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Abstract tion (NER), the examples selected by AL are se-
guences of text, typically sentences. Approaches
While Active Learning (AL) has already  to AL for sequence labeling are usually uncon-
been shown to markedly reduce the anno-  cerned about the internal structure of the selected
tation efforts for many sequence labeling  sequences. Although a high overall training util-
tasks compared to random selection, AL ity might be attributed to a sequence as a whole,
remains unconcerned about the internal the subsequences it is composed of tend to ex-
structure of the selected sequences (typ- hibit different degrees of training utility. In the
ically, sentences). We propose a semi- NER scenario, e.g., large portions of the text do
supervised AL approach for sequence la-  not contain any target entity mention at all. To
beling where only highly uncertain sub-  fyrther exploit this observation for annotation pur-
sequences are presented to human anno- poses, we here propose an approach to AL where
tators, while all others in the selected se-  hyman annotators are required to label only uncer-
quences are automatically labeled. Forthe  tain sutsequences within the selected sentences,
task of entity recognition, our experiments  whijle the remaining subsequences are labeled au-
reveal that this approach reduces annota-  tomatically based on the model available from the
tion efforts in terms of manually labeled  previous AL iteration round. The hardness of sub-
tokens by up to 60 % compared to the stan-  sequences is characterized by the classifier's con-
dard, fully supervised AL scheme. fidence in the predicted labels. Accordingly, our
approach is a combination of AL and self-training
to which we will refer assemi-supervised Active

Supervised machine learning (ML) approaches ark€arning(SeSAL) for sequence labeling.
currently the methodological backbone for lots of While self-training and other bootstrapping ap-
NLP activities. Despite their success they create aroaches often fail to produce good results on NLP
costly follow-up problemyiz.the need for human tasks due to an inherent tendency of deteriorated
annotators to supply large amounts of “golden”data quality, SeSAL circumvents this problem and
annotation data on which ML systems can bestill yields large savings in terms annotation de-
trained. In most annotation campaigns, the lancisions, i.e., tokens to be manually labeled, com-
guage material chosen for manual annotation is sgpared to a standard, fully supervised AL approach.
lected randomly from some reference corpus. After a brief overview of the formal underpin-
Active Learning (AL) has recently shaped as anings of Conditional Random Fields, our base
much more efficient alternative for the creation ofclassifier for sequence labeling tasks (Section 2),
precious training material. In the AL paradigm, a fully supervised approach to AL for sequence
only examples of high training utility are selectedlabeling is introduced and complemented by our
for manual annotation in an iterative manner. Dif-semi-supervised approach in Section 3. In Section
ferent approaches to AL have been successfulld, we discuss SeSAL in relation to bootstrapping
applied to a wide range of NLP tasks (Engel-and existing AL techniques. Our experiments are
son and Dagan, 1996; Ngai and Yarowsky, 2000laid out in Section 5 where we compare fully and
Tomanek et al., 2007; Settles and Craven, 2008).semi-supervised AL for NER on two corpora, the
When used for sequence labeling tasks such agewspaper selection of M7 and EENNBIOIE, a
POS tagging, chunking, or named entity recognibiological abstracts corpus.

1 Introduction
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2 Conditional Random Fields for where U (7,a,b) = exp (zgl )\ifi(mb’f’j)),
Sequence Labeling T;(y) is the set of all successors of a statat a

Many NLP tasks, such as POS tagging, chunkingSPecified positiory, and, accordinglyl’ " (y) is

or NER, are sequence labeling problems where e set of predecessors.

sequence of class labefs= (y1,...,yn) € V" Normalized forward and backward scores
are assigned to a sequence of input unitg'® inserted into Equation (4) to replace
Z=(x1,...,2,) € X" Input unitse; are usually ey P5(¥’|Z) so that L(T) can be opti-
tokens, class labelg; can be POS tags or entity mized with gradient-based or iterative-scaling
classes. methods.

Conditional Random Fields (CRFs) (Lafferty et htarence and Probabilities. The marginal
al., 2001) are a probabilistic framework for label- probability

ing structured data and mode} (i/]%). We focus

on first-order linear-chain CRFs, a special form of a;(y'|Z) - B; (Y |%)

. —_— I 7 —_
CREFs for sequential data, where Frly; =yle) = Z3(%) ®)
P;(y17) = o , . .
) N m specifies the model’s confidence in laléht po-
__.exp Nifilyi—1,y;,%,4)) (1) Sition j of an input sequence. The forward
Z5(%) ( e T ) and backward scores are obtained by applying the

J
Forward-Backward algorithm o@. The normal-

ization factor is efficiently calculated by summing
over all forward scores:

with normalization facto?y (%), feature functions
1i(+), and feature weights;.

Parameter Estimation. The model parameters . .
)\; are set to maximize the penalized log-likelihood Z3(@) =) on(yl7) (6)
L on some training data yey

m

L A i
L(T) = Z log p(|7) — Z ) The most likely label sequence

L D2
@9)eT =1 n_m
The partial derivations of (7)) are v (Z; z; )‘ifi(yj_l’yj’x’j)) (7)
7j=11i=
OL(T - i
8& ) _ E(fi) — E(fi) — 2 () is computed using the Viterbi algorithm (Rabiner,

} 1989). See Equation (1) for the conditional prob-
where E(f;) is the empirical expectation of fea- ability P;(i/*|Z) with Z; calculated as in Equa-
ture f; and can be calculated by counting the oc+ion (6). The marginal and conditional probabili-
currences off; in 7. E(f;) is the model expecta- ties are used by our AL approaches as confidence
tion of f; and can be written as estimators.

— _’/ i g - - -

E(fi) = Z Z Px(y°12) 3 Active Learning for Sequence Labeling
(ZHET §'ey"

n AL is a selective sampling techniqgue where the

Zfi(y;_l,y;,f,j) (4) learning protocol is in control of the data to be

7j=1

used for training. The intention with AL is to re-

Direct computation ofZ(f;) is intractable due to duc€ the amount of labeled training material by
the sum over all possible label sequenités V™. guerying labels only for examples which are as-

The Forward-Backward algorithm (Rabiner, 1989)sfumed to have a high training utility. This section,
solves this problem efficiently. ForwardYand 'St describes a common approach to AL for se-

backward () scores are defined by quer_1tia| datg, and then presents our approach to
semi-supervised AL.

(ulE) = (Y2 - V(T _ . :
j(yl) /eTZl( )a] 1Y) - ¥5(Z . y) 3.1 Fully Supervised Active Learning
Yy i Y
. ’ L . . Algorithm 1 describes the general AL framework.
BiwlE) = Y B/ Y(F y,y) A tility function Ua(p;) is the core of each AL
y'ET;(y) approach — it estimates how useful it would be for
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Algorithm 1 General AL framework For the sequence labeling scenario, we accord-

Given: . | be selected ingly modify the fully supervised AL approach
B: number of examples to be selecte : :
L: set of labeled examples from Section 3.1. Only those tokens remain to t_)e
P: set of unlabeled examples manually labeled on which the current model is
U utility function highly uncertain regarding their class labels, while
Algorithm: all other tokens (those on which the model is suf-
loop until stopping criterion is met ficiently certain how to label them correctly) are

1. learn modeM from L .

2. forallp; € P :uy, — Upm(pi) | - automatically tagged.

3. selects exampleg; € P with highest utilityu,, To select the sequence examples the same util-

4. query human annotator for labels of Blexamples . . . .

5. move newly labeled examples frafhto L ity function as for FUSAL (cf. Equation (8)) is ap-
returnL plied. To identify tokens:; from the selected se-

guences which still have to be manually labeled,

ne model’s confidence in labgf is estimated by

a specific base learner to have an unlabeled exarﬁ]h inal probability (cf. Equation (5
ple labeled and, subsequently included in the train- e marginal probability (cf. Equation (5))

ing set. N =

In the sequence labeling scenario, such an ex- Cx) = Pxlys = ;17) ©)
ample is a stream of linguistic items — a sentencgvherey; specifies the label at the respective po-
is usually considered as proper sequence unit. Weition of the most likely label sequengg® (cf.
apply CRFs as our base learner throughout this P&quation (7). 'fo(il/?) exceeds a certainon-
per and employ a utility function which is based figence threshold ¢/* is assumed to be the correct
on the condlitional probability of _the most likely label for this token ;nd assigned t@ iDtherwise,
label squencg* for an observation sequenge manual annotation of this token is required. So,
(cf. Equations (1) and (7)): compared to FUSAL as described in Algorithm 1
only the third step step is modified.

We call this semi-supervised Active Learning

Sequences for which the current model is leastSESALYor sequence labeling. SeSAL joins the
confident on the most likely label sequence ar&standard, fully supervised AL schema with a boot-

preferably selecteti These selected sentences arétfapping mode, namely self-training, to combine
fully manually labeled. We refer to this AL mode the strengths of both approaches. Examples with

Us(7) = 1 = P5(y7|7) (8)

asfully supervised Active Learning (FUSAL) high training utility are selected ysing AL while
self-tagging of certain “safe” regions within such
3.2 Semi-Supervised Active Learning examples additionally reduces annotation effort.

Zhrough this combination, SeSAL largely evades
which, as a whole, has a high utiliy; (), can the problem of deteriorated data quality, a limiting
still exhibit subsequences which do not add mucHactor of “pure” bootstrapping approaches.

to the overall utility and thus are fairly easy for the __ This approach requires two parameters to be set:
current model to label correctly. One might there-Firstly, theconfidence threshold which directly
fore doubt whether it is reasonable to manually lainfluences the portion of tokens to be manually
bel the entire sequence. Within many sequencd@Peéled. Using lower thresholds, the self-tagging
of natural language data, there are probably larggomponent of SeSAL has higher impact — presum-

subsequences on which the current model alreac§P!Y 1€2ding to larger amounts of tagging errors.
does quite well and thus could automatically gen->€condly, alelay factord can be specified which

erate annotations with high quality. This might, in channels the amount of manually labeled tokens

particular, apply to NER where larger stretches ofPbtained with FUSAL before SeSAL is to start.

sentences do not contain any entity mention at al@nly with d = 0, SeSAL will already affect the

or merely trivial instances of an entity class easilyfir'St AL iteration. cherwi_se, several iteraftions of
FUuSAL are run until a switch to SeSAL will hap-

predictable by the current model.
pen.

In the sequence labeling scenario, an exampl

There are many more sophisticated utility functions for—_
sequence labeling. We have chosen this straightforward one “Sequencesf consecutive tokens; for whichCs (y;) <
for simplicity and because it has proven to be very effectivet are presented to the human annotator insteaihgie iso-
(Settles and Craven, 2008). lated tokens.
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It is well known that the performance of boot- provement over the initial model can be expected.
strapping approaches crucially depends on the siZBo address the problem of data pollution by tag-
of the seed set — the amount of labeled exampleging errors, Pierce and Cardie (2001) propose cor-
available to train the initial model. If class bound- rected co-training. In this mode, a human is put
aries are poorly defined by choosing the seed sétto the co-training loop to review and, if neces-
too small, a bootstrapping system cannot learsary, to correct the machine-labeled examples. Al-
anything reasonable due to high error rates. If, orthough this effectively evades the negative side ef-
the other hand, class boundaries are already tdects of deteriorated data quality, one may find the
well defined due to an overly large seed set, notheorrection of labeled data to be as time-consuming
ing to be learned is left. Thus, together with low as annotations from the scratch. Ideally, a human
thresholds, a delay rate df> 0 might be crucial should not get biased by the proposed label but
to obtain models of high performance. independently examine the example — so that cor-

rection eventually becomes annotation.

4 Related Work In contrast, our SeSAL approach which also ap-

Common approaches to AL are variants of thePlies bootstrapping, aims at avoiding to deteriorate
Query-By-Committee approach (Seung et al, data quality by e)_(plicitl_y. pointin_g human.annota-
1992) or based on uncertainty sampling (Lewistorsj to cIaSS|f|cat|on-cr|t|cal regions. _Whlle thqse
and Catlett, 1994). Query-by-Committee uses 4€9i0ns require full ann_otatlon, regions of high
committee of classifiers, and examples on whictfonfidence are automatically labeled and thus do
the classifiers disagree most regarding their pre20t require any manual inspection. Self-training
dictions are considered highly informative and@nd co-training, in contradistinction, select exam-
thus selected for annotation. Uncertainty samPI€S of high confidence only. Thus, these boot-
pling selects examples on which a single classiStraPPing methods will presumably not find the
fier is least confident. AL has been successfullyn0st useful unlabeled examples but require a hu-
applied to many NLP tasks; Settles and Cravef"an f[o review data pomts of Ilmlted training .utll-_
(2008) compare the effectiveness of several ALY (Pierce and Cardie, 2001). This shortcoming is
approaches for sequence labeling tasks of NLP. @IS0 avoided by our SeSAL approach, as we inten-
Self-training (Yarowsky, 1995) is a form of tionally select informative examples only.
semi-supervised learning. From a seed set of la- A combination of active and semi-supervised
beled examples a weak model is learned whicliearning has first been proposed by McCallum and
subsequently gets incrementally refined. In eaciNigam (1998) for text classification. Committee-
step, unlabeled examples on which the currenbased AL is used for the example selection. The
model is very confident are labeled with their pre-committee members are first trained on the labeled
dictions, added to the training set, and a newexamples and then augmented by means of Expec-
model is learned. Similar to self-training, co- tation Maximization (EM) (Dempster et al., 1977)
training (Blum and Mitchell, 1998) augments theincluding the unlabeled examples. The idea is
training set by automatically labeled examplesto avoid manual labeling of examples whose la-
It is a multi-learner algorithm where the learnersbels can be reliably assigned by EM. Similarly,
have independent views on the data and mutuallgo-testing (Muslea et al., 2002), a multi-view AL
produce labeled examples for each other. algorithms, selects examples for the multi-view,
Bootstrapping approaches often fail when apsemi-supervised Co-EM algorithm. In both works,
plied to NLP tasks where large amounts of trainingsemi-supervision is based on variants of the EM
material are required to achieve acceptable perforlgorithm in combination withall unlabeled ex-
mance levels. Pierce and Cardie (2001) showedmples from the pool. Our approach to semi-
that the quality of the automatically labeled train-supervised AL is different as, firstly, we aug-
ing data is crucial for co-training to perform well ment thetraining datausing a self-tagging mech-
because too many tagging errors prevent a highanism (McCallum and Nigam (1998) and Muslea
performing model from being learned. Also, theet al. (2002) performed semi-supervision to aug-
size of the seed set is an important parametement themodelsusing EM), and secondly, we op-
When it is chosen too small data quality gets deteerate in the sequence labeling scenario where an
riorated quickly, when itis chosen too large no im-example is made up of several units each requiring
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a label — partial labeling of sequence examples is corpus entity classes sentences  tokens
a central characteristic of our approach. Another pyc7 7 3,020 78,305

work also closely related to ours is that of Krist- PENNBIOIE 3 10,570 267,320
jansson et al. (2004). In an information extraction o o

setting, the confidence per extracted field is cal- Table 1: Quantitative characteristics of the chosen corpora
culated by a constrained variant of the Forward-

Backward algorithm. Unreliable fields are high- sons, organizations, locations, times, dates, mone-
lighted so that the automatically annotated corpugary expressions, and percentages. From the sub-
can be corrected. In contrast, Aelectionof ex-  |anguage biology domain, we used the oncology
amples together with partial manual labeling of thepart of the ENNBIOIE corpus (Kulick et al.,
selected examples are the main foci of our work. 2004) and removed all but three gene entity sub-
types (generic, protein, and rna). Table 1 summa-
rizes the quantitative characteristics of both cor-

In this section, we turn to the empirical assessmerROra’ The results reported below are averages of
of semi-supervised AL (SeSAL) for sequence la-20 independent runs. For each run, we randomly
beling on the NLP task of named entity recogni-Split each corpus intogool of unlabeled examples
tion. By the nature of this task, the sequences 10 Select from (90 % of the corpus), and a comple-
in this case, sentences — are only sparsely poptentaryevaluation se{10 % of the corpus).

lated with entity mentions and most of the tokens . .
belong to the OUTSIDE cladso that SeSAL can 5.2 Empirical Evaluation

5 Experiments and Results

be expected to be very beneficial. We compare semi-supervised AL (SeSAL) with
_ _ its fully supervised counterpart (FUSAL), using
5.1 Experimental Settings a passive learning scheme where examples are

In all experiments, we employ the linear-chainfandomly selected (RAND) as baseline. SeSAL
CRF model described in Section 2 as the basi first applied in a default configuration with a
learner. A set of common feature functions wasvery high confidence threshold & 0.99) with-
employed, including orthographical (regular ex-out any delay = 0). In further experiments,
pression patterns), lexical and morphological (sufthese parameters are varied to study their impact
fixes/prefixes, lemmatized tokens), and contextua®n SeSAL's performance. All experiments were
(features of neighboring tokens) ones. run on both the newspaper (M7) and biological

All experiments start from a seed set of 20 ran{PENNBIOIE) corpus. When results are similar to
domly selected examples and, in each iterationéach other, only one data set will be discussed.

50 new examples are selected using AL. The ef-.. . . '
e pie ) g . . Distribution of Confidence Scores. The lead-
ficiency of the different selection mechanisms is. . :
. . . ing assumption for SeSAL is that only a small por-
determined by learning curves which relate the an-. . .
: . tion of tokens within the selected sentences consti-
notation costs to the performance achieved by th

. . . ?ute really hard decision problems, while the ma-
respective model in terms @f;-score. The unit of y P X

annotation costs are manually labeled tokens Alj_ority of tokens are easy to account for by the cur-
' rient model. To test this stipulation we investigate

. - ... . the distribution of the model’ nfidence val
has already been subject of legitimate criticism € d*St bution of the model's confidence values
5(y;) over all tokens of the sentences (cf. Equa-

(Settles et al., 2008), we believe that the numbeCA

. .{lon (9)) selected within one iteration of FUSAL.
of annotated tokens is still a reasonable approxi-. . .

L o Figure 1, as an example, depicts the histogram
mation in the absence of an empirically more ade:

. . for an early AL iteration round on the Wc7 cor-
gquate task-specific annotation cost model. . .
. . us. The vast majority of tokens has a confidence
We ran the experiments on two entity-annotate

corpora.  From the aeneral-lanquade newspa srcore close td, the median lies a®.9966. His-
pora. gener: guag b IOEfograms of subsequent AL iterations are very sim-
domain, we took the training part of the M7

. . . . ilar with an even higher median. This is so because
corpus (Linguistic Data Consortium, 2001) which g

incorporates seven different entity types. per- “We removed sentences of considerable over and under
- length (beyond +/- 3 standard deviations around the average

3The OUTSIDE class is assigned to each token that doesentence length) so that the numbers in Table 1 differ from
not denote an entity in the underlying domain of discourse. those cited in the original sources.
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Figure 1: Distribution of token-level confidence scores in the &
5th iteration of FUSAL on MIC7 (number of tokensl,843) °
8 | -
the model gets continuously more confident when g © =7
trained on additional data and fewer hard cases re- 2 B
— . . LL
main in the shrinking pool. R
o
| — SeSAL
Fully Supervised vs. Semi-Supervised AL. . T EL/LSN/EL
Figure 2 compares the performance of FUSAL and =R ‘ :

SeSAL on the two corpora. SeSAL is run with 0 10000 30000 50000
a delay rate ofd = 0 and a very high confi-
dence threshold of = 0.99 so that only those
tokens are automatically labeled on which the cur-_ _ _ _
rent model is almost certain. Figure 2 cleatlyEShrS 2 Leamng cuves for Semisuperused A, (GeonL)
shows that SeSAL is much more efficient than
its fully supervised counterpart. Table 2 depicts
the exact numbers of manually labeled tokens tovell-packaged, chunk-like subsequences annota-
reach the maximal (supervised) F-score on botlion time can really be saved. To demonstrate that
corpora. FuSAL saves about 50% compared t&@eSAL comes close to this, we counted the num-
RAND, while SeSAL saves about 60 % comparedoer of base noun phrases (NPs) containing one or
to FUSAL which constitutes an overall saving of more tokens to be manually labeled. On thed¥
over 80 % compared to RAND. corpus, FUSAL require%,374 annotated NPs to
These savings are calculated relative to theyield an F-score oB79%, while SeSAL hit the
number oftokenswhich have to be manually la- same F-score with only,017 NPs. Thus, also in
beled. Yet, consider the following gedanken ex-terms of the number of NPs, SeSAL saves about
periment. Assume that, using SeSAL, every sec45 % of the material to be consideréd.
ond token in a sequence would have to be labeled. _ _
Though this comes to a ‘formal’ saving of 50 %, Detailed Analysis of SeSAL. As Figure 2 re-
the actual annotation effort in terms of tiene  V€als, the learning curves of SeSAL stop early (on

needed would hardly go down. It appears thaf!UC7 after12,800 tokens, on ENNBIOIE after
only when SeSAL splits a sentence into larger7-600 tokens) because at that point the whole cor-
pus has been labeled exhaustively — either manu-

ally, or automatically. So, using SeSAL the com-
Corpus Frax  RAND  FuSAL  SeSAL plete corpus can be labeled with only a small
Muc? 87.7 63,020 36,015 11,001 fraction of it actually being manually annotated
PENNBIOIE  82.3 194,019 83017 27,201  (Myc7: aboutl8 %, PENNBIOIE: aboutl3 %).

manually labeled tokens

Table 2: Tokens manually labeled to reach the maximal (su-  5on peNNBIOIE, SeSAL also saves abouf % com-
pervised) F-score pared to FUSAL to achieve an F-scorefaf%.
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Table 3 provides additional analysis results on learning curves

o
Muc?. In very early AL rounds, a large ratio of 3]
tokens has to be manually labeled (70-80 %). This -
number decreases increasingly as the classifier im- 3 |
proves (and the pool contains fewer informative g °
sentences). The number of tagging errors is quite 2 7
. . . L o
low, resulting in a high accuracy of the created cor- s B — =099
pus of constantly over 99 %. N : --- t=0.95
i t=0.90
3 ! == t=0.70
©
labeled tokens s +—
manual automatic > AR (%) errors ACC 0 2000 6000 10000
1,000 253 1,253  79.82 6 99.51
5,000 6,207 11,207 4461 82 99.27 manually labeled tokens
10,000 25,506 34,406  28.16 174 99.51
12,800 57,371 70,171 1824 259 99.63 | error curves
— t=0.99 7
Table 3: Analysis of SeSAL on Mc7: Manually and auto- 8 . Eg'gg 7
matically labeled tokens, annotation rate (AR) as the portion « L t=0:70 L7

of manually labeled tokens in the total amount of labeled to- i ,
kens, errors and accuracy (ACC) of the created corpus.

errors

The majority of the automatically labeled to-
kens (97-98 %) belong to the OUTSIDE class. R
This coincides with the assumption that SeSAL R
works especially well for labeling tasks where T T T T T T
some classes occur predominantly and can, in 0 20000 40000 60000
most cases, easily be discriminated from the other all labeled tokens
classes, as is the case in the NER scenario. An
analysis of the errors induced by the self-tagginfgure 3: Learning and error curves for SeSAL with different

hresholds on the Mc7 corpus
component reveals that most of the errors (90-
100 %) are due to missed entity classes, i.e., while
the correct class label for a token is one of thestops at much lower F-scores and produces labeled
entity classes, the OUTSIDE class was assignedraining data of lower accuracy. Table 5 contains
This effect is more severe in early than in later ALthe exact numbers and reveals that the poor model
iterations (see Table 4 for the exact numbers).  performance of SeSAL with lower thresholds is
mainly due to dropping recall values.

500 1000
\

0
|

labeled error types (%)
corpus tokens errors E20 O2E EZ2E threshold F R P Acc
MUC7 10,000 75 100 - -
20,000 259 9% 13 27 0.99 87.7 859 899 99.6
0.95 854 82.3 88.7 98.8
Table 4: Distribution of errors of the self-tagging component. 0.90 84.3 80.6 883 981
Error types: OUTSIDE class assigned though an entity class 0.70 69.9 61.8 81.1 96.5

is correct (E20), entity class assignhed but OUTSIDE is cor-
rect (O2E), wrong entity class assigned (E2E).

Table 5: Maximum model performance onUd?7 in terms of
F-score (F), recall (R), precision (P) and accuracy (Acc) — the

Impact of the Confidence Threshold. We also labeled corpus obtained by SeSAL with different thresholds

ran SeSAL with different confidence threshotds

(0.99, 0.95, 0.90, and0.70) and analyzed the re- Impact of the Delay Rate. We also measured
sults with respect to tagging errors and the modethe impact of delay rates on SeSAL's efficiency
performance. Figure 3 shows the learning and ereonsidering three delay rates,{00, 5,000, and
ror curves for different thresholds on theud7 10,000 tokens) in combination with three confi-
corpus. The supervised F-scoreS3t7% is only  dence threshold9(99, 0.9, and0.7). Figure 4 de-
reached by the highest and most restrictive threstpicts the respective learning curves on the o7
old of t = 0.99. With all other thresholds, SeSAL corpus. For SeSAL witht = 0.99, the delay
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Figure 4: SeSAL with different delay rates and thresholds arcvl Horizontal lines mark the supervised F-score (upper line)
and the maximal F-score achieved by SeSAL with the respective thdeshdd = 0 (lower line).

has no particularly beneficial effect. However, ditions negative side-effects such as deteriorated
in combination with lower thresholds, the delaydata quality and, by this, inferior models emerge.
rates show positive effects as SeSAL yields F-These problems are major drawbacks of many
scores closer to the maximal F-score8f7 %, bootstrapping approaches. However, our experi-
thus clearly outperforming undelayed SeSAL.  ments indicate that as long as self-training is cau-
tiously applied (as is done for SeSAL with restric-
6 Summary and Discussion tive parameters), it can definitely outperform an

Our experiments in the context of the NERentlrer supervised approach.

: . . From an annotation point of view, SeSAL effi-
scenario render evidence to the hypothesis that . . s

. : ciently guides the annotator to regions within the

the proposed approach to semi-supervised AL )

L selected sentence which are very useful for the

(SeSAL) for sequence labeling indeed strongly re-

duces the amount of tokens to bnuallyanno- learning task. In our experiments on the NER sce-

tated — in terms of numbers, about 60% Comparegarlo, those regions were mentions of entity names

to its fully supervised counterpart (FUSAL), and or linguistic units which had a surface appearance

. . similar to entity mentions but could not yet be cor-
over 80% compared to a totally passive Iearnlngr o
. ectly distinguished by the model.
scheme based on random selection. Whil luated SeSAL h in t ¢
For SeSAL to work well, a high and, by this, 'e we evaluated Se ere in terms o

- ._tokensto be manually labeled, an open issue re-
restrictive threshold has been shown to be crucial.” . .
. : mains, namely how much of the real annotation
Otherwise, large amounts of tagging errors lead to

effort — measured by théme needed — is saved
a poorer overall model performance. In our ex- . .
. . . . by this approach. We here hypothesize that hu-
periments, tagging errors in such a scenario were

OUTSIDE labelings, while an entity class would man annotators work much more efficiently when

have been correct — with the effect that the resultpomted to the regions of immediate interest in-
ing models showed low recall rates stead of making them skim in a self-paced way
The delay rate is important when SeSAL is rur]through larger passages of (probably) semantically

. . irrelevant but syntactically complex utterances —
with a low threshold as early tagging errors can_ . .
. . . . a tiring and error-prone task. Future research is
be avoided which otherwise reinforce themselves, - : . : .
. . needed to empirically investigate into this area and
Finding the right balance between the delay factor . . . . .
. . . _quantify the savings in terms of the time achiev-
and low thresholds requires experimental Ca“braéble with SeSAL in the NER scenario
tion. For the most restrictive threshold-¢ 0.99) '
though such a.delay is u_nlmpprtanF SO _that it Ca%cknowledgements
be settal = 0 circumventing this calibration step.
In summary, the self-tagging component ofThis work was funded by the EC within the
SeSAL gets more influential when the confidenceBOOTStrep (FP6-028099) and CALBC (FP7-
threshold and the delay factor are set to lower val231727) projects. We want to thank Roman Klin-

ues. At the same time though, under these corger (Fraunhofer SCAI) for fruitful discussions.
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