟𝑖𝑑 = 𝜃 ∙ 𝐾𝑝𝑎𝑡 𝑕 + (1− 𝜃) ∙ 𝐾𝑐𝑠 (0 ≤ 𝜃 ≤

1), proposed by Che et al. (2006)
5
, is adopted as

our baseline kernel. We implemented the 𝐾𝑕𝑦𝑏𝑟𝑖𝑑

in tree case (𝐾𝑇−𝑕𝑦𝑏𝑟𝑖𝑑 , using tree kernel to

compute 𝐾𝑝𝑎𝑡 𝑕 and 𝐾𝑐𝑠) and in forest case

(𝐾𝐹−𝑕𝑦𝑏𝑟𝑖𝑑 , using tree kernel to compute 𝐾𝑝𝑎𝑡 𝑕

and 𝐾𝑐𝑠).

 Precision Recall F-Score

𝐾𝑇−𝑕𝑦𝑏𝑟𝑖𝑑 (Tree) 76.02 67.38 71.44

𝐾𝐹−𝑕𝑦𝑏𝑟𝑖𝑑 (Forest) 79.06 69.12 73.76

Table 1: Performance comparison of SRL (%)

Table 1 shows that the forest kernel significant-

ly outperforms (𝜒2 test with p=0.01) the tree ker-

nel with an absolute improvement of 2.32 (73.76-

71.42) percentage in F-Score, representing a rela-

tive error rate reduction of 8.19% (2.32/(100-

71.64)). This convincingly demonstrates the ad-

vantage of the forest kernel over the tree kernel. It

suggests that the structured features represented

by subtree are very useful to SRL. The perfor-

mance improvement is mainly due to the fact that

forest encodes much more such structured features

and the forest kernel is able to more effectively

capture such structured features than the tree ker-

nel. Besides F-Score, both precision and recall

also show significantly improvement (𝜒2 test with

p=0.01). The reason for recall improvement is

mainly due to the lower rate of unmatched argu-

ment (3.1% only) with only a little bit overhead

(1.31 times) (see the previous discussion in this

section). The precision improvement is mainly

attributed to fact that we use sub-forest to

represent argument instances, rather than sub-

tree used in tree kernel, where the sub-tree is on-

ly one tree encoded in the sub-forest.

SRL and thus makes the amounts of positive and neg-

ative training instances (arguments) more balanced.

We apply the same pruning strategies to forest plus

our heuristic rules to prune out some of the arguments

with span overlapped with each other and those ar-

guments with very small inside probabilities, depend-

ing on the numbers of candidates in the span.
5
 Kpath and Kcs are two standard convolution tree ker-

nels to describe predicate-argument path substructures

and argument syntactic substructures, respectively.

882

4.2 Relation extraction

As a subtask of information extraction, relation

extraction is to extract various semantic relations

between entity pairs from text. For example, the

sentence “Bill Gates is chairman and chief soft-

ware architect of Microsoft Corporation” con-

veys the semantic relation “EMPLOY-

MENT.executive” between the entities “Bill

Gates” (person) and “Microsoft Corporation”

(company). We adopt the method reported in

Zhang et al. (2006) as our baseline method as it

reports the state-of-the-art performance using

tree kernel-based composite kernel method for

RE. We replace their tree kernels with our forest

kernels and use the same experimental settings as

theirs. We carry out the same five-fold cross va-

lidation experiment on the same subset of ACE

2004 data (LDC2005T09, ACE 2002-2004) as

that in Zhang et al. (2006). The data contain 348

documents and 4400 relation instances.

In SRL, constituents are used as the labeling

units to form the labeled arguments. However,

previous work (Zhang et al., 2006) shows that if

we use complete constituent (MCT) as done in

SRL to represent relation instance, there is a

large performance drop compared with using the

path-enclosed tree (PT)
6
. By simulating PT, we

use the minimal fragment of a forest covering the

two entities and their internal words to represent

a relation instance by only parsing the span cov-

ering the two entities and their internal words.

 Precision Recall F-Score

Zhang et al. (2006):Tree 68.6 59.3 6 63.6

Ours: Forest 70.3 60.0 64.7

Table 2: Performance Comparison of RE (%)

over 23 subtypes on the ACE 2004 data

Table 2 compares the performance of the for-

est kernel and the tree kernel on relation extrac-

tion. We can see that the forest kernel significant-

ly outperforms (𝜒2 test with p=0.05) the tree ker-

nel by 1.1 point of F-score. This further verifies

the effectiveness of the forest kernel method for

6
 MCT is the minimal constituent rooted by the near-

est common ancestor of the two entities under consid-

eration while PT is the minimal portion of the parse

tree (may not be a complete subtree) containing the

two entities and their internal lexical words. Since in

many cases, the two entities and their internal words

cannot form a grammatical constituent, MCT may

introduce too many noisy context features and thus

lead to the performance drop.

modeling NLP structured data. In summary, we

further observe the high precision improvement

that is consistent with the SRL experiments. How-

ever, the recall improvement is not as significant

as observed in SRL. This is because unlike SRL,

RE has no un-matching issues in generating rela-

tion instances. Moreover, we find that the perfor-

mance improvement in RE is not as good as that

in SRL. Although we know that performance is

task-dependent, one of the possible reasons is

that SRL tends to be long-distance grammatical

structure-related while RE is local and semantic-

related as observed from the two experimental

benchmark data.

5 Conclusions and Future Work

Many NLP applications have benefited from the

success of convolution kernel over parse tree.

Since a packed parse forest contains much richer

structured features than a parse tree, we are mo-

tivated to develop a technology to measure the

syntactic similarity between two forests.

To achieve this goal, in this paper, we design a

convolution kernel over packed forest by genera-

lizing the tree kernel. We analyze the object

space of the forest kernel, the fractional count for

feature value computing and design a dynamic

programming algorithm to realize the forest ker-

nel with quadratic time complexity. Compared

with the tree kernel, the forest kernel is more ro-

bust against parsing errors and data sparseness

issues. Among the broad potential NLP applica-

tions, the problems in SRL and RE provide two

pointed scenarios to verify our forest kernel. Ex-

perimental results demonstrate the effectiveness

of the proposed kernel in structured NLP data

modeling and the advantages over tree kernel.

In the future, we would like to verify the forest

kernel in more NLP applications. In addition, as

suggested by one reviewer, we may consider res-

caling the probabilities (exponentiating them by

a constant value) that are used to compute the

fractional counts. We can sharpen or flatten the

distributions. This basically says "how seriously

do we want to take the very best derivation"

compared to the rest. However, the challenge is

that we compute the fractional counts together

with the forest kernel recursively by using the

Inside-Outside probabilities. We cannot differen-

tiate the individual parse tree’s contribution to a

fractional count on the fly. One possible solution

is to do the probability rescaling off-line before

kernel calculation. This would be a very interest-

ing research topic of our future work.

883

References

ACE (2002-2006). The Automatic Content Extraction

Projects. http://www.ldc.upenn.edu/Projects/ACE/

Fabio Aiolli, Giovanni Da San Martino, Alessandro

Sperduti and Alessandro Moschitti. 2006. Fast On-

line Kernel Learning for Trees. ICDM-2006

Fabio Aiolli, Giovanni Da San Martino, Alessandro

Sperduti and Alessandro Moschitti. 2007. Efficient

Kernel-based Learning for Trees. IEEE Sympo-

sium on Computational Intelligence and Data Min-

ing (CIDM-2007)

J. Baker. 1979. Trainable grammars for speech rec-

ognition. The 97th meeting of the Acoustical So-

ciety of America

S. Billot and S. Lang. 1989. The structure of shared

forest in ambiguous parsing. ACL-1989

Razvan Bunescu. 2008. Learning with Probabilistic

Features for Improved Pipeline Models. EMNLP-

2008

X. Carreras and Lluıs Ma rquez. 2005. Introduction to

the CoNLL-2005 shared task: SRL. CoNLL-2005

E. Charniak. 2001. Immediate-head Parsing for Lan-

guage Models. ACL-2001

E. Charniak and Mark Johnson. 2005. Corse-to-fine-

grained n-best parsing and discriminative re-

ranking. ACL-2005

Wanxiang Che, Min Zhang, Ting Liu and Sheng Li.

2006. A hybrid convolution tree kernel for seman-

tic role labeling. COLING-ACL-2006 (poster)

WanXiang Che, Min Zhang, Aiti Aw, Chew Lim Tan,

Ting Liu and Sheng Li. 2008. Using a Hybrid

Convolution Tree Kernel for Semantic Role Labe-

ling. ACM Transaction on Asian Language Infor-

mation Processing

M. Collins. 1999. Head-driven statistical models for

natural language parsing. Ph.D. dissertation,

Pennsylvania University

M. Collins and N. Duffy. 2002. Convolution Kernels

for Natural Language. NIPS-2002

Christopher Dyer, Smaranda Muresan and Philip Res-

nik. 2008. Generalizing Word Lattice Translation.

ACL-HLT-2008

Jenny Rose Finkel, Christopher D. Manning and And-

rew Y. Ng. 2006. Solving the Problem of Cascad-

ing Errors: Approximate Bayesian Inference for

Linguistic Annotation Pipelines. EMNLP-2006

Y. Freund and R. E. Schapire. 1999. Large margin

classification using the perceptron algorithm. Ma-

chine Learning, 37(3):277-296

D. Guldea. 2002. Probabilistic models of verb-

argument structure. COLING-2002

D. Haussler. 1999. Convolution Kernels on Discrete

Structures. Technical Report UCS-CRL-99-10,

University of California, Santa Cruz

Liang Huang. 2008. Forest reranking: Discriminative

parsing with non-local features. ACL-2008

Karim Lari and Steve J. Young. 1990. The estimation

of stochastic context-free grammars using the in-

side-outside algorithm. Computer Speech and Lan-

guage. 4(35–56)

H. Kashima and T. Koyanagi. 2003. Kernels for Semi-

Structured Data. ICML-2003

Dan Klein and Christopher D. Manning. 2001. Pars-

ing and Hypergraphs. IWPT-2001

T. Joachims. 1998. Text Categorization with Support

Vecor Machine: learning with many relevant fea-

tures. ECML-1998

Haitao Mi and Liang Huang. 2008. Forest-based

Translation Rule Extraction. EMNLP-2008

Alessandro Moschitti. 2004. A Study on Convolution

Kernels for Shallow Semantic Parsing. ACL-2004

Alessandro Moschitti. 2006. Syntactic kernels for

natural language learning: the semantic role labe-

ling case. HLT-NAACL-2006 (short paper)

Martha Palmer, Dan Gildea and Paul Kingsbury.

2005. The proposition bank: An annotated corpus

of semantic roles. Computational Linguistics. 31(1)

F. Rosenblatt. 1962. Principles of Neurodynamics:

Perceptrons and the theory of brain mechanisms.

Spartan Books, Washington D.C.

Masaru Tomita. 1987. An Efficient Augmented-

Context-Free Parsing Algorithm. Computational

Linguistics 13(1-2): 31-46

Vladimir N. Vapnik. 1998. Statistical Learning

Theory. Wiley

C. Watkins. 1999. Dynamic alignment kernels. In A. J.

Smola, B. Sch ölkopf, P. Bartlett, and D. Schuur-

mans (Eds.), Advances in kernel methods. MIT

Press

Nianwen Xue and Martha Palmer. 2004. Calibrating

features for semantic role labeling. EMNLP-2004

Xiaofeng Yang, Jian Su and Chew Lim Tan. 2006.

Kernel-Based Pronoun Resolution with Structured

Syntactic Knowledge. COLING-ACL-2006

Dell Zhang and W. Lee. 2003. Question classification

using support vector machines. SIGIR-2003

Hui Zhang, Min Zhang, Haizhou Li, Aiti Aw and

Chew Lim Tan. 2009a. Forest-based Tree Se-

quence to String Translation Model. ACL-

IJCNLP-2009

Hui Zhang, Min Zhang, Haizhou Li and Chew Lim

Tan. 2009b. Fast Translation Rule Matching for

884

Syntax-based Statistical Machine Translation.

EMNLP-2009

Min Zhang, Jie Zhang, Jian Su and GuoDong Zhou.

2006. A Composite Kernel to Extract Relations be-

tween Entities with Both Flat and Structured Fea-

tures. COLING-ACL-2006

Min Zhang, W. Che, A. Aw, C. Tan, G. Zhou, T. Liu

and S. Li. 2007. A Grammar-driven Convolution

Tree Kernel for Semantic Role Classification.

ACL-2007

Min Zhang, Hongfei Jiang, Aiti Aw, Haizhou Li,

Chew Lim Tan and Sheng Li. 2008. A Tree Se-

quence Alignment-based Tree-to-Tree Translation

Model. ACL-2008

Min Zhang and Haizhou Li. 2009. Tree Kernel-based

SVM with Structured Syntactic Knowledge for

BTG-based Phrase Reordering. EMNLP-2009

885

