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Abstract whereo is a regularization parameter. We focus
on (3) instead of (2) because (3) is strictly convex.
Iterative scaling IS) methods are popular in
training Maxent models. They all share the same

property of solving a one-variable sub-problem
at atime. Existing IS methods include general-
ized iterative scalingGIS) by Darroch and Rat-
cliff (1972), improved iterative scalingll§) by
Della Pietra et al. (1997), and sequential condi-
tional generalized iterative scalingCGIS) by
Goodman (2002). In optimization, coordinate de-
scent CD) is a popular method which alsolves
a one-variable sub-problem at a time. With these
manylS andCD methods, it is uneasy to see their
differences. In Section 2, we propose a unified
Maximum entropy (Maxent) is widely used in framework to describéS and CD methods from
many areas such as natural language processi@g optimization viewpoint. Using this framework,
(NLP) and document classification. Maxent mod-we design a fastD approach for Maxent in Sec-
els the conditional probability as: tion 3. In Section 4, we compare the proposed
Py (y|z)=Sw(z,y)/Tw(z), (1) CD method withlS andLBFGS methods. Results
Sw(z,y) — X wefr(@y) Tow(x) Ezy Sew(z,y), show that theCD method is more efficient.
wherez indicates a contexiy is the label of the Notation n is the number of features. The total
context, andw € R" is the weight vector. A number of nonzeros in samples and the average

function f;(z, y) denotes the-th feature extracted number of nonzeros per feature are respectively
from the context: and the labe}. HNZ=D 00D kg0l @Nd [ =#nz/n.

_ Given an empirical prqbablllty distribution > A Eramework for IS Methods
P(z,y) obtained from training samples, Maxent
minimizes the following negative log-likelihood: 2.1 TheFramework

ming — >, P(z,y)log Puw(ylz) 2 The one-variable sub-problem k& methods is re-

_ 5 _ 5 lated to the function reductioh(w-+ze;) — L(w),

2 P(2)log T (w) = 2 wnP o) . Wheree; = [0,...,0,1,0,... ,(()]T. IS)met(honIs
. - ~ _ differ in how they approximate the function reduc-
ability of z, and P(fy) = 3_, , P(,y) fi(z,y)is o0 They canyalspop be categorized according to
e e o apazaer's oot ae sequentl orpr
. ’ allely updated. In this section, we create a frame-
thn term and sglve: - sy ,w2  workin Figure 1 for these methods.
mq};nL(w)Egp(x)logTu(w)_;th(ftHﬁ’ Sequential update For a sequential-update

(3) algorithm, once a one-variable sub-problem is
—Y _ _ _ . solved, the corresponding element 4t is up-

A complete version of this work is atttp: .

Jwww.csie.ntu.edu.tw/ - cjlin/papers/ dated. The neww is then used to construct the

maxent_journal.pdf . next sub-problem. The procedure is sketched in

Maximum entropy (Maxent) is useful in
many areas. Iterative scalinkp) methods
are one of the most popular approaches to
solve Maxent. With many variants ¢§
methods, it is difficult to understand them
and see the differences. In this paper, we
create a general and unified framework for
IS methods. This framework also connects
IS and coordinate descer®) methods.
Besides, we develop €D method for
Maxent. Results show that it is faster than
existing iterative scaling methotis

1 Introduction

where P(z) = 3, P(x,y) is the marginal pro
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Iterative scalin

Sequential update Parallel update
Find 4;(z) to approﬂnate L\et A(z) = Find aseparab;e functiof(z) to
L(w + ze;) — L(w) L(w+ze;)—L(w)  approximatel(w + z) — L(w)
SCéIS CID GISI, s
Figure 1: An illustration of various iterative scaling methods.
Algorithm 1 A sequential-updatks method Algorithm 2 A parallel-updatéS method
While w is not optimal While w is not optimal
Fort=1,...,n 1. Find approximate functiond,(z;) V¢ satis-
1. Find an approximate functiof,(z) sat- fying (7).
isfying (4). 2. Fort=1,...,n
2. Approximatelymin, A;(z) to getz;. Approximatelymin,, A;(z) to getz,.
3. wp — wi + Z. 3. Fort=1,...,n
Algorithm 1. If thet¢-th component is selected for Wi — Wy + 2.
update, a sequenti#s method solves the follow- sure that the function value is strictly decreasing.
ing one-variable sub-problem: The last condition shows tha( z)is separable, so
min, A(z), min; A(z) =), min,, A(2).
whereA,(z) bounds the function difference: That is,we can minimizé,(z;),Vt simultaneously,
A(z) > L(w + ze;) — L(w) @ and then update; vt together. A parallel-update
. = Twze, (x) method possesses nice implementation properties.
=2, Plz)los =7 w () + Qi) However, since it less aggressively updatesit
and  Qu(z )_Qwéﬂ 2P(f1). (5) usually converges slower. IA(z) satisfies (7),

An approximate functiond; (=) satisfying (4) does takingz = z,e, implies that (4) and (6) hold for
not ensure that the function value is strictly de'anyAt(zt). A parallel method could thus be trans-
creasing. That is, the new function valli€w +  formed to a sequential method using the same ap-
ze;) may be only the same ds(w). Therefore, proximate function, but not vice versa.
we can impose an additional condition

Ai(0) =0 (6) 2.2 ExistingIterative Scaling Methods
on the approximate functiod;(z). If A;(0)#0  We introduceGIS, IIS and SCGIS via the pro-
and assume; = arg min, A;(z) exists, with the posed frameworkGIS andIIS use a parallel up-
conditionA,(0) =0, we haveA;(z;) <0. Thisin-  date, butSCGIS is sequential. Their approximate
equality and (4) then imply.(w + z,e;) < L(w).  functions aim to bound the functlon reduction
If A}(0) = ViL(w) = 0, the convexity ofL(w) L(wtz)-L(w)=Y, P(z) logT}”z(z +> Qi (2),
implies that we cannot decrease the function value (8
by modifying w;. Then we should move on to whereT,,(x) andQ;(z;) are defined in (1) and (5),

modify other components ab. respectively. The®IS, 1IS andSCGIS use simi-
A CD method can be viewed as a sequeriial lar inequalities to get approximate functions. They
method. It solves the following sub-problem: applyloga < a — 1 Va > 0to get
min; AfP(2) = L(w + ze;) — L(w) (8)< - P() Paufyl) (e 1(0)— )+ZQt(Zt)
without any approximation. Existins methods Ty
consider approximations a%(z) may be simpler , ©)
GIS defines

for minimization.
Parallel update A parallel IS method simul- * = maxe, f7(2,y), f#(x’gﬁ) E#Zt ft(m’.y)’

taneously constructa independent one-variable and adds afeatur_)éﬂrl(a:,y)zf —f7 (@, y) with

sub-problems. After (approximately) solving all “n+1 =0 Assumingfy(z,y) = 0, Vt,z,y, and

of them, the whole vectow is updated. Algo- us|n§+\1]ir(1tsye)ns |2equal|ty

rithm 2 gives the procedure. The differentiable e==' % /") < Z”“ fuzy) oz7* and

function A(z), z € R", is an approximation of Eeahi@n) < 3, ft(w th# 4 Insiew) (q0)
L(w + z) — L(w) satisfying f#
A(z) > L(w + 2) — L(w), A(0)=0, and we obtainn mdependent one-variable functions:

AR =S, Aulz). (D AP () =571 5, , Pa) Pulyla) fi(2,)
Similar to (4) and (6), the first two conditions en- + Qt(zt)'
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IIS applies Jensen’s inequality
fe(@9) (o, p# (o "
eZt f#(ac,y)( tf7 (x,y)) < Zt %ew#(w,y)
on (9) to get the approximate function
= et f 7 (zy)_
A (z) = ZWP(J«“)Pw(y\fC)ft(% y)}#T’yy)l

+ Q¢(2t).

Table 1: Time for minimizing4;(z;) by the New-
t thod

on mefo |CD GIS SCGIS IS
1st Newton direction O(I) O(l) O(l)  O(l)

Each subsequent o(l)
Newton direction

o) 0(1) O(1)

SCGISisa sequennal update method. It replacesbtaining Py, -, e, (y|2) Y,y requires expensive

f#inGISwith £ = max,, fi(x,y). Usingze;
asz in (8), a derivation similar to (10) gives
eztft(x,y) < ft;ﬁzy) eztft# + ft#—f;t(mvy).

S
The approximate fljnction @CGIS its
ACOIzy) =2 —lzwm ) Pu(yle) fi(z,9)
+ Qt(zt)-

We prove the linear convergence of existisy
methods (proof omitted):

Theorem 1 Assume each sub-problem Aj(z;) is
exactly minimized, where s islIS, GIS, SCGIS, or
CD. The sequence {w"} generated by any of these
four methods linearly converges. That is, thereis
aconstant 1 € (0, 1) such that

L) ~L(w*) < (1-p)(L(w*)~L(w")), vk,
where w* isthe global optimum of (3).

2.3 Solving one-variable sub-problems
Without the regularization term, by} (z;) = 0,

GIS andSCGIS both have a simple closed-form Store >, , P(x) Py

O(#nz) operations to evaluat€,, ., e, (z,y) and
Tw+ze () Vo, y. A trick to trade memory for
time is to store allSy,(x, y) andT,,(z),

Swzies (SU, y) = S'w(‘rv y)etht(z’y)v

Twtzie (¥)=Tw(2) +Zy5’w(w, y) (e Slew) 1),
Since Swtzie, (2,y) = Sw(z,y)if filz,y) =

0, this procedure reduces the thE#nz) opera-
tions to O(#nz/n) = O(I). However, it needs
extra spaces to store ally,(z,y) and Ty (z).
This trick for updatingP,,(y|x) has been used
in SCGIS (Goodman, 2002). Thus, the first
Newton iteration of all methods discussed here
takes O(l) operations. For each subsequent
Newton iteration,CD needsO(l) as it calcu-
lates Pyt e, (y|x) wheneverz, is changed. For
GIS and SCGIS, if Y-, , P(z)Puw(y|z) fi(z,y)

is stored at the first Newton iteration, then (12)
can be done inO(1) time. For lIS, because
f#(x,y) of (12) depends on andy, we cannot
(y|z) fe(x,y) as inGIS and

solution of the sub-problem. With the regular- SCGIS. Hence each Newton direction need).
ization term, the sub-problems no longer have Ve summarize the cost for solving sub-problems
closed-form solution. We discuss the cost of solvin Table 1.

ing sub-problems by the Newton method, which

iteratively updates; by
Zt < 2t — A?l(Zt)/A;?H(Zt).
Heres indicates anS or aCD method.
Below we check the calculation of}’(z;) as
the cost ofA;”(z;) is similar. We have

Af’(zt)zzx,yﬁ(a:)Pw(ym +(z,y)ext ] (@)

(11)

, (12)
+ Qt(zt)
where f#if sisGIS,
f5(x,y) =} f7 if sis SCGIS,
f#(x,y) if sisllS.
ForCD,

AP (2) = Q) (20) + 32, P(2) Pwrzeyl)fe (2 y).

(13)
The main cost is on calculating,,(y|x) Vz, vy,
wheneverw is updated.
proaches calculaté’,,(y|x) once everyn sub-

3 Comparison and a New CD Method
3.1 Comparison of IS/CD methods

From the above discussion, Eor aCD method
falls into a place between two extreme designs:

Aq(z) aloose bound  A;(z) atight bound
Easy to minimized. (=) Hard to minimized,(z)
There is a tradeoff between the tightness to bound
the function difference and the hardness to solve
the sub-problem. To check ha8 andCD meth-
ods fit into this explanation, we obtain relation-
ships of their approximate functions:

AFP(z) < APCCB(20) < APB(20),

14
AP (2) < AS () < ATS () vz
The derivation is omitted. From (14§D con-

Parallel-update ap- siders more accurate sub-problems ti8@GIS

and GIS. However, to solve each sub-problem,

problems, but sequential-update methods evaldrom Table 1,CD’s each Newton step takes more
atesP,,(y|x) after every sub-problem. Consider time. The same situation occurs in comparing
the situation of updatingv to w + z:e;. By (1), IS andGIS. Therefore, while a tightd;(z;) can
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—cD
---SCGIS
GI

give faster convergence by handling fewer sukt ¢.|
problems, the total time may not be less due t ¢ |}
the higher cost of each sub-problem.

s
LBFGS|

alue difference

inction v

Relative fu

Relative function

3.2 A Fast CD Method
Training Tme () o Taining Time (s)

We develop aCD method which is cheaper in (2) BROWN (b) CONLL2000
solving each sub-problem but still enjoys fast fi- ~ B
nal convergence. This method is modified fron
Chang et al. (2008), £D approach for linear
SVM. We approximately minimizelP () by ap-
plying only one Newton iteration. The Newton di-
rection atz = 0 is now

Accuracy
F1 measure

Testing

1500 100 15
wwwwwwwwwww (s Training Time (s)

4D’ () / 4CD” L (c) BROWN (d) CoNLL200
d=—A7"(0)/A;7(0). (15) Figure 2: First row: time versus the relative func-

As taking the fuI_I Newton direction may not de- Hon value difference (17). Second row: time ver-
crease the function value, we need a line searc

, . Sus testing accuracy/F1. Time is in seconds.
procedure to find\ > 0 such that: = A\d satisfies g 9 y
. . o andllS. We uses® = 10, and sets = 0.5 and
the following sufficient decrease condition:

CcD CD/n\ _ 4CD cD’ ~ = 0.001in (16).
Ar (Z)_At (0) = 4; (Z.) < 72477 (0), . (16) We begin at checking time versus the relative
where v is a constant in(0,1/2). A simple

difference of the function value to the optimum:
way to find A is by sequentially checking = P

. L(w) — L(w")/L(w"). an
2
LB.B T wheref5 € (0,1). The line search Results are in the first row of Figure 2. We check
procedure is guaranteed to stop (proof Omltted)i‘n the second row of Figure 2 about testing ac-

We can further prove that near the optimum tWOcuracy/Fl versus training time. Among the three

results hold: First, the Newton direction (15) Sat'IS/CD methods compared, the n@®D approach

isfies the sufficient decrease condition (16) withis the fastest. SCGIS comes the second, while

A=1. Then the cost for each sub-problentig), GIS is the last. This result is consistent with

similar to that for exactly solving sub-problems of y, . ;o iness of their approximation functions: see

GIS or SCGIS. This result is important as other- (14). LBFGS has fast final convergence, but it

wise each trial oz = \d expensively costé)(/) d - L
oes not perform well in the beginning.
for calculatingAS$P (). Second, taking one New- P g d

ton direction of the tighterdSP(z;) reduces the 5 Conclusions

function L(w) more rapidly than exactly minimiz- 'f K f
ing a loosed; (=) of GIS, IIS or SCGIS. These In summary, we create a general framework for

two results show that the ne@D method im- explaininglS methods. Based on this framework,

proves upon the tradition&@D by approximately we devglo_p a neviD _mgthod for Maxent. [t is
solving sub-problems, while still maintains fastMmore efficient than existints methods.
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