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Abstract
Identifying whether a multi-word expres-
sion (MWE) is compositional or not is im-
portant for numerous NLP applications.
Sense induction can partition the context
of MWEs into semantic uses and there-
fore aid in deciding compositionality. We
propose an unsupervised system to ex-
plore this hypothesis on compound nom-
inals, proper names and adjective-noun
constructions, and evaluate the contribu-
tion of sense induction. The evaluation
set is derived from WordNet in a semi-
supervised way. Graph connectivity mea-
sures are employed for unsupervised pa-
rameter tuning.

1 Introduction and related work
Multi-word expressions (MWEs) are sequences of
words that tend to cooccur more frequently than
chance and are either idiosyncratic or decompos-
able into multiple simple words (Baldwin, 2006).
Deciding idiomaticity of MWEs is highly impor-
tant for machine translation, information retrieval,
question answering, lexical acquisition, parsing
and language generation.

Compositionality refers to the degree to which
the meaning of a MWE can be predicted by com-
bining the meanings of its components. Unlike
syntactic compositionality (e.g. by and large), se-
mantic compositionality is continuous (Baldwin,
2006).

In this paper, we propose a novel unsupervised
approach that compares the major senses of a
MWE and its semantic head using distributional
similarity measures to test the compositionality of
the MWE. These senses are induced by a graph
based sense induction system, whose parameters
are estimated in an unsupervised manner exploit-
ing a number of graph connectivity measures (Ko-
rkontzelos et al., 2009). Our method partitions the

context space and only uses the major senses, fil-
tering out minor senses. In our approach the only
language dependent components are a PoS tagger
and a parser.

There are several studies relevant to detecting
compositionality of noun-noun MWEs (Baldwin et
al., 2003) verb-particle constructions (Bannard et
al., 2003; McCarthy et al., 2003) and verb-noun
pairs (Katz and Giesbrecht, 2006). Datasets with
human compositionality judgements are available
for these MWE categories (Cook et al., 2008).
Here, we focus on compound nominals, proper
names and adjective-noun constructions.

Our contributions are three-fold: firstly, we ex-
perimentally show that sense induction can as-
sist in identifying compositional MWEs. Sec-
ondly, we show that unsupervised parameter tun-
ing (Korkontzelos et al., 2009) results in accuracy
that is comparable to the best manually selected
combination of parameters. Thirdly, we propose
a semi-supervised approach for extracting non-
compositional MWEs from WordNet, to decrease
annotation cost.

2 Proposed approach
Let us consider the non-compositional MWE “red
carpet”. It mainly refers to a strip of red carpeting
laid down for dignitaries to walk on. However, it
is possible to encounter instances of “red carpet”
referring to any carpet of red colour. Our method
first applies sense induction to identify the major
semantic uses (senses) of a MWE (“red carpet”)
and its semantic head (“carpet”). Then, it com-
pares these uses to decide MWE compositionality.
The more diverse these uses are, the more possi-
bly the MWE is non-compositional. Our algorithm
consists of 4 steps:
A. Corpora collection and preprocessing. Our
approach receives as input a MWE (e.g. “red car-
pet”). The dependency output of Stanford Parser
(Klein and Manning, 2003) is used to locate the
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Figure 1: “red carpet”, sense induction example

MWE semantic head. Two different corpora are
collected (for the MWE and its semantic head).
Each consists of webtext snippets of length 15 to
200 tokens in which the MWE/semantic head ap-
pears. Given a MWE, a set of queries is created:
All synonyms of the MWE extracted from Word-
Net are collected1. The MWE is paired with each
synonym to create a set of queries. For each query,
snippets are collected by parsing the web-pages re-
turned by Yahoo!. The union of all snippets pro-
duces the MWE corpus. The corpus for a semantic
head is created equivalently.

To keep the computational time reasonable,
only the longest 3, 000 snippets are kept from each
corpus. Both corpora are PoS tagged (GENIA tag-
ger). In common with Agirre et al. (2006), only
nouns are kept and lemmatized, since they are
more discriminative than other PoS.

B. Sense Induction methods can be broadly di-
vided into vector-space models and graph based
models. Sense induction methods are evaluated
under the SemEval-2007 framework (Agirre and
Soroa, 2007). We employ the collocational graph-
based sense induction of Klapaftis and Manand-
har (2008) in this work (henceforth referred to as
KM). The method consists of 3 stages:

Corpus preprocessing aims to capture nouns
that are contextually related to the target
MWE/head. Log-likelihood ratio (G2) (Dunning,
1993) with respect to a large reference corpus, Web
1T 5-gram Corpus (Brants and Franz, 2006), is
used to capture the contextually relevant nouns.
P1 is the G2 threshold below which nouns are re-
moved from corpora.

Graph creation. A collocation is defined as a
pair of nouns cooccuring within a snippet. Each

1Thus, for “red carpet”, corpora will be collected for “red
carpet” and “carpet”. The synonyms of “red carpet” are
“rug”, “carpet” and “carpeting”

noun within a snippet is combined with every
other, generating

(
n
2

)
collocations. Each collo-

cation is represented as a weighted vertex. P2

thresholds collocation frequencies and P3 colloca-
tion weights. Weighted edges are drawn based on
cooccurrence of the corresponding vertices in one
or more snippets (e.g. w8 and w7,9, fig. 1). In con-
trast to KM, frequencies for weighting vertices and
edges are obtained from Yahoo! web-page counts
to deal with data sparsity.

Graph clustering uses Chinese Whispers2 (Bie-
mann, 2006) to cluster the graph. Each cluster now
represents a sense of the target word.

KM produces larger number of clusters (uses)
than expected. To reduce it we exploit the one
sense per collocation property (Yarowsky, 1995).
Given a cluster li, we compute the set Si of snip-
pets that contain at least one collocation of li. Any
clusters la and lb are merged if Sa ⊆ Sb.
C. Comparing the induced senses. We used
two techniques to measure the distributional simi-
larity of major uses of the MWE and its semantic
head, both based on Jaccard coefficient (J). “Ma-
jor use” denotes the cluster of collocations which
tags the most snippets. Lee (1999) shows that
J performs better than other symmetric similarity
measures such as cosine, Jensen-Shannon diver-
gence, etc. The first is Jc = J(A, B) = |A∩B|

|A∪B| ,
where A, B are sets of collocations. The second,
Jsn, is based on the snippets that are tagged by
the induced uses. Let Ki be the set of snippets in
which at least one collocation of the use i occurs.
Jsn = J(Kj , Kk), where j, k are the major uses
of the MWE and its semantic head, respectively.
D. Determining compositionality. Given the
major uses of a MWE and its semantic head,
the MWE is considered as compositional, when
the corresponding distributional similarity mea-
sure (Jc or Jsn) value is above a parameter thresh-
old, sim. Otherwise, it is considered as non-
compositional.

3 Test set of MWEs

To the best of our knowledge there are no noun
compound datasets accompanied with composi-
tionality judgements available. Thus, we devel-
oped an algorithm to aid human annotation. For
each of the 52, 217 MWEs of WordNet 3.0 (Miller,
1995) we collected:

2Chinese Whispers is not guaranteed to converge, thus
200 was adopted as the maximum number of iterations.
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Non-compositional MWEs
agony aunt, black maria, dead end, dutch oven,

fish finger, fool’s paradise, goat’s rue, green light,
high jump, joint chiefs, lip service, living rock,

monkey puzzle, motor pool, prince Albert,
stocking stuffer, sweet bay, teddy boy, think tank

Compositional MWEs
box white oak, cartridge brass, common iguana,

closed chain, eastern pipistrel, field mushroom,
hard candy, king snake, labor camp, lemon tree,

life form, parenthesis-free notation, parking brake,
petit juror, relational adjective, taxonomic category,

telephone service, tea table, upland cotton

Table 1: Test set with compositionality annotation.
MWEs whose compositionality was successfully
detected by: (a) 1c1word baseline are in bold font,
(b) manual parameter selection are underlined and
(c) average cluster coefficient are in italics.

1. all synonyms of the MWE
2. all hypernyms of the MWE
3. sister-synsets of the MWE, within distance3 3
4. synsets that are in holonymy or meronymy re-

lation to the MWE, within distance 3
If the semantic head of the MWE is also in the

above collection then the MWE is likely to be com-
positional, otherwise it is likely that the MWE is
non-compositional.

6, 287 MWEs were judged as potentially non-
compositional. We randomly chose 19 and
checked them manually. Those that were compo-
sitional were replaced by other randomly chosen
ones. The process was repeated until we ended up
with 19 non-compositional examples. Similarly,
19 negative examples that were judged as compo-
sitional were collected (Table 1).

4 Evaluation setting and results

The sense induction component of our algorithm
depends upon 3 parameters: P1 is the G2 threshold
below which noun are removed from corpora. P2

thresholds collocation frequencies and P3 colloca-
tion weights. We chose P1 ∈ {5, 10, 15}, P2 ∈
{102, 103, 104, 105} and P3 ∈ {0.2, 0.3, 0.4}. For
reference, P1 values of 3.84, 6.63, 10.83 and
15.13 correspond to G2 values for confidence lev-
els of 95%, 99%, 99.9% and 99.99%, respectively.

To assess the performance of the proposed al-
gorithm we compute accuracy, the percentage of
MWEs whose compositionality was correctly de-
termined against the gold standard.

3Locating sister synsets at distance D implies ascending
D steps and then descending D steps.

Figure 2: Proposed system and 1c1word accuracy.

Figure 3: Unweighted graph con/vity measures.

We compared the system’s performance against
a baseline, 1c1word, that assigns the whole graph
to a single cluster and no graph clustering is
performed. 1c1word corresponds to a relevant
SemEval-2007 baseline (Agirre and Soroa, 2007)
and helps in showing whether sense induction can
assist determining compositionality.

Our method was evaluated for each 〈P1, P2, P3〉
combination and similarity measures Jc and Jsn,
separately. We used our development set to deter-
mine if there are parameter values that verify our
hypothesis. Given a sim value (see section 2, last
paragraph), we chose the best performing parame-
ter combination manually.

The best results for manual parameter selection
were obtained for sim = 95% giving an accu-
racy of 68.42% for detecting non-compositional
MWEs. In all experiments, Jsn outperforms Jc.
With manually selected parameters, our system’s
accuracy is higher than 1c1word for all sim values
(5% points) (fig. 2, table 1). The initial hypothesis
holds; sense induction improves MWE composi-
tionality detection.

5 Unsupervised parameter tuning

We followed Korkontzelos et al. (2009) to select
the “best” parameters 〈P1, P2, P3〉 for the collo-
cational graph of each MWE or head word. We
applied 8 graph connectivity measures (weighted
and unweighted versions of average degree, clus-
ter coefficient, graph entropy and edge density)
separately on each of the clusters (resulting from
the application of the chinese whispers algorithm).

Each graph connectivity measure assigns a
score to each cluster. We averaged the scores over
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Figure 4: Weighted graph connectivity measures.

the clusters from the same graph. For each con-
nectivity measure, we chose the parameter combi-
nation 〈P1, P2, P3〉 that gave the highest score.

While manual parameter tuning chooses a sin-
gle globally best set of parameters (see section 4),
the graph connectivity measures generate different
values of 〈P1, P2, P3〉 for each graph.

5.1 Evaluation results

The best performing distributional similarity mea-
sure is Jsn. Unweighted versions of graph con-
nectivity measures perform better than weighted
ones. Figures 3 and 4 present a comparison be-
tween the unweighted and weighted versions of
all graph connectivity measures, respectively, for
all sim values. Average cluster coefficient per-
forms better or equally well to the other graph
connectivity measures for all sim values (except
for sim ∈ [90%, 100%]). The accuracy of aver-
age cluster coefficient is equal (68.42%) to that
of manual parameter selection (section 4, table
1). The second best performing unweighted graph
connectivity measures is average graph entropy.
For weighted graph connectivity measures, aver-
age graph entropy performs best, followed by av-
erage weighted clustering coefficient.

6 Conclusion and Future Work

We hypothesized that sense induction can assist in
identifying compositional MWEs. We introduced
an unsupervised system to experimentally explore
the hypothesis, and showed that it holds. We
proposed a semi-supervised way to extract non-
compositional MWEs from WordNet. We showed
that graph connectivity measures can be success-
fully employed to perform unsupervised parame-
ter tuning of our system. It would be interesting
to explore ways to substitute querying Yahoo! so
as to make the system quicker. Experimentation
with more sophisticated graph connectivity mea-
sures could possibly improve accuracy.
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