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Abstract

We preset asimple and scalale algorithmfor

clusering tens of millions d phrases anl use

the reslting clusters as feates in

discriminative classifies. To denonstate the
power and generality of this appoach, we
apply the nethod in two very different

applications: named ertity recogition and

quey classficaion. Our resuts show that
phrase clgters dfer sigrificant improvements

over word clugers. Qir NER systemachieves
the best curent resut on the widely used
CoNLL benchmark. Our query classfier is on

par with the best systemin KDDCUP 20®

without resating to laba intensive knowledye

engneerhg efforts.

1 Introduction

Over the pst deede, supervised learning
algorithns have gained wilespread @eptance in
natural language procesgi (NLP). Theyhave
becane the workhorse inalmost all sub-areas
and conponents of NLP, includimp part-of-
speech taging, chunking, namd entity
recognition and parsing. To applysupervised
learning to an NLP probie, one firstrepreserg

two-stage sategy: first create word clusters with
unlabeled d@ and then use the clusters a
features in supervised training. Under this
approach, even if a word is not found in the
training data it may still fire cluster-based
features as long as it skarcluster assignents
with some words in the lteeled data.

Since the clusters are obtained withouy an
labeled datathey may not correspond directlyo
concepts that are usefudrfdecision making in
the problem domin. However, the supervised
learning algorithms can typicalligentify useful
clusters andassign proper weights to them,
effectively adapting the clusters to the domain.

This method has beershown to be quite
successful in naed entity recognition Miller et
al. 2004) ad dependencyparsing (Kooet al.,
2008).

In this paper, we present angesupevised
learning algorithmthat goes astep frther. In
addition toword-clusters we also us phrase-
clusters asfeatures. Outof context, natural
language words are often bhiguous. Phrasese
much less e because the words in a phrase
provide cotexts for one apther.

Consider the phrase “bd of Odds’ One
would never have guesséidat it is acompany

the problemas a vector of features. The learning@Te basedon the clusters containingdds and

algorithm then optinizes a regularized convex
objective function that is expressed inntsrd
these featwes. The performanceof such

Land. With phrase-baseclustering, “Land of
Odds” is gouped wih many names that are
labeled ascompany names, which isa strong

learning-based solutions thus crucially depend®dication hat it is a corpany nane as well. The

on the informativenes of the features. The
majority of the featurs in these supervised
classifers ae predicated on lexical information,
such as word identds. The long-tailed
distribution of natural language waosdimplies
thatmost of the word tyes will be eitfer unseen
or seen very few mies in the labeled training
data, even if the data set is a relativielsge one
(e.g., the Penn Treebank).

While the laleled data $ generally vely costly
to obtain there is a vast aaunt of unlabeled
textual data freelavailable on the wel®©ne way
to alleviate the sparsitproblem is toadopt a

disambiguation power of phrases is also
evidenced by the iprovements of phrase-bal
machine traslation gstans (Koehn et. al.,
2003)over word-based ones.

Previous approaches, e.g., (Milketral. 2004)
and (Kooet al. 20), hare all used the Brown
algorithmfor clustering (Browret al. 1992). The
main idea of the algorithnis to minimize the
bigram language-madel peplexity of a text
corpus. The algorithris quadratic in the maber
of elements b be clustered. It is able to cluster
tens of thousnds of weds, but is notscalabé
enough to dal with tens of nilions of phrases.
Uszkoreit and Brants (2008)proposed a
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distributed clustering algithm with a simlar
objective function as the Brown algorithnit
substantiallyincreass the nunber of elements
that can be clustereddowever, snce it still
needs to load the current clustering of a
elements into each ofthe workers in the
distributed sgtem the memory requirenent
becames abottleneck.

We presenta distributed version of anuch
simpler K-Means clusteng that allows us to
cluster tens of illions of elements. We
demonstrate the advantages of pse-baed
clusters over word-based ones watkperimentd
results fran two distinct application doains:
named entity recognition and  quer
classifcation. Our namd entiy recognition
system achiees an Fl-core of 90.90 on the
CoNLL 20® Englishdata set, which isboutl

point higher than the previous best result. Our

qguery classfier reache the sane level of

performance as the KDDCUP 2005 winning
systems, which were built with a great deal Oflcos

knowledge egineering.

2 Didtributed K-Means clustering

K-Means clgtering (MacQueen 1967% oneof
the sinplest and most well-known clustering
algorithns. Given a sebf elanents epresented
as feature wegors and anumber, k, of desired
clusters, theK-Means algrithm consiss of the
following steps:

Step Operation

i.  Selectk elements as the il centroids

for k clusters.

ii.  Assign each ehaent to the cluster with
the closestcentroid acording to a
distance (or snilarity) function.
Recanpute each cluster's centroioly
averaging the vectors of its elents
Repeat Steps i and i
convergence
Before desching our parallel irplementation of
the K-Means algorithmwe first describe the
phrases to & clustes and how their feature
vectors are aostructed.

iv. until

2.1 Phrases

Table 1 Cluster of “English lessons”

Window | Cluster members (partial list)

size=1 environmental coursgssummer stool
couses professional development
classes, mfessionaltraining progrars,
further educaton courses, leaddnip
coursesacceleated oursesvocational
classes, techaal coursestechnical
classes,gecial educationaurses,.....

size=3 learn eglish garish, grammar learn,
languageleaning spanish, translation
spanish language, kaning spanish
language englsh ganish language
learn faeign language, freeerglish
learnig, language stidy english,
sparishimmersion couse,how to
spe& french, gpanish leaning garres,

However, thé does not eam to caug any real
problem because non-linguistic pls@s may
form their own clusters. For exanie, one cluster
ontains {"Cory does”, “Ben saw”"“l can't

e’ ... }

To reduce thenemory requirenent for storing
a large nurber of phraseswe used Blom Filter
(Bloom 1970) to decide whether a sequence of
tokens is aphrase. TheBloom filter allows a
small percentage of faé positives topass
through. We did not remve themwith post
processing since our notion phrases is quite
loose to begi with.

22

Distributional word clustering is based on the
assumption that words that appear in Slan
contexts tend to haveimilar meanngs. The
sane asumption holds for phrasess vell.
Following previous appraches to distributional
clustering of words, weepresent the antexts of

a phrase as a feature vector. Thare many
possible definitions forwhat constitutes the
contexts. In the literature, contexts have been
defined as dnject and bjectrelationsinvolving
the word (Hindle, 199), as the docuents
containing the word (Dewesteret al, 1990),or

as ®archengine snippets for the word as a query
(Saham and Heilman, Q06). We define the
contexts ofa phrase to benwmll, fixed-sized

Context representation

To obtain a list of phrases to be clustered, wevindows cetered on occurrences tiie phrase

followed the approach in (Linet al., 2008) by
collecting 20 million unique queriesfrom an
anorymized quey log that are found in a 700
billion token web corps with a minimum
frequencycount of 100. Note that many of these
gueries are @t phrases in the linguistisense.

in a large corpus. The features ahe words
(tokens) inthe window. The contéxfeature
vector of a phrase is constructed birst
aggregatinghe frequencycounts of ihe words in
the context windows of diérent instances of ¢h
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phrase. The frequengounts are then converted 2.4

into point-wsemutual information (PMI) values:

P(phr,
PMI(phr, f) = log (%)

wherephr is a phrase andf is a feture of
phr. PMI effectively discounts Mhe prior
probability of the features andaneaswues hav
much beyondrandoma feature tends toccur in

Indexing centroid vectors

In a naive implemntation of Step ii of K-Means,
one would ompute thesimilarities betweena
feature vecto and all thecentroids inorder to
find the closest one. The kd-tree alganith
(Bentley 1980) ams at speeding up nearest
neighbor search. However, it gnivorks when
the vectors are low-diamsional, which is not the

a phrases context window. Given two feature case here. Fortunately, thigh-dimensonal and

vectors, we coute the snilarity betweenwo
vectors as the cosine function olfiet angle
between thevectors. Note that evethoud a
phrasephr can havemultiple tokens, its featuré
is always a single-word token.

We impose an upper litnon the mmber of
instances ofeach phrasevhen constructing its
feature vetor. The idea ishat if we have alrady

sparsenatureof our featue vectorscan also be
exploited.

Since the cosineneasure of two unitength
vectors is simply their dot product, whe
searching for the closesentroid to an elment,
we only care about features in the centroids that
are in canmon with the elment. We therefore
createan inverted index thataps a &ature to

seen 300K instances of arpse, we should have the list of centroids havinthat feature. Given an
already collected enough data for the phraseinput feature vector, we can iterate through all of

More data for the same phrasewill not
necessarilytell us anything more about it. There
are two benefits for suchn upper lint. First, it
drastically reduces the computational cost.
Second, ireduces the variance in theeszof the
feature vecta® of the phrases.

2.3 K-Meansby MapReduce

K-Means & an enbarrassingly parallelizabé
algorithm Since the centoids of clustersare
assumed to be constant thin each iteation, the
assigment of elaments to clusters (Steii) can
be done totayl indepemently.

The algorithm fits nicelynto the MapReduce
paradigm for parallepbrogramning (Dean ad
Ghemawat, 2004). The nost straightforward
MapReduce implementation of K-Means would
be to havemappers perfion Step iiand reducesr
perform Step iii. The kgs of internedate pairs
are cluster ids and thealuesare featue vectoss
of elements assignedo tthe corresponding
cluster. When the nuper of elenents to be
clustered is very large, sortinget intermediae
pairs in the shuffling tage can be costly
Furthernore, when sonming up a large nmaber
of features vectors, nuwrmcal underflow
becanesa potential probie.

A more eficient and nurerically more stabke
method is to cmpute, for each inpupartition,
the partial vector sums of the elents lglonging

its conponents and copute its dotproduct with
all the centroids at the isee time.

25

In our expemnents, we use either 1 or 3 as the
size of the cotext windows. Window size has an
interesting dect on the ypes of clugdrs. With
larger windows, theclusters tend to benore
topical, whereassmaller windows result in
categorical alsters.

For exanple, Table 1 contains thecluster tha
the phrase “English lessons” belongs to. With 3-
word context windows,the cluster is about
language learning antgtanslation. Wi 1-word
context winaws, the cluster contains different
types of lessons.

The ability to produce both kinds oflasters
turns out to be vey useful. In different
applications we need défent types of clusters
For exanple, in the named entityecogniton
task, caegorical clustrs are more succesful,
wherea in query categorization, the topical
clusters a& much nore berficial.

The Brown algorithmuses esmntially the
same information as our 1-wbr window
clusters. We therefore expect it to produce
mostly categorical clusters.

Sizes of context window

26 Soft clustering

Although KMeans is generallydescribed as a

the mapper enits the cluster ids as ke and the

to at most one cluster), it can produce soft

aggregate the partial 515 to conpute the
centroids.

clusters whos similarity to the elenent is greate
than a thresbld. For natual languagewords and
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Table 2 Softclusters folhistler

Table 3 Corpora used in expenents

cluserl: sim=0.17, members=101048
bc vanouve, british columbia accomnodations,
coquitlam vancouver, squamish vancouver,
langley vancouver, vanmuver surey, ...
cluster2: sim=0. 16, members=182692
vail skiing, skiing cdoradq tatoe ski vacation
showbird skiing, lake ahoe skiing, breckenridge
skiing, snav ski packages, ski resonvhistler, ...
cluster3: sim=0.12, members= 91895
ski chalets france, &i chakt holidays, frace ski,
catered halets luxury i chalets, frace &iing,
france &iing, i chaletholidays, ......
cluserd: sim=0.11, members=23262
ocean kayking, mountainhiking, horsetrekking,
river kayaking, mountain bike riding, white water
carpeing, nourtain trekking, sea layaking, ......
cluserb: sim=0.10, members=50775
rentcabin, petfrierdly cabn, cabis rental, cabin
vacation, chins cobrado, cdin lake thoe,maine
cabn, tennesse nountin cain, ...
cluser6: sim=0.09, members=17365
mary cassatt, oilginting repraluctions, henri
matisse, ferre bonnard edouad manet, awguste
rernoir, paintings fanous, pcasso paitings ......

Corpus | Descrption tokens | phrases
Web webdocuments 700B | 20M
LDC Newstext from LDC | 34B 700K

3 Named Entity Recognition

Named entityrecogniion (NER) is one of the
first steps inmany applications of information
extraction, information retrieval, question
answering and other applications of NLP.
Conditional RandomFields (CRF) (Laffertyet.
al. 2001) is one of he most canpetitive NER
algorithns. We amployed a linear lbain CRF
with L, regularization ashe baseline lgorithm
to which we added phrase cluster feadure

The CoNLL 2003 Shared Task (Tjong Kim
Sang andMeulder 20@) offered a standard
experimental platform for NER. The CoNLL
data set consists of newsticles fran Reuters.
The training set has 28,621 tokensand the
developnentand test set have 51 3énd 46,435
tokens, respectively We adopted the same
evaluation criteria as the CoNLL 2003 Shared
Task.

phrases, the soft cluster assignments often reveal T0 make the clustersmore relevant to this

different seses of aword. For exarple, the
word Whistler may refer to a town in British
Columbia, Canada, which is also a skésort, or
to a painterThesemeanngs are refleed in the
top clusters assignents for Whistler in Table 2
(window size = 3).

2.7 Clustering data sets

We experimented with two corpord dgble 3).
One contains web doments with 700 billion
tokens. The second consisfsvarious news texts
from LDC: English Gigaword, the Ppser corpus
and ReutersRCV1. Thelast colunn lists the
numbers of phraseswe wsed when roning the
clustering with that corpus.

Even thagh ar cloud computing
infrastructure made phrae clusteringpossible,
there is no question that is still very time
consunng. To create 3000 clustemmong 20
million phrags using 3-wrd windows, each K-
Means iteration takes ato20 nminutes on 100
CPUs. Without using thendexing techique in
Section 2.4, ach iteration takes about 4 &% as
long. In all our experimentswe set tle
maximum nunber of iterations to b&0.

domain, weadoptedhe following stratey:

1. Construct the feature vectors fo20
million phrases using theeb data.

2. Run K-Mears clustering on the phrases
that appeared in the CoNLL training data
to obtainK centroids.

3. Assign achof the 20million phrases to
the nearest ceroid intheprevious step.

3.1 Basdinefeatures

The featuresn our baseline CRF cladier area
subset of tB conventiodal features. Theyare
defined with he followingtenplates:

s+1

[ys]i [.VS—l:S]’ {[YS' Wu]}u=s—1' {[YS—l:s' Wu]}fl.-':—%—li
{[YS‘ SfX3u] 151_;%—1! {[ys—l:s' Sfxgu]}ftig—li

{{[YS' thli]}f;};—l ?:2! {{[ys—l:s' thlti]}fl.ii—l ?:2'

{[ys' Wu—l:u] Z;éy {[ys—l:s' Wu—l:u]}f;%a

{{[ySl thft—l:u]}ftié §=1! {{[ys—l:s: thft—l:u]}ls,;.l? §=1
Here,s denotes a positiom the input squence;

Ys is a labelthat indicates whether the token at
position s is a named entias well as itsype;w,

is the word at position; sfx3 is a wod's three-
letter suffix; {wtpt}{_; are indicators of

! http://www.reuters.can/researchndstandards/

1033



different word tpes:wtp® is true whera word is
punctuation wtp® indicates whether word is in
lower case, upper case, ali-caps;wtp® is true
when a token is a muber; wtp® is true whena
token is a hyphenatedvord with differen
capitalization before and after thephen.

NER sytems often haveylobal features to
capture discourse-level regularitie€h{eu and
Ng 2003). fer exanple, documents often hawe
full mention of anentity at the begining and
then refer tathe entiy in partial or abbreviated
forms. To help in recognizing the shorter
versions of lte entities, we maintain laistory of
unigramword features. If aokenis encountered
again, the wal unigramfeatures of th@revious
instances & added as features for the curren
instance awell. We have a totalof 48 featue
templates. In canparison, there are 79 tgates
in (Suzuki adl Isozaki, 208).

Part-of-speech tags were used in the-to
ranked gstems in CoNLL 2003, awell as in

many follow up studies that used the data sef,

(Ando and Zhang 205; Suzuki andlsozak
2008). Qr system does not need this
information to achieve itpeak perfomance. An
important advantage oot needing a POS tagger
as a prepragssor is thatthe sywtem ismuch
easier to adapt tother languages, since training
a tagger often requires a largeramt of nore
extensively annotatedata thantie trainingdata
for NER.

32

We used hard clusteringvith 1-word context
windows for NER. Fp each input token
sequence, we identifpll sequence®of tokens
that are found in the phrase clustéfhe phrases
are allowed to overlap with or be nested in on
another. If a phrase belongirtg clusterc is
found at position® to e (inclusive), we add the
following features to the CRF classifi

[yb—l' BC]' [ye+1'AC]' [J’b—z;b—p BC]' [ye:e+1'AC]
(Y6, SL Al MEBY5zh 41, Ve, E]
[yb—l:b' SC]! {[yu—l:u' MC]}Z;%)+1' [ye—lze' EC]

whereB (before) A (after), S(start) M (middle),
and E (end) denote aposition in the input
sequence rdlive to the phrase belonging to
cluster c. We treat the clustemembership &
binary. The similaritybetween an elment and its
cluster centroid is ignoredror example, suppose
the input sentence iS... guitar legend Jim
Hendrix was...” and “Jimi Hendrix” belongs to
cluster 183.Figure 1 shows the attributes at

Phrase cluster features

103

different inpu positions. The cluster features are
the cross product of thenigranibigram labels

and the attributes.
c183

. guitar legend Jimi Hendrix was ....
Bl glss 183 AlS3

Input
Attributes

Figure 1 Phrase clust features

The phrasakluster fatures not onlyhelp in
resolving the aimiguities of words within a
phrase, theB and A features also allow words
adjacent to a phrase to consider longentexts
than a singt word. Althoudp one may argue
longer n-gramganalso capture this information,
the sparseness of n-grams means that long
tgram features are rarelyuseful in practice.

We can easily use uitiple clusterings in
feature extraction. This allvs us to side-step the
matter of chosing the opthnal value k in the K-
eans clustering algohim.

Even though the phrasesciude single token
ords, we ceate word kusters with the sae
clustering algorithmes well. The reasa is that
the phrase list, which comes fnoquery logs,
does not nexssarilycontain all the single token
words in the documents. Furthesre, due to
tokenizationdifferences btween the queryogs
and the documents, evsystematicay missed
same words, such as hyphenated words. When
creating theword clusters, we do not relgn a
predefined list. Instead, anyword above a
minimum frequeny threslold is inclwed.

In their depadeny parser with cluster-based
features, Ko et al. (2008) fourd it helpful to
restrict lexi@lized featues to only relatively
frequent words. We dichot doserve a sintar
glhenonenon with our CRF. We include all

ords asfeaures and rel on the regulariz
CRF to selectrom tham.

3.3 Evaluation results

Table 4 sunmaizes the evaluation results for
our NER swytem and caonpares it with the two
best resulton the data set in the literature, as
well the top-3 sgtems inCoNLL 2003. In this
table, W andP refer to word anghrase clusters
created with the web corpus. The superscrips ar
the nunbers of clusters. LDC refers to the
clusterscreated with th smaller LDC corpus and
+pos indicates the use p#art-of-speech tags as
features.

The perfomance of our baselinsysten is
rathermediocre becausé has & fewer feature
functions than the rore campetitive systems.
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Table4 CoNLL NER testset results

System Test F1 | Improv.
Baselire CRF(Sec. 3.1) 83.78

W>°%0 88.34 | +4.56
P>t 89.73 | +5.94
pi® 89.80 | +6.02
W% + P& 90.62 | +6.84
W%+ P4 90.63 | +6.85
W% + P4 P4 90.90 +7.12
W% + P°+ PY+pos 9062 | +6.84
LDC* 87.24 | +3.46
LDC™® 88.33 | +4.55
LDC®* +LDC*® 88.44 | +4.66
(Suzuki and Isozaki, 2008) | 89.92

(Ando ard Zhang, 2005) 89.31

(Florianet al., 2003 88.76

(Chieu and\g, 2003) 8831

(Klein et al., 2003) 86.31

The Top CoNLL 2003 systens all enployed
gazettees or other tpes of specialied resource
(e.g., lists ofwords thattend to coeccur with
certain named entityypes) in addition to part-of-
speech tags.

Introducirg the word clusters immediately

brings the performance up to a vexynmpetitive

level. Phrasal clusters obtained fraime LDC

corpus givethe sare level of improverent as

word clusters fron the web corpusthat is 20
times larger. The best F-score of @@.which is

about 1point higher tharthe previous b&t result,
is obtained with a combination of clusters.
Adding POStags to his configurationcaused a
small drop inF1.

4 Query Classification

We now look at the usef phrasal alsters ina

very different application: querylassification.
The goal ofquery classification is tadetemine

to which ons of a predefined set of classa
guery belongs. Compared with docments

queries areanuch shorter rad their categories ar
much more anbiguous.

4.1 KDDCUP 2005 data set
The task in te KDDCUP D05 conpetitior? is to

Table 5 Exanple queriesand their classes

ford field
Sports/Anagrican Football
Information/Local & Regonal
Sports/Schaules & Tickets

john deeregator
Living/Landscaping & Gardening
Living/Tods & Hardware
Information/Conpanies& Industries
Sh@eping/Stores & Products
Shoppng/Buying Gudes & Regarcling

justin timberlake lyrics
Entertainment/Music
Information/Arts & Humanities
Entertainment/Celebrities

complete set of 800@0. The participating
systems weg evaluated by their averagescores
(F1) and aveage precision (P) over these tare
sets of answer keyfor the800 selected queries.

_ X # queries correctly tagged as ¢;

P= Y # queries tagged as ¢;
_ 2 # queries correctly tagged as ¢;
~ Y, # of queries labeled by as ;
_2xPxR
Fl="751x

Here, ‘tagged as’ refer to systems otputs and
‘labeled as’ refer to tman judgments. The
subscript ranges over all the quecgjasses.

Table 6 shows the scoresf each ofthe three
human lalelers when eaclof themis evaluated
against the other two. Iktan be seen that the
consistencyanong the labkers is aite low,
indicating that the query classifiton task is
very difficult even for hurans.

To maximize the little ifiormation we have
about the queryclasseswe treat thewords in
queryclass ames as additional exapte queries.
For exanple, we added three queriekving,
tools, andhardware to the class Living\Tools &
Hardwae.

4.2

Since the queryclasse are not mutually

Basdline classifier

classify 800,000internetuser search queries into exclusive, ve treat the gery classification task
67 predefined topical categories. The training seas 67 binary clasfication problens. For each

consists of 111 exante queries, eaclof which
belongs toup to 5 of the & categoriesTable 5
shows threexample queries and their classe
Three independent hwan labelers classified
800 queries that were ramanly selectedrom the

2 http://www.acmorg/sigs/sigkdd/kdd2005/kddcunpml

query class, we train a logistic regression
classifer (Vapnik 1999) with L regularization.

Table 6 Labeler Consistency

L1 L2 L3 Average
F1 | 0.538 | 0.477 0.512 | 0.509
P | 0501 |0.613 | 0.463 | 0.526
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Given an iput x, represented as a ater of m
features: Xi, X, , Xm), @ logistic egression
classifier with paraneter vectorw =(wy, W,
W) computes the posterior probabyfitof the
outputy, which is either 1 or -1, as
1
p(ylx) = 1T o=

We tag a quenas belonging to a class if the
probability of the class is aong the highest 5
and is greater than9.

The baseline stemuses only the words in the
queries as features (the gbaf-words
representatio), treating the querglassification
problemasatypical text categorization problem

We found tke prior distributionof the query
clas®s to be extrenely important. In fact, a
system that always returns the top-5 ost

frequent classes has an F1 score of 26.55, which

would haveoutperforned 2/3 of the ¥ systens
in the KDDQUP and ranked 13

We made a smallmodification to the objective
function for logistic regression to take into
account the ior distribution andto use 50%as a
uniform decsion boundar for all the classes.
Normally, training a logistic regssionclassifier
amounts to stving:

n
1 T
1 T — —Yiw X
arg min,, {Aw w+ nz log(l +e )}
=1

wheren is the nurber of training examples arid
is the regularization constant. In this faria, 1h
can be viewe as the wight of an exaple in the
training corpus. When training the classifier or
classwith p positive exarples out of a total of
exanples, we change the objective function to:

S log(1+ e v )
n+y;(2p—n)

argmin,, { Aw'w +

With this modification, he total weght of the
positive andchegative examples becme equal.

4.3 Phrasal clustersin query classification

Since topical inforration is nuch more relevant
to query classifigion than categorita
information, we use clusts creatd with 3-word
context wirdows. Moreover, we use soft

to. For eah of theseclusters, we sum the
clusters smilarity to all the phrases in the query
and select th top-N as datures fortie logistic
regression classifieNE150 in our expements).
When we extract features fro multiple
clusterings, the selection of the top-N clusters is
done separaty for each clustering. Oncea
cluster is selected, itsimilarity values are
ignored. Using the nuermical featurevalues in
our experinents alway led to worse results. We
suspect thatueh features make the opization

of the objectie function nuch nore difficult.

Table 7 Query Classificatin results

System F1
bow 1158
bow-+W* 34.71
bow+P>% 39.84
bow+P* 40.80
bow+P%%+P™ +P* +P*+P* | 43.80
0.5

04 -+ =

03+ g ————————— —
02+ g4 ————————— —-
01+ 4 ———————— — —-
0 +—

1234567 8 910111213

Figure 2 Conmparison with KDDCUP gstens

4.4 Evaluation results

Table 7 contins the evaluation results of various
configuratiors of our system Here, bow
indicates the use of bag-of-words featured'
refers to word clusters sizeN; andP" refers to
phrase clustarof sizeN. All the clustersare soft
clusters creatl with the webcorpus using3-
word contextwindows.

The bag-ofwords features alone have dam
performance. This is bwiousy due to the
extrane pawity of training exarples. In fact,
only 12% of the words in the 800 test queries are
found n the training examles. Using word
clustersas Eatures esultal in a big increas in
F-score. Tk phrasal cluster fatures offe
another bigimprovenent. The best result is
achieved with raltiple phrasal clusterings.

clustering instead of hard clustering. A phrase Figure 2 conpares theperformanceof our
belongs to a cluster if the cluster's centroid issystem (the dark bar at 2) with the top tercile

among the tp-50 nost similar centroids to the
phrase (by cosinemsil arity), and the similaritys
greater than 0.04.

Given a query, we first reeve all its frases
(allowing owerlap) and th clusters they belgn

systems in KDDCUP 2005. he best two
systems in hie conpetition (Shenet al., 2005)
and (Vogelet al., 2005) esorted to kawledge
engineering techniques to bridge the gap between
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the gnall setof exanples and the newqueries.
They manually constructed a apping fromthe
query clas®s to hierarchial directoriessuch a
Google Directory or Open DirectoryProject.

cluster fatures. Onadvantage of the two-stag
approach is that the & clusterings maye
used for different problems or different
components of the samn system. Another

They then sent training and testing queries tadvantage is that it cabe applied to a wider

internet seah engines to retrieve theg pages
in these directories. Thpositions ofthe result
pages in thalirectory hierarchies awell as the
words in the pages arased to classifythe
queries. With phrasal clusters, wancachieve
top-level performnce  without manually
constructed resources, drmaving to rely on
internet seaftresults.

5 Discussion and Related Work

In earlierwork on seni-suypervised leaming, e.g.,
(Blum and Mitchell 1998)the classifiers learned
from unlabeéd data wer used directly. Recent
reseach shavs that it & better to usewhatever is
learned fron the unlabeled data as feees in a
discriminative clasifier. This approach is taken
by (Miller et. al. 2004), \Wong and Ng 2007)
(Suzuki andlsozaki 208), and (Ko et. al.,
2008),as well as this paper.

Wong and N (2007) andSuzuki andsozaki
(2008) are smilar in tha they run a baseline
discriminative classifer on unlabeled data to
generate pseudo exahas, which are then used
to train a different type oflassifier for the sme
problem Wong ad Ng (2007) made tle
assumption that each pmer naned belongs to

one class (#y observed that this is true about

85% of the tme for English). Suzukard Isozaki
(2008), o the other hand, used the automaticall
labeled corpus to train HMMs.

Ando and hang (2@5) cefined an obgctive
function hat conbines tke original poblem on
the labeled data with a sef auxiliary problems
on unlabeled data. The definition of aoxiliary

range of dmains and mblems. Althouy the
method in Buzuki andlsozaki 2008 is quite
general, it ishard to see how it caoe applied to
the queryclassification proble.

Compared with Brown clustering, up
algorithm for distributonal clustering with
distributed K-Means offarseveal berefits: (1) it
is more scadble and parallelizable; (2) it has the
ability to generate topicahs well as categorical
clusters for use in different applications; (3) it
can creat sof clustering as well as hard ones.

There are tw main scerarios thatmotivate
seni-supervised learningOne is to leveragea
large anount of unsuperged data to train an
adequate classifiewith a small amount of
labeled data. Another iso further boost the
performanceof a supervised classii that is
alreadytrained with a large aount of syervised
data. The named entifyroblem in Section 3 and
the query classifi@ion problemin Section 4
exanplify thetwo scenarios.

One nagging issue witk-Means clus#ring is
how to set kWe show thathis question mapot
need to be answeredbecause wecan use
clusterings with differenk’s at the same time
and let the discmiinative classifer clerry-pick
the clusters at different granularities according to
the supervised data. Thischnique haalso been
used with Brown clustering (Milleet. al. 2004,

yKoo, et. al. 2008). However, theyequie clusters

to be strictlyhierarchicalwherea we @ not.

6 Conclusions

We presente@ simple and scable algorithmto

problemcanbe quite flexible as long as it can becluster tens of iilions of phrases and we used

automaticallylabeled andgshares sme structural
properties with the aiginal problem The
combined objective function is then alternating!

the resultingclusters afeatures in diséminative
classifers. We denonstated the power and
generalityof this apprach on two ver different

optimized wih the labeled and unlabeled dataapplications: naed entity recognition and qugr

This training regine puts pressureon the
discriminative learnerto exploit the structuee
uncovered frmn the unlabeled data.

In the two-stge cluster-basd approaches shic
as ours, clustering is astly decoupledrom the
supervised learning polem. However, one can
rely on a discmninative clasifier to esthlish the
connection byassigningproper weights to the

3 http://directory.google.com
4 http://www.dmozorg

classifcation. Our sgtem achieved the best
current result on the Calll NER data set. Qu
query categorization sstem is on pawith the
best sgtemin KDDCUP 2005, whit, unlike
ours, inwlved a great deal of knowledge
engineering effort.
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