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Abstract

Maximum entropy (Maxent) is useful in
many areas. Iterative scaling (IS) methods
are one of the most popular approaches to
solve Maxent. With many variants ofIS
methods, it is difficult to understand them
and see the differences. In this paper, we
create a general and unified framework for
IS methods. This framework also connects
IS and coordinate descent (CD) methods.
Besides, we develop aCD method for
Maxent. Results show that it is faster than
existing iterative scaling methods1.

1 Introduction

Maximum entropy (Maxent) is widely used in
many areas such as natural language processing
(NLP) and document classification. Maxent mod-
els the conditional probability as:

Pw(y|x)≡Sw(x, y)/Tw(x), (1)

Sw(x, y)≡e
P

t wtft(x,y), Tw(x)≡∑
y Sw(x, y),

wherex indicates a context,y is the label of the
context, andw ∈ Rn is the weight vector. A
functionft(x, y) denotes thet-th feature extracted
from the contextx and the labely.

Given an empirical probability distribution
P̃ (x, y) obtained from training samples, Maxent
minimizes the following negative log-likelihood:

minw −
∑

x,y P̃ (x, y) log Pw(y|x)

=
∑

x P̃ (x) log Tw(x)−∑
t wtP̃ (ft),

(2)

whereP̃ (x) =
∑

y P̃ (x, y) is the marginal prob-

ability of x, andP̃ (ft) =
∑

x,y P̃ (x, y)ft(x, y) is
the expected value offt(x, y). To avoid overfit-
ting the training samples, some add a regulariza-
tion term and solve:
min

w
L(w)≡∑

x
P̃ (x)logTw(x)−∑

t
wtP̃(ft)+

P
tw

2
t

2σ2 ,

(3)
1A complete version of this work is athttp:

//www.csie.ntu.edu.tw/ ˜ cjlin/papers/
maxent_journal.pdf .

whereσ is a regularization parameter. We focus
on (3) instead of (2) because (3) is strictly convex.

Iterative scaling (IS) methods are popular in
training Maxent models. They all share the same
property of solving a one-variable sub-problem
at a time. Existing IS methods include general-
ized iterative scaling (GIS) by Darroch and Rat-
cliff (1972), improved iterative scaling (IIS) by
Della Pietra et al. (1997), and sequential condi-
tional generalized iterative scaling (SCGIS) by
Goodman (2002). In optimization, coordinate de-
scent (CD) is a popular method which alsosolves
a one-variable sub-problem at a time. With these
manyIS andCD methods, it is uneasy to see their
differences. In Section 2, we propose a unified
framework to describeIS andCD methods from
an optimization viewpoint. Using this framework,
we design a fastCD approach for Maxent in Sec-
tion 3. In Section 4, we compare the proposed
CD method withIS andLBFGS methods. Results
show that theCD method is more efficient.

Notation n is the number of features. The total
number of nonzeros in samples and the average
number of nonzeros per feature are respectively

#nz≡∑
x,y

∑
t:ft(x,y) 6=0 1 and l̄ ≡ #nz/n.

2 A Framework for IS Methods

2.1 The Framework

The one-variable sub-problem ofIS methods is re-
lated to the function reductionL(w+zet)−L(w),
whereet = [0, . . . , 0, 1, 0, . . . , 0]T . IS methods
differ in how they approximate the function reduc-
tion. They can also be categorized according to
whetherw’s components are sequentially or par-
allely updated. In this section, we create a frame-
work in Figure 1 for these methods.

Sequential update For a sequential-update
algorithm, once a one-variable sub-problem is
solved, the corresponding element inw is up-
dated. The neww is then used to construct the
next sub-problem. The procedure is sketched in
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Iterative scaling
Sequential update

FindAt(z) to approximate
L(w + zet)− L(w)

SCGIS

Let At(z) =
L(w+zet)−L(w)

CD

Parallel update

Find a separable functionA(z) to
approximateL(w + z)− L(w)

GIS, IIS
Figure 1: An illustration of various iterative scaling methods.

Algorithm 1 A sequential-updateIS method
While w is not optimal

For t = 1, . . . , n
1. Find an approximate functionAt(z) sat-

isfying (4).
2. Approximatelyminz At(z) to getz̄t.
3. wt ← wt + z̄t.

Algorithm 1. If thet-th component is selected for
update, a sequentialIS method solves the follow-
ing one-variable sub-problem:

minz At(z),
whereAt(z) bounds the function difference:

At(z) ≥ L(w + zet)− L(w)

=
∑

x P̃ (x) log Tw+zet (x)

Tw (x) + Qt(z)
(4)

and Qt(z)≡ 2wtz+z2

2σ2 − zP̃ (ft). (5)
An approximate functionAt(z) satisfying (4) does
not ensure that the function value is strictly de-
creasing. That is, the new function valueL(w +
zet) may be only the same asL(w). Therefore,
we can impose an additional condition

At(0) = 0 (6)
on the approximate functionAt(z). If A′

t(0) 6= 0
and assumēzt ≡ arg minz At(z) exists, with the
conditionAt(0)=0, we haveAt(z̄t)<0. This in-
equality and (4) then implyL(w + z̄tet)<L(w).
If A′

t(0) = ∇tL(w) = 0, the convexity ofL(w)
implies that we cannot decrease the function value
by modifying wt. Then we should move on to
modify other components ofw.

A CD method can be viewed as a sequentialIS
method. It solves the following sub-problem:

minz ACD
t (z) = L(w + zet)− L(w)

without any approximation. ExistingIS methods
consider approximations asAt(z) may be simpler
for minimization.

Parallel update A parallel IS method simul-
taneously constructsn independent one-variable
sub-problems. After (approximately) solving all
of them, the whole vectorw is updated. Algo-
rithm 2 gives the procedure. The differentiable
function A(z), z ∈ Rn, is an approximation of
L(w + z)− L(w) satisfying
A(z) ≥ L(w + z)− L(w), A(0) = 0, and

A(z) =
∑

t At(zt).
(7)

Similar to (4) and (6), the first two conditions en-

Algorithm 2 A parallel-updateIS method
While w is not optimal

1. Find approximate functionsAt(zt) ∀t satis-
fying (7).

2. Fort = 1, . . . , n
Approximatelyminzt At(zt) to getz̄t.

3. Fort = 1, . . . , n
wt ← wt + z̄t.

sure that the function value is strictly decreasing.
The last condition shows thatA(z) is separable, so

minz A(z) =
∑

t minzt At(zt).
That is,we can minimizeAt(zt),∀t simultaneously,
and then updatewt ∀t together. A parallel-update
method possesses nice implementation properties.
However, since it less aggressively updatesw, it
usually converges slower. IfA(z) satisfies (7),
takingz = ztet implies that (4) and (6) hold for
anyAt(zt). A parallel method could thus be trans-
formed to a sequential method using the same ap-
proximate function, but not vice versa.

2.2 Existing Iterative Scaling Methods

We introduceGIS, IIS and SCGIS via the pro-
posed framework.GIS andIIS use a parallel up-
date, butSCGIS is sequential. Their approximate
functions aim to bound the function reduction
L(w+z)−L(w)=

∑
xP̃ (x) logTw+z (x)

Tw (x) +
∑

tQt(zt),
(8)

whereTw(x) andQt(zt) are defined in (1) and (5),
respectively. ThenGIS, IIS andSCGIS use simi-
lar inequalities to get approximate functions. They
applylog α ≤ α− 1 ∀α > 0 to get
(8)≤∑

x,y
P̃ (x)Pw(y|x)(e

P
tztft(x,y)−1)+

∑
t

Qt(zt).

(9)
GIS defines
f# ≡ maxx,y f#(x, y), f#(x, y) ≡∑

t ft(x, y),
and adds a featurefn+1(x, y)≡f#−f#(x, y) with
zn+1 =0. Assumingft(x, y) ≥ 0, ∀t, x, y, and
using Jensen’s inequality

e
Pn+1

t=1
ft(x,y)

f# (ztf#) ≤∑n+1
t=1

ft(x,y)
f# eztf#

and

e
P

t ztft(x,y) ≤∑
t

ft(x,y)
f# eztf#

+ fn+1(x,y)
f# , (10)

we obtainn independent one-variable functions:

AGIS
t (zt) = eztf#−1

f#

∑
x,y P̃ (x)Pw(y|x)ft(x, y)

+ Qt(zt).
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IIS applies Jensen’s inequality

e
P

t
ft(x,y)

f#(x,y)
(ztf#(x,y)) ≤∑

t
ft(x,y)
f#(x,y)

eztf#(x,y)

on (9) to get the approximate function

AIIS
t (zt) =

∑
x,y

P̃ (x)Pw(y|x)ft(x, y) eztf#(x,y)−1
f#(x,y)

+ Qt(zt).
SCGIS is a sequential-update method. It replaces
f# in GIS with f#

t ≡ maxx,y ft(x, y). Usingztet

asz in (8), a derivation similar to (10) gives

eztft(x,y) ≤ ft(x,y)

f#
t

eztf
#
t + f#

t −ft(x,y)

f#
t

.

The approximate function ofSCGIS is

ASCGIS
t (zt) = eztf

#
t −1

f#
t

∑
x,yP̃ (x)Pw(y|x)ft(x, y)

+ Qt(zt).
We prove the linear convergence of existingIS

methods (proof omitted):

Theorem 1 Assume each sub-problem As
t (zt) is

exactly minimized, where s is IIS, GIS, SCGIS, or
CD. The sequence {wk} generated by any of these
four methods linearly converges. That is, there is
a constant µ ∈ (0, 1) such that
L(wk+1)−L(w∗) ≤ (1−µ)(L(wk)−L(w∗)),∀k,
where w∗ is the global optimum of (3).

2.3 Solving one-variable sub-problems

Without the regularization term, byA′
t(zt) = 0,

GIS andSCGIS both have a simple closed-form
solution of the sub-problem. With the regular-
ization term, the sub-problems no longer have a
closed-form solution. We discuss the cost of solv-
ing sub-problems by the Newton method, which
iteratively updateszt by

zt ← zt −As
t
′(zt)/As

t
′′(zt). (11)

Heres indicates anIS or aCD method.
Below we check the calculation ofAs

t
′(zt) as

the cost ofAs
t
′′(zt) is similar. We have

As
t
′(zt)=

∑
x,yP̃ (x)Pw(y|x)ft(x, y)eztfs(x,y)

+ Q′
t(zt)

(12)

where

fs(x, y) ≡


f# if s is GIS,

f#
t if s is SCGIS,

f#(x, y) if s is IIS.

ForCD,
ACD

t
′(zt)=Q′

t(zt)+
∑

x,yP̃ (x)Pw+ztet(y|x)ft(x, y).
(13)

The main cost is on calculatingPw(y|x) ∀x, y,
whenever w is updated. Parallel-update ap-
proaches calculatePw(y|x) once everyn sub-
problems, but sequential-update methods evalu-
atesPw(y|x) after every sub-problem. Consider
the situation of updatingw to w+ztet. By (1),

Table 1: Time for minimizingAt(zt) by the New-
ton method

CD GIS SCGIS IIS

1st Newton direction O(l̄) O(l̄) O(l̄) O(l̄)
Each subsequent
Newton direction

O(l̄) O(1) O(1) O(l̄)

obtainingPw+ztet(y|x) ∀x, y requires expensive
O(#nz) operations to evaluateSw+ztet(x, y) and
Tw+ztet(x) ∀x, y. A trick to trade memory for
time is to store allSw(x, y) andTw(x),
Sw+ztet(x, y)=Sw(x, y)eztft(x,y),

Tw+ztet(x)=Tw(x)+
∑

ySw(x, y)(eztft(x,y)−1).
Since Sw+ztet(x, y) = Sw(x, y) if ft(x, y) =
0, this procedure reduces the theO(#nz) opera-
tions to O(#nz/n) = O(l̄). However, it needs
extra spaces to store allSw(x, y) and Tw(x).
This trick for updatingPw(y|x) has been used
in SCGIS (Goodman, 2002). Thus, the first
Newton iteration of all methods discussed here
takes O(l̄) operations. For each subsequent
Newton iteration,CD needsO(l̄) as it calcu-
latesPw+ztet(y|x) wheneverzt is changed. For
GIS and SCGIS, if

∑
x,y P̃ (x)Pw(y|x)ft(x, y)

is stored at the first Newton iteration, then (12)
can be done inO(1) time. For IIS, because
f#(x, y) of (12) depends onx andy, we cannot
store

∑
x,y P̃ (x)Pw(y|x)ft(x, y) as in GIS and

SCGIS. Hence each Newton direction needsO(l̄).
We summarize the cost for solving sub-problems
in Table 1.

3 Comparison and a New CD Method
3.1 Comparison of IS/CD methods

From the above discussion, anIS or aCD method
falls into a place between two extreme designs:

At(zt) a loose bound ↔At(zt) a tight bound
Easy to minimizeAt(zt) Hard to minimizeAt(zt)

There is a tradeoff between the tightness to bound
the function difference and the hardness to solve
the sub-problem. To check howIS andCD meth-
ods fit into this explanation, we obtain relation-
ships of their approximate functions:

ACD
t (zt) ≤ ASCGIS

t (zt) ≤ AGIS
t (zt),

ACD
t (zt) ≤ AIIS

t (zt) ≤ AGIS
t (zt) ∀ zt.

(14)

The derivation is omitted. From (14),CD con-
siders more accurate sub-problems thanSCGIS
and GIS. However, to solve each sub-problem,
from Table 1,CD’s each Newton step takes more
time. The same situation occurs in comparing
IIS andGIS. Therefore, while a tightAt(zt) can
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give faster convergence by handling fewer sub-
problems, the total time may not be less due to
the higher cost of each sub-problem.

3.2 A Fast CD Method

We develop aCD method which is cheaper in
solving each sub-problem but still enjoys fast fi-
nal convergence. This method is modified from
Chang et al. (2008), aCD approach for linear
SVM. We approximately minimizeACD

t (z) by ap-
plying only one Newton iteration. The Newton di-
rection atz = 0 is now

d = −ACD
t

′
(0)/ACD

t
′′
(0). (15)

As taking the full Newton direction may not de-
crease the function value, we need a line search
procedure to findλ ≥ 0 such thatz = λd satisfies
the following sufficient decrease condition:
ACD

t (z)−ACD
t (0) = ACD

t (z) ≤ γzACD
t

′
(0), (16)

where γ is a constant in(0, 1/2). A simple
way to find λ is by sequentially checkingλ =
1, β, β2, . . . , whereβ ∈ (0, 1). The line search
procedure is guaranteed to stop (proof omitted).
We can further prove that near the optimum two
results hold: First, the Newton direction (15) sat-
isfies the sufficient decrease condition (16) with
λ=1. Then the cost for each sub-problem isO(l̄),
similar to that for exactly solving sub-problems of
GIS or SCGIS. This result is important as other-
wise each trial ofz = λd expensively costsO(l̄)
for calculatingACD

t (z). Second, taking one New-
ton direction of the tighterACD

t (zt) reduces the
functionL(w) more rapidly than exactly minimiz-
ing a looseAt(zt) of GIS, IIS or SCGIS. These
two results show that the newCD method im-
proves upon the traditionalCD by approximately
solving sub-problems, while still maintains fast
convergence.

4 Experiments

We apply Maxent models to part of
speech (POS) tagging forBROWN corpus
(http://www.nltk.org ) and chunk-
ing tasks for CoNLL2000 (http://www.
cnts.ua.ac.be/conll2000/chunking ).
We randomly split the BROWN corpus
to 4/5 training and 1/5 testing. Our im-
plementation is built upon OpenNLP
(http://maxent.sourceforge.net ).
We implementCD (the new one in Section 3.2),
GIS, SCGIS, andLBFGS for comparisons. We
include LBFGS as Malouf (2002) reported that
it is better than other approaches includingGIS
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Figure 2: First row: time versus the relative func-
tion value difference (17). Second row: time ver-
sus testing accuracy/F1. Time is in seconds.
and IIS. We useσ2 = 10, and setβ = 0.5 and
γ = 0.001 in (16).

We begin at checking time versus the relative
difference of the function value to the optimum:

L(w)− L(w∗)/L(w∗). (17)
Results are in the first row of Figure 2. We check
in the second row of Figure 2 about testing ac-
curacy/F1 versus training time. Among the three
IS/CD methods compared, the newCD approach
is the fastest.SCGIS comes the second, while
GIS is the last. This result is consistent with
the tightness of their approximation functions; see
(14). LBFGS has fast final convergence, but it
does not perform well in the beginning.

5 Conclusions

In summary, we create a general framework for
explainingIS methods. Based on this framework,
we develop a newCD method for Maxent. It is
more efficient than existingIS methods.

References
K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. 2008. Coor-

dinate descent method for large-scale L2-loss linear
SVM. JMLR, 9:1369–1398.

John N. Darroch and Douglas Ratcliff. 1972. Gener-
alized iterative scaling for log-linear models.Ann.
Math. Statist., 43(5):1470–1480.

Stephen Della Pietra, Vincent Della Pietra, and John
Lafferty. 1997. Inducing features of random fields.
IEEE PAMI, 19(4):380–393.

Joshua Goodman. 2002. Sequential conditional gener-
alized iterative scaling. InACL, pages 9–16.

Robert Malouf. 2002. A comparison of algorithms
for maximum entropy parameter estimation. In
CONLL.

288


