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Abstract

Kneser-Ney (1995) smoothing and its vari-
ants are generally recognized as having
the best perplexity of any known method
for estimating N-gram language models.
Kneser-Ney smoothing, however, requires
nonstandard N-gram counts for the lower-
order models used to smooth the highest-
order model. For some applications, this
makes Kneser-Ney smoothing inappropri-
ate or inconvenient. In this paper, we in-
troduce a new smoothing method based on
ordinary counts that outperforms all of the
previous ordinary-count methods we have
tested, with the new method eliminating
most of the gap between Kneser-Ney and
those methods.

1 Introduction

Statistical language models are potentially useful
for any language technology task that produces
natural-language text as a final (or intermediate)
output. In particular, they are extensively used in
speech recognition and machine translation. De-
spite the criticism that they ignore the structure of
natural language, simple N-gram models, which
estimate the probability of each word in a text
string based on theN−1 preceding words, remain
the most widely used type of model.

The simplest possible N-gram model is the
maximum likelihood estimate (MLE), which takes
the probability of a wordwn, given the preceding
contextw1 . . . wn−1, to be the ratio of the num-
ber of occurrences in a training corpus of the N-
gramw1 . . . wn to the total number of occurrences
of any word in the same context:

p(wn|w1 . . . wn−1) =
C(w1 . . . wn)

∑

w′ C(w1 . . . wn−1w′)

One obvious problem with this method is that it
assigns a probability of zero to any N-gram that is

not observed in the training corpus; hence, numer-
ous smoothing methods have been invented that
reduce the probabilities assigned to some or all ob-
served N-grams, to provide a non-zero probability
for N-grams not observed in the training corpus.

The best methods for smoothing N-gram lan-
guage models all use a hierarchy of lower-order
models to smooth the highest-order model. Thus,
if w1w2w3w4w5 was not observed in the train-
ing corpus,p(w5|w1w2w3w4) is estimated based
on p(w5|w2w3w4), which is estimated based on
p(w5|w3w4) if w2w3w4w5 was not observed, etc.

In most smoothing methods, the lower-order
models, for allN > 1, are recursively estimated
in the same way as the highest-order model. How-
ever, the smoothing method of Kneser and Ney
(1995) and its variants are the most effective meth-
ods known (Chen and Goodman, 1998), and they
use a different way of computing N-gram counts
for all the lower-order models used for smooth-
ing. For these lower-order models, the actual cor-
pus countsC(w1 . . . wn) are replaced by

C ′(w1 . . . wn) =
∣

∣{w′|C(w′w1 . . . wn) > 0}
∣

∣

In other words, the count used for a lower-order
N-gram is the number of distinct word types that
precede it in the training corpus.

The fact that the lower-order models are es-
timated differently from the highest-order model
makes the use of Kneser-Ney (KN) smooth-
ing awkward in some situations. For example,
coarse-to-fine search using a sequence of lower-
order to higher-order language models has been
shown to be an efficient way of constraining high-
dimensional search spaces for speech recognition
(Murveit et al., 1993) and machine translation
(Petrov et al., 2008). The lower-order models used
in KN smoothing, however, are very poor esti-
mates of the probabilities for N-grams thathave
been observed in the training corpus, so they are
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p(wn|w1 . . . wn−1) =























αw1...wn−1

Cn(w1...wn)−Dn,Cn(w1...wn)
∑

w′
Cn(w1...wn−1w′)

+ βw1...wn−1p(wn|w2 . . . wn−1) if Cn(w1 . . . wn) > 0

γw1...wn−1p(wn|w2 . . . wn−1) if Cn(w1 . . . wn) = 0

Figure 1: General language model smoothing schema

not suitable for use in coarse-to-fine search. Thus,
two versions of every language model below the
highest-order model would be needed to use KN
smoothing in this case.

Another case in which use of special KN counts
is problematic is the method presented by Nguyen
et al. (2007) for building and applying language
models trained on very large corpora (up to 40 bil-
lion words in their experiments). The scalability
of their approach depends on a “backsorted trie”,
but this data structure does not support efficient
computation of the special KN counts.

In this paper, we introduce a new smoothing
method for language models based on ordinary
counts. In our experiments, it outperformed all
of the previous ordinary-count methods we tested,
and it eliminated most of the gap between KN
smoothing and the other previous methods.

2 Overview of Previous Methods

All the language model smoothing methods we
will consider can be seen as instantiating the recur-
sive schema presented in Figure 1, for alln such
thatN ≥ n ≥ 2,1 whereN is the greatest N-gram
length used in the model.

In this schema,Cn denotes the counting method
used for N-grams of lengthn. For most smoothing
methods,Cn denotes actual training corpus counts
for all n. For KN smoothing and its variants, how-
ever,Cn denotes actual corpus counts only when
n is the greatest N-gram length used in the model,
and otherwise denotes the special KNC ′ counts.

In this schema, each N-gram count is dis-
counted according to aD parameter that depends,
at most, on the N-gram length and the the N-gram
count itself. The values of theα, β, andγ parame-
ters depend on the contextw1 . . . wn−1. For each
context, the values ofα, β, andγ must be set to
produce a normalized conditional probability dis-
tribution. Additional constraints on the previous

1For n = 2, we take the expressionp(wn|w2 . . . wn−1)
to denote a unigram probability estimatep(w2).

models we consider further reduce the degrees of
freedom so that ultimately the values of these para-
meters are completely fixed by the values selected
for theD parameters.

The previous smoothing methods we consider
can be classified as either “pure backoff”, or “pure
interpolation”. In pure backoff methods, all in-
stances ofα = 1 and all instances ofβ = 0. The
pure backoff methods we consider are Katz back-
off and backoff absolute discounting, due to Ney
et al.2 In Katz backoff, ifC(w1 . . . wn) is greater
than a threshold (here set to 5, as recommended
by Katz) the correspondingD = 0; otherwiseD
is set according to the Good-Turing method.3

In backoff absolute discounting, theD parame-
ters depends, at most, onn; there is either one dis-
count per N-gram length, or a single discount used
for all N-gram lengths. The values ofD can be set
either by empirical optimization on held-out data,
or based on a theoretically optimal value derived
from a leaving-one-out analysis, which Ney et al.
show to be approximated for each N-gram length
by N1/(N1 + 2N2), whereNr is the number of
distinct N-grams of that length occuringr times in
the training corpus.

In pure interpolation methods, for each context,
β andγ are constrained to be equal. The models
we consider that fall into this class are interpolated
absolute discounting, interpolated KN, and modi-
fied interpolated KN. In these three methods, all
instances ofα = 1.4 In interpolated absolute dis-
counting, the instances ofD are set as in backoff
absolute discounting. The same is true for inter-

2For all previous smoothing methods other than KN, we
refer the reader only to the excellent comparative study of
smoothing methods by Chen and Goodman (1998). Refer-
ences to the original sources may be found there.

3Good-Turing discounting is usually expressed in terms
of a discount ratio, but this can be reformulated asDr =
r − drr, whereDr is the subtractive discount for an N-gram
occuringr times, anddr is the corresponding discount ratio.

4Jelinek-Mercer smoothing would also be a pure interpo-
lation instance of our language model schema, in which all
instances ofD = 0 and, for each context,α + β = 1.
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polated KN, but the lower-order models are esti-
mated using the special KN counts.

In Chen and Goodman’s (1998) modified inter-
polated KN, instead of oneD parameter for each
N-gram length, there are three:D1 for N-grams
whose count is 1,D2 for N-grams whose count is
2, andD3 for N-grams whose count is 3 or more.
The values of these parameters may be set either
by empirical optimization on held-out data, or by
a theoretically-derived formula analogous to the
Ney et al. formula for the one-discount case:

Dr = r − (r + 1)Y
Nr+1

Nr

,

for 1 ≤ r ≤ 3, whereY = N1/(N1 + 2N2), the
discount value derived by Ney et al.

3 The New Method

Our new smoothing method is motivated by the
observation that unsmoothed MLE language mod-
els suffer from two somewhat independent sources
of error in estimating probabilities for the N-grams
observed in the training corpus. The problem that
has received the most attention is the fact that, on
the whole, the MLE probabilities for the observed
N-grams are overestimated, since they end up with
all the probability mass that should be assigned to
the unobserved N-grams. The discounting used in
Katz backoff is based on the Good-Turing estimate
of exactly this error.

Another source of error in MLE models, how-
ever, is quantization error, due to the fact that only
certain estimated probability values are possible
for a given context, depending on the number of
occurrences of the context in the training corpus.
No pure backoff model addresses this source of
error, since no matter how the discount parame-
ters are set, the number of possible probability val-
ues for a given context cannot be increased just
by discounting observed counts, as long as all N-
grams with the same count receive the same dis-
count. Interpolation models address quantization
error by interpolation with lower-order estimates,
which should have lower quantization error, due to
higher context counts. As we have noted, most ex-
isting interpolation models are constrained so that
the discount parameters fully determine the inter-
polation parameters. Thus the discount parameters
have to correct for both types of error.5

5Jelinek-Mercer smoothing is an exception to this gener-
alization, but since it has only interpolation parameters and

Our new model provides additional degrees of
freedom so theα andβ interpolation parameters
can be set independently of the discount parame-
tersD, with the intention that theα andβ para-
meters correct for quantization error, and theD
parameters correct for overestimation error. This
is accomplished by relaxing the link between the
β andγ parameters. We require that for each con-
text, α ≥ 0, β ≥ 0, andα + β = 1, and that
for every Dn,Cn(w1...wn) parameter,0 ≤ D ≤
Cn(w1 . . . wn). For each context, whatever values
we choose for these parameters within these con-
straints, we are guaranteed to have some probabil-
ity mass between 0 and 1 left over to be distributed
across the unobserved N-grams by a unique value
of γ that normalizes the conditional distribution.

Previous smoothing methods suggest several
approaches to setting theD parameters in our new
model. We try four such methods here:

1. The single theory-based discount for each N-
gram length proposed by Ney et al.,

2. A single discount used for all N-gram
lengths, optimized on held-out data,

3. The three theory-based discounts for each N-
gram length proposed by Chen and Good-
man,

4. A novel set of three theory-based discounts
for each N-gram length, based on Good-
Turing discounting.

The fourth method is similar to the third, but
for the threeD parameters per context, we use the
discounts for 1-counts, 2-counts, and 3-counts es-
timated by the Good-Turing method. This yields
the formula

Dr = r − (r + 1)
Nr+1

Nr

,

which is identical to the Chen-Goodman formula,
except that theY factor is omitted. SinceY is gen-
erally between 0 and 1, the resulting discounts will
be smaller than with the Chen-Goodman formula.

To set theα andβ parameters, we assume that
there is a single unknown probability distribution
for the amount of quantization error in every N-
gram count. If so, the total quantization error for
a given context will tend to be proportional to the

no discount parameters, it forces the interpolation parameters
to do the same double duty that other models force the dis-
count parameters to do.
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number of distinct counts for that context, in other
words, the number of distinct word types occur-
ring in that context. We then setα andβ to replace
the proportion of the total probability mass for the
context represented by the estimated quantization
error with probability estimates derived from the
lower-order models:

βw1...wn−1 = δ |{w′|Cn(w1...wn−1w′)>0}|
∑

w′
Cn(w1...wn−1w′)

αw1...wn−1 = 1 − βw1...wn−1

whereδ is the estimated mean of the quantization
error introduced by each N-gram count.

We use a single value ofδ for all contexts and
all N-gram lengths. As ana priori “theory”-based
estimate, we assume that, since the distance be-
tween possible N-gram counts, after discounting,
is approximately 1.0, their mean quantization error
would be approximately 0.5. We also try settingδ
by optimization on held-out data.

4 Evaluation and Conclusions

We trained and measured the perplexity of 4-
gram language models using English data from
the WMT-06 Europarl corpus (Koehn and Monz,
2006). We took 1,003,349 sentences (27,493,499
words) for training, and 2000 sentences each for
testing and parameter optimization.

We built models based on six previous ap-
proaches: (1) Katz backoff, (2) interpolated ab-
solute discounting with Ney et al. formula dis-
counts, backoff absolute discounting with (3) Ney
et al. formula discounts and with (4) one empir-
ically optimized discount, (5) modified interpo-
lated KN with Chen-Goodman formula discounts,
and (6) interpolated KN with one empirically op-
timized discount. We built models based on four
ways of computing theD parameters of our new
model, with a fixedδ = 0.5: (7) Ney et al. formula
discounts, (8) one empirically optimized discount,
(9) Chen-Goodman formula discounts, and (10)
Good-Turing formula discounts. We also built a
model (11) based on one empirically optimized
discountD = 0.55 and an empircially optimized
value ofδ = 0.9. Table 1 shows that each of these
variants of our method had better perplexity than
every previous ordinary-count method tested.

Finally, we performed one more experiment, to
see if the best variant of our model (11) combined
with KN counts would outperform either variant
of interpolated KN. It did not, yielding a perplex-
ity of 53.9 after reoptimizing the two free parame-

Method PP
1 Katz backoff 59.8
2 interp-AD-fix 62.6
3 backoff-AD-fix 59.9
4 backoff-AD-opt 58.8
5 KN-mod-fix 52.8
6 KN-opt 53.0
7 new-AD-fix 56.3
8 new-AD-opt 55.6
9 new-CG-fix 57.4

10 new-GT-fix 56.1
11 new-AD-2-opt 54.9

Table 1: 4-gram perplexity results

ters of the model with the KN counts. However,
the best variant of our model eliminated 65% of
the difference in perplexity between the best pre-
vious ordinary-count method tested and the best
variant of KN smoothing tested, suggesting that it
may currently be the best approach when language
models based on ordinary counts are desired.
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