
Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 1030–1038,
Suntec, Singapore, 2-7 August 2009. c©2009 ACL and AFNLP

Phrase Clustering for Discriminative Learning

Dekang Lin and Xiaoyun Wu
Google, Inc.

1600 Amphitheater Parkway, Mountain View, CA
{lindek,xiaoyunwu}@google.com

Abstract

We present a simple and scalable algorithm for
clustering tens of milli ons of phrases and use
the resulting clusters as features in
discriminative classifiers. To demonstrate the
power and generality of this approach, we
apply the method in two very different
applications: named entity recognition and
query classification. Our results show that
phrase clusters offer significant improvements
over word clusters. Our NER system achieves
the best current result on the widely used
CoNLL benchmark. Our query classifier is on
par with the best system in KDDCUP 2005
without resorting to labor intensive knowledge
engineering efforts.

1 Introduction

Over the past decade, supervised learning
algorithms have gained widespread acceptance in
natural language processing (NLP). They have
become the workhorse in almost all sub-areas
and components of NLP, including part-of-
speech tagging, chunking, named entity
recognition and parsing. To apply supervised
learning to an NLP problem, one first represents
the problem as a vector of features. The learning
algorithm then optimizes a regularized, convex
objective function that is expressed in terms of
these features. The performance of such
learning-based solutions thus crucially depends
on the informativeness of the features. The
majority of the features in these supervised
classifiers are predicated on lexical information,
such as word identities. The long-tailed
distribution of natural language words implies
that most of the word types will be either unseen
or seen very few times in the labeled training
data, even if the data set is a relatively large one
(e.g., the Penn Treebank).

While the labeled data is generally very costly
to obtain, there is a vast amount of unlabeled
textual data freely available on the web. One way
to alleviate the sparsity problem is to adopt a

two-stage strategy: first create word clusters with
unlabeled data and then use the clusters as
features in supervised training. Under this
approach, even if a word is not found in the
training data, it may still fire cluster-based
features as long as it shares cluster assignments
with some words in the labeled data.

Since the clusters are obtained without any
labeled data, they may not correspond directly to
concepts that are useful for decision making in
the problem domain. However, the supervised
learning algorithms can typically identify useful
clusters and assign proper weights to them,
effectively adapting the clusters to the domain.

This method has been shown to be quite
successful in named entity recognition (Miller et
al. 2004) and dependency parsing (Koo et al.,
2008).

In this paper, we present a semi-supervised
learning algorithm that goes a step further. In
addition to word-clusters, we also use phrase-
clusters as features. Out of context, natural
language words are often ambiguous. Phrases are
much less so because the words in a phrase
provide contexts for one another.

Consider the phrase “Land of Odds”. One
would never have guessed that it is a company
name based on the clusters containing Odds and
Land. With phrase-based clustering, “Land of
Odds” is grouped with many names that are
labeled as company names, which is a strong
indication that it is a company name as well. The
disambiguation power of phrases is also
evidenced by the improvements of phrase-based
machine translation systems (Koehn et. al.,
2003) over word-based ones.

Previous approaches, e.g., (Miller et al. 2004)
and (Koo et al. 2008), have all used the Brown
algorithm for clustering (Brown et al. 1992). The
main idea of the algorithm is to minimize the
bigram language-model perplexity of a text
corpus. The algorithm is quadratic in the number
of elements to be clustered. It is able to cluster
tens of thousands of words, but is not scalable
enough to deal with tens of millions of phrases.
Uszkoreit and Brants (2008) proposed a

1030

distributed clustering algorithm with a similar
objective function as the Brown algorithm. It
substantially increases the number of elements
that can be clustered. However, since it still
needs to load the current clustering of all
elements into each of the workers in the
distributed system, the memory requirement
becomes a bottleneck.

We present a distributed version of a much
simpler K-Means clustering that allows us to
cluster tens of millions of elements. We
demonstrate the advantages of phrase-based
clusters over word-based ones with experimental
results from two distinct application domains:
named entity recognition and query
classification. Our named entity recognition
system achieves an F1-score of 90.90 on the
CoNLL 2003 English data set, which is about 1
point higher than the previous best result. Our
query classifier reaches the same level of
performance as the KDDCUP 2005 winning
systems, which were built with a great deal of
knowledge engineering.

2 Distributed K-Means clustering

K-Means clustering (MacQueen 1967) is one of
the simplest and most well-known clustering
algorithms. Given a set of elements represented
as feature vectors and a number, k, of desired
clusters, the K-Means algorithm consists of the
following steps:

Step Operation
i. Select k elements as the initial centroids

for k clusters.
ii. Assign each element to the cluster with

the closest centroid according to a
distance (or similarity) function.

iii. Recompute each cluster’s centroid by
averaging the vectors of its elements

iv. Repeat Steps ii and iii until
convergence

Before describing our parallel implementation of
the K-Means algorithm, we first describe the
phrases to be clusters and how their feature
vectors are constructed.

2.1 Phrases

To obtain a list of phrases to be clustered, we
followed the approach in (Lin et al., 2008) by
collecting 20 million unique queries from an
anonymized query log that are found in a 700
billion token web corpus with a minimum
frequency count of 100. Note that many of these
queries are not phrases in the linguistic sense.

However, this does not seem to cause any real
problem because non-linguistic phrases may
form their own clusters. For example, one cluster
contains {“Cory does”, “Ben saw”, “I can’t
lose”, …..}.

To reduce the memory requirement for storing
a large number of phrases, we used Bloom Filter
(Bloom 1970) to decide whether a sequence of
tokens is a phrase. The Bloom filt er allows a
small percentage of false positives to pass
through. We did not remove them with post
processing since our notion of phrases is quite
loose to begin with.

2.2 Context representation

Distributional word clustering is based on the
assumption that words that appear in similar
contexts tend to have similar meanings. The
same assumption holds for phrases as well.
Following previous approaches to distributional
clustering of words, we represent the contexts of
a phrase as a feature vector. There are many
possible definitions for what constitutes the
contexts. In the literature, contexts have been
defined as subject and object relations involving
the word (Hindle, 1990), as the documents
containing the word (Deerwester et al, 1990), or
as search engine snippets for the word as a query
(Sahami and Heilman, 2006). We define the
contexts of a phrase to be small, fixed-sized
windows centered on occurrences of the phrase
in a large corpus. The features are the words
(tokens) in the window. The context feature
vector of a phrase is constructed by first
aggregating the frequency counts of the words in
the context windows of different instances of the

Table 1 Cluster of “English lessons”
Window Cluster members (partial list)
size=1 environmental courses, summer school

courses, professional development
classes, professional training programs,
further education courses, leadership
courses, accelerated courses, vocational
classes, technical courses, technical
classes, special education courses, …..

size=3 learn english spanish, grammar learn,
language learning spanish, translation
spanish language, learning spanish
language, english spanish language,
learn foreign language, free english
learning, language study english,
spanish immersion course, how to
speak french, spanish learning games,
…..

1031

phrase. The frequency counts are then converted
into point-wise mutual information (PMI) values:

2/+:LDNá B; L ���F 2:LDNá B;
2:LDN;2:B;G

where phr is a phrase and f is a feature of
phr. PMI effectively discounts the prior
probability of the features and measures how
much beyond random a feature tends to occur in
a phrase’s context window. Given two feature
vectors, we compute the similarity between two
vectors as the cosine function of the angle
between the vectors. Note that even though a
phrase phr can have multiple tokens, its feature f
is always a single-word token.

We impose an upper limit on the number of
instances of each phrase when constructing its
feature vector. The idea is that if we have already
seen 300K instances of a phrase, we should have
already collected enough data for the phrase.
More data for the same phrase will not
necessarily tell us anything more about it. There
are two benefits for such an upper limit. First, it
drastically reduces the computational cost.
Second, it reduces the variance in the sizes of the
feature vectors of the phrases.

2.3 K-Means by MapReduce

K-Means is an embarrassingly parallelizable
algorithm. Since the centroids of clusters are
assumed to be constant within each iteration, the
assignment of elements to clusters (Step ii) can
be done totally independently.

The algorithm fits nicely into the MapReduce
paradigm for parallel programming (Dean and
Ghemawat, 2004). The most straightforward
MapReduce implementation of K-Means would
be to have mappers perform Step ii and reducers
perform Step iii. The keys of intermediate pairs
are cluster ids and the values are feature vectors
of elements assigned to the corresponding
cluster. When the number of elements to be
clustered is very large, sorting the intermediate
pairs in the shuffling stage can be costly.
Furthermore, when summing up a large number
of features vectors, numerical underflow
becomes a potential problem.

A more efficient and numerically more stable
method is to compute, for each input partition,
the partial vector sums of the elements belonging
to each cluster. When the whole partition is done,
the mapper emits the cluster ids as keys and the
partial vector sums as values. The reducers then
aggregate the partial sums to compute the
centroids.

2.4 Indexing centroid vectors

In a naïve implementation of Step ii of K-Means,
one would compute the similarities between a
feature vector and all the centroids in order to
find the closest one. The kd-tree algorithm
(Bentley 1980) aims at speeding up nearest
neighbor search. However, it only works when
the vectors are low-dimensional, which is not the
case here. Fortunately, the high-dimensional and
sparse nature of our feature vectors can also be
exploited.

Since the cosine measure of two unit length
vectors is simply their dot product, when
searching for the closest centroid to an element,
we only care about features in the centroids that
are in common with the element. We therefore
create an inverted index that maps a feature to
the list of centroids having that feature. Given an
input feature vector, we can iterate through all of
its components and compute its dot product with
all the centroids at the same time.

2.5 Sizes of context window

In our experiments, we use either 1 or 3 as the
size of the context windows. Window size has an
interesting effect on the types of clusters. With
larger windows, the clusters tend to be more
topical, whereas smaller windows result in
categorical clusters.

For example, Table 1 contains the cluster that
the phrase “English lessons” belongs to. With 3-
word context windows, the cluster is about
language learning and translation. With 1-word
context windows, the cluster contains different
types of lessons.

The ability to produce both kinds of clusters
turns out to be very useful. In different
applications we need different types of clusters.
For example, in the named entity recognition
task, categorical clusters are more successful,
whereas in query categorization, the topical
clusters are much more beneficial.

The Brown algorithm uses essentially the
same information as our 1-word window
clusters. We therefore expect it to produce
mostly categorical clusters.

2.6 Soft clustering

Although K-Means is generally described as a
hard clustering algorithm (each element belongs
to at most one cluster), it can produce soft
clustering simply by assigning an element to all
clusters whose similarity to the element is greater
than a threshold. For natural language words and

1032

phrases, the soft cluster assignments often reveal
different senses of a word. For example, the
word Whistler may refer to a town in British
Columbia, Canada, which is also a ski resort, or
to a painter. These meanings are reflected in the
top clusters assignments for Whistler in Table 2
(window size = 3).

2.7 Clustering data sets

We experimented with two corpora (Table 3).
One contains web documents with 700 billion
tokens. The second consists of various news texts
from LDC: English Gigaword, the Tipster corpus
and Reuters RCV1. The last column lists the
numbers of phrases we used when running the
clustering with that corpus.

Even though our cloud computing
infrastructure made phrase clustering possible,
there is no question that it is still very time
consuming. To create 3000 clusters among 20
million phrases using 3-word windows, each K-
Means iteration takes about 20 minutes on 1000
CPUs. Without using the indexing technique in
Section 2.4, each iteration takes about 4 times as
long. In all our experiments, we set the
maximum number of iterations to be 50.

3 Named Entity Recognition

Named entity recognition (NER) is one of the
first steps in many applications of information
extraction, information retrieval, question
answering and other applications of NLP.
Conditional Random Fields (CRF) (Lafferty et.
al. 2001) is one of the most competitive NER
algorithms. We employed a linear chain CRF
with L2 regularization as the baseline algorithm
to which we added phrase cluster features.

The CoNLL 2003 Shared Task (Tjong Kim
Sang and Meulder 2003) offered a standard
experimental platform for NER. The CoNLL
data set consists of news articles from Reuters1.
The training set has 203,621 tokens and the
development and test set have 51,362 and 46,435
tokens, respectively. We adopted the same
evaluation criteria as the CoNLL 2003 Shared
Task.

To make the clusters more relevant to this
domain, we adopted the following strategy:

1. Construct the feature vectors for 20
million phrases using the web data.

2. Run K-Means clustering on the phrases
that appeared in the CoNLL training data
to obtain K centroids.

3. Assign each of the 20 million phrases to
the nearest centroid in the previous step.

3.1 Baseline features

The features in our baseline CRF classifier are a
subset of the conventional features. They are
defined with the following templates: >Uæ?,��>Uæ?5ãæ?,��<>UæáSè?=è@æ?5æ>5 á <>Uæ?5ãæáSè?=è@æ?5æ>5 , <>Uæá OBTuè?=è@æ?5æ>5 , <>Uæ?5ãæá OBTuè?=è@æ?5æ>5 , <<>UæáSPLèç ?=è@æ?5æ>5 =ç@68 ,����<<>Uæ?5ãæáSPLèç ?=è@æ?5æ>5 =ç@68 á� <>UæáSè?5ãè?=è@ææ>5,�����<>Uæ?5ãæáSè?5ãè?=è@ææ>5, <<>UæáSPLè?5ãèç ?=è@ææ>5=ç@57 ,�<<>Uæ?5ãæáSPLè?5ãèç ?=è@ææ>5=ç@57

Here, s denotes a position in the input sequence;
ys is a label that indicates whether the token at
position s is a named entity as well as its type; wu

is the word at position u; sfx3 is a word’s three-
letter suffix; <SPLç=�ç@58 are indicators of

1 http://www.reuters.com/researchandstandards/

Table 2 Soft clusters for Whistler
cluster1: sim=0.17, members=104048
bc vancouver, british columbia accommodations,
coquitlam vancouver, squamish vancouver,
langley vancouver, vancouver surrey, …

cluster2: sim=0. 16, members= 182692
vail skiing, skiing colorado, tahoe ski vacation,
snowbird skiing, lake tahoe skiing, breckenridge
skiing, snow ski packages, ski resort whistler, …

cluster3: sim=0.12, members= 91895
ski chalets france, ski chalet holidays, france ski,
catered chalets, luxury ski chalets, france skiing,
france skiing, ski chalet holidays, ……

cluster4: sim=0.11, members=237262
ocean kayaking, mountain hiking, horse trekking,
river kayaking, mountain bike riding, white water
canoeing, mountain trekking, sea kayaking, ……

cluster5: sim=0.10, members=540775
rent cabin, pet friendly cabin, cabins rental, cabin
vacation, cabins colorado, cabin lake tahoe, maine
cabin, tennessee mountain cabin, …

cluster6: sim=0.09, members=117365
mary cassatt, oil painting reproductions, henri
matisse, pierre bonnard, edouard manet, auguste
renoir, paintings famous, picasso paintings, ……

……

Table 3 Corpora used in experiments
Corpus Description tokens phrases
Web web documents 700B 20M
LDC News text from LDC 3.4B 700K

1033

different word types: wtp1 is true when a word is
punctuation; wtp2 indicates whether a word is in
lower case, upper case, or all-caps; wtp3 is true
when a token is a number; wtp4 is true when a
token is a hyphenated word with different
capitalization before and after the hyphen.

NER systems often have global features to
capture discourse-level regularities (Chieu and
Ng 2003). For example, documents often have a
full mention of an entity at the beginning and
then refer to the entity in partial or abbreviated
forms. To help in recognizing the shorter
versions of the entities, we maintain a history of
unigram word features. If a token is encountered
again, the word unigram features of the previous
instances are added as features for the current
instance as well. We have a total of 48 feature
templates. In comparison, there are 79 templates
in (Suzuki and Isozaki, 2008).

Part-of-speech tags were used in the top-
ranked systems in CoNLL 2003, as well as in
many follow up studies that used the data set
(Ando and Zhang 2005; Suzuki and Isozaki
2008). Our system does not need this
information to achieve its peak performance. An
important advantage of not needing a POS tagger
as a preprocessor is that the system is much
easier to adapt to other languages, since training
a tagger often requires a larger amount of more
extensively annotated data than the training data
for NER.

3.2 Phrase cluster features

We used hard clustering with 1-word context
windows for NER. For each input token
sequence, we identify all sequences of tokens
that are found in the phrase clusters. The phrases
are allowed to overlap with or be nested in one
another. If a phrase belonging to cluster c is
found at positions b to e (inclusive), we add the
following features to the CRF classifier: >UÕ?5á$Ö?á >UØ>5á#Ö?á >UÕ?6ãÕ?5á$Ö?á >UØãØ>5á#Ö? >UÕá 5Ö?á <>Uèá/Ö?=è@Õ>5Ø?5 á >UØ á'Ö? >UÕ?5ãÕá 5Ö?á <>Uè?5ãèá/Ö?=è@Õ>5Ø?5 á >UØ?5ãØ á'Ö?
where B (before), A (after), S (start), M (middle),
and E (end) denote a position in the input
sequence relative to the phrase belonging to
cluster c. We treat the cluster membership as
binary. The similarity between an element and its
cluster centroid is ignored. For example, suppose
the input sentence is “… guitar legend Jimi
Hendrix was …” and “Jimi Hendrix” belongs to
cluster 183. Figure 1 shows the attributes at

different input positions. The cluster features are
the cross product of the unigram/bigram labels
and the attributes.

Figure 1 Phrase cluster features

The phrasal cluster features not only help in
resolving the ambiguities of words within a
phrase, the B and A features also allow words
adjacent to a phrase to consider longer contexts
than a single word. Although one may argue
longer n-grams can also capture this information,
the sparseness of n-grams means that long n-
gram features are rarely useful in practice.

We can easily use multiple clusterings in
feature extraction. This allows us to side-step the
matter of choosing the optimal value k in the K-
Means clustering algorithm.

Even though the phrases include single token
words, we create word clusters with the same
clustering algorithm as well. The reason is that
the phrase list, which comes from query logs,
does not necessarily contain all the single token
words in the documents. Furthermore, due to
tokenization differences between the query logs
and the documents, we systematically missed
some words, such as hyphenated words. When
creating the word clusters, we do not rely on a
predefined list. Instead, any word above a
minimum frequency threshold is included.

In their dependency parser with cluster-based
features, Koo et al. (2008) found it helpful to
restrict lexicalized features to only relatively
frequent words. We did not observe a similar
phenomenon with our CRF. We include all
words as features and rely on the regularized
CRF to select from them.

3.3 Evaluation results

Table 4 summarizes the evaluation results for
our NER system and compares it with the two
best results on the data set in the literature, as
well the top-3 systems in CoNLL 2003. In this
table, W and P refer to word and phrase clusters
created with the web corpus. The superscripts are
the numbers of clusters. LDC refers to the
clusters created with the smaller LDC corpus and
+pos indicates the use of part-of-speech tags as
features.

The performance of our baseline system is
rather mediocre because it has far fewer feature
functions than the more competitive systems.

1034

The Top CoNLL 2003 systems all employed
gazetteers or other types of specialized resources
(e.g., lists of words that tend to co-occur with
certain named entity types) in addition to part-of-
speech tags.

Introducing the word clusters immediately
brings the performance up to a very competitive
level. Phrasal clusters obtained from the LDC
corpus give the same level of improvement as
word clusters from the web corpus that is 20
times larger. The best F-score of 90.90, which is
about 1 point higher than the previous best result,
is obtained with a combination of clusters.
Adding POS tags to this configuration caused a
small drop in F1.

4 Query Classification

We now look at the use of phrasal clusters in a
very different application: query classification.
The goal of query classification is to determine
to which ones of a predefined set of classes a
query belongs. Compared with documents,
queries are much shorter and their categories are
much more ambiguous.

4.1 KDDCUP 2005 data set

The task in the KDDCUP 2005 competition2 is to
classify 800,000 internet user search queries into
67 predefined topical categories. The training set
consists of 111 example queries, each of which
belongs to up to 5 of the 67 categories. Table 5
shows three example queries and their classes.

Three independent human labelers classified
800 queries that were randomly selected from the

2 http://www.acm.org/sigs/sigkdd/kdd2005/kddcup.html

complete set of 800,000. The participating
systems were evaluated by their average F-scores
(F1) and average precision (P) over these three
sets of answer keys for the 800 selected queries.

� L Ã S�������������������������������gg

Ã S��������������������gg

� L Ã S������������������������������gg

Ã S���������������������������gg

	s L t H � H �
�E �

Here, ‘tagged as’ refer to systems outputs and
‘labeled as’ refer to human judgments. The
subscript i ranges over all the query classes.

Table 6 shows the scores of each of the three
human labelers when each of them is evaluated
against the other two. It can be seen that the
consistency among the labelers is quite low,
indicating that the query classification task is
very difficult even for humans.

To maximize the little information we have
about the query classes, we treat the words in
query class names as additional example queries.
For example, we added three queries: living,
tools, and hardware to the class Living\Tools &
Hardware.

4.2 Baseline classifier

Since the query classes are not mutually
exclusive, we treat the query classification task
as 67 binary classification problems. For each
query class, we train a logistic regression
classifier (Vapnik 1999) with L2 regularization.

Table 4 CoNLL NER test set results
System Test F1 Improv.
Baseline CRF (Sec. 3.1) 83.78
W500 88.34 +4.56
P64 89.73 +5.94
P125 89.80 +6.02
W500 + P125 90.62 +6.84
W500 + P64 90.63 +6.85
W500 + P125 + P64 90.90 +7.12
W500 + P125 + P64+pos 90.62 +6.84
LDC64 87.24 +3.46
LDC125 88.33 +4.55
LDC64 +LDC125 88.44 +4.66
(Suzuki and Isozaki, 2008) 89.92
(Ando and Zhang, 2005) 89.31
(Florian et al., 2003) 88.76
(Chieu and Ng, 2003) 88.31
(Klein et al., 2003) 86.31

Table 5 Example queries and their classes

ford field
 Sports/American Football
 Information/Local & Regional
 Sports/Schedules & Tickets
john deere gator
 Living/Landscaping & Gardening
 Living/Tools & Hardware
 Information/Companies & Industries
 Shopping/Stores & Products
 Shopping/Buying Guides & Researching
justin timberlake lyrics
 Entertainment/Music
 Information/Arts & Humanities
 Entertainment/Celebrities

Table 6 Labeler Consistency
 L1 L2 L3 Average
F1 0.538 0.477 0.512 0.509
P 0.501 0.613 0.463 0.526

1035

Given an input x, represented as a vector of m
features: (x1, x2,, xm), a logistic regression
classifier with parameter vector � L(w1, w2,,
wm) computes the posterior probability of the
output y, which is either 1 or -1, as

L:U��; L s

sE A?ì�Å	�
We tag a query as belonging to a class if the

probability of the class is among the highest 5
and is greater than 0.5.

The baseline system uses only the words in the
queries as features (the bag-of-words
representation), treating the query classification
problem as a typical text categorization problem.

We found the prior distribution of the query
classes to be extremely important. In fact, a
system that always returns the top-5 most
frequent classes has an F1 score of 26.55, which
would have outperformed 2/3 of the 37 systems
in the KDDCUP and ranked 13th.

We made a small modification to the objective
function for logistic regression to take into
account the prior distribution and to use 50% as a
uniform decision boundary for all the classes.
Normally, training a logistic regression classifier
amounts to solving:

���IEJ�]ã�Í
� E s

J
Í ���@sE A?ìÔ�Å	�ÔAá

Ü@5

a
where n is the number of training examples and ã
is the regularization constant. In this formula, 1/n
can be viewed as the weight of an example in the
training corpus. When training the classifier for a
class with p positive examples out of a total of n
examples, we change the objective function to:

���IEJ� Pã�Í
�E Ã ���@sE A?ìÔ�Å	�ÔAá

Ü@5

J E UÜ:tL F J; Q

With this modification, the total weight of the
positive and negative examples become equal.

4.3 Phrasal clusters in query classification

Since topical information is much more relevant
to query classification than categorical
information, we use clusters created with 3-word
context windows. Moreover, we use soft
clustering instead of hard clustering. A phrase
belongs to a cluster if the cluster’s centroid is
among the top-50 most similar centroids to the
phrase (by cosine similarity), and the similarity is
greater than 0.04.

Given a query, we first retrieve all its phrases
(allowing overlap) and the clusters they belong

to. For each of these clusters, we sum the
cluster’s similarity to all the phrases in the query
and select the top-N as features for the logistic
regression classifier (N=150 in our experiments).
When we extract features from multiple
clusterings, the selection of the top-N clusters is
done separately for each clustering. Once a
cluster is selected, its similarity values are
ignored. Using the numerical feature values in
our experiments always led to worse results. We
suspect that such features make the optimization
of the objective function much more difficult.

Figure 2 Comparison with KDDCUP systems

4.4 Evaluation results

Table 7 contains the evaluation results of various
configurations of our system. Here, bow
indicates the use of bag-of-words features; WN
refers to word clusters of size N; and PN refers to
phrase clusters of size N. All the clusters are soft
clusters created with the web corpus using 3-
word context windows.

The bag-of-words features alone have dismal
performance. This is obviously due to the
extreme paucity of training examples. In fact,
only 12% of the words in the 800 test queries are
found in the training examples. Using word
clusters as features resulted in a big increase in
F-score. The phrasal cluster features offer
another big improvement. The best result is
achieved with multiple phrasal clusterings.

Figure 2 compares the performance of our
system (the dark bar at 2) with the top tercile
systems in KDDCUP 2005. The best two
systems in the competition (Shen et al., 2005)
and (Vogel et al., 2005) resorted to knowledge
engineering techniques to bridge the gap between

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13

Table 7 Query Classification results
System F1
bow 11.58
bow+W3K 34.71
bow+P500 39.84
bow+P3K 40.80
bow+P500+P1K +P2K +P3K+P5K 43.80

1036

the small set of examples and the new queries.
They manually constructed a mapping from the
query classes to hierarchical directories such as
Google Directory3 or Open Directory Project4.
They then sent training and testing queries to
internet search engines to retrieve the top pages
in these directories. The positions of the result
pages in the directory hierarchies as well as the
words in the pages are used to classify the
queries. With phrasal clusters, we can achieve
top-level performance without manually
constructed resources, or having to rely on
internet search results.

5 Discussion and Related Work

In earlier work on semi-supervised learning, e.g.,
(Blum and Mitchell 1998), the classifiers learned
from unlabeled data were used directly. Recent
research shows that it is better to use whatever is
learned from the unlabeled data as features in a
discriminative classifier. This approach is taken
by (Miller et. al. 2004), (Wong and Ng 2007),
(Suzuki and Isozaki 2008), and (Koo et. al.,
2008), as well as this paper.

Wong and Ng (2007) and Suzuki and Isozaki
(2008) are similar in that they run a baseline
discriminative classifier on unlabeled data to
generate pseudo examples, which are then used
to train a different type of classifier for the same
problem. Wong and Ng (2007) made the
assumption that each proper named belongs to
one class (they observed that this is true about
85% of the time for English). Suzuki and Isozaki
(2008), on the other hand, used the automatically
labeled corpus to train HMMs.

Ando and Zhang (2005) defined an objective
function that combines the original problem on
the labeled data with a set of auxiliary problems
on unlabeled data. The definition of an auxiliary
problem can be quite flexible as long as it can be
automatically labeled and shares some structural
properties with the original problem. The
combined objective function is then alternatingly
optimized with the labeled and unlabeled data.
This training regime puts pressure on the
discriminative learner to exploit the structures
uncovered from the unlabeled data.

In the two-stage cluster-based approaches such
as ours, clustering is mostly decoupled from the
supervised learning problem. However, one can
rely on a discriminative classifier to establish the
connection by assigning proper weights to the

3 http://directory.google.com
4 http://www.dmoz.org

cluster features. One advantage of the two-stage
approach is that the same clusterings may be
used for different problems or different
components of the same system. Another
advantage is that it can be applied to a wider
range of domains and problems. Although the
method in (Suzuki and Isozaki 2008) is quite
general, it is hard to see how it can be applied to
the query classification problem.

Compared with Brown clustering, our
algorithm for distributional clustering with
distributed K-Means offers several benefits: (1) it
is more scalable and parallelizable; (2) it has the
ability to generate topical as well as categorical
clusters for use in different applications; (3) it
can create soft clustering as well as hard ones.

There are two main scenarios that motivate
semi-supervised learning. One is to leverage a
large amount of unsupervised data to train an
adequate classifier with a small amount of
labeled data. Another is to further boost the
performance of a supervised classifier that is
already trained with a large amount of supervised
data. The named entity problem in Section 3 and
the query classification problem in Section 4
exemplify the two scenarios.

One nagging issue with K-Means clustering is
how to set k. We show that this question may not
need to be answered because we can use
clusterings with different k’s at the same time
and let the discriminative classifier cherry-pick
the clusters at different granularities according to
the supervised data. This technique has also been
used with Brown clustering (Miller et. al. 2004,
Koo, et. al. 2008). However, they require clusters
to be strictly hierarchical, whereas we do not.

6 Conclusions

We presented a simple and scalable algorithm to
cluster tens of millions of phrases and we used
the resulting clusters as features in discriminative
classifiers. We demonstrated the power and
generality of this approach on two very different
applications: named entity recognition and query
classification. Our system achieved the best
current result on the CoNLL NER data set. Our
query categorization system is on par with the
best system in KDDCUP 2005, which, unlike
ours, involved a great deal of knowledge
engineering effort.

Acknowledgments
The authors wish to thank the anonymous
reviewers for their comments.

1037

References

R. Ando and T. Zhang A Framework for Learning
Predictive Structures from Multiple Tasks and
Unlabeled Data. Journal of Machine Learning
Research, Vol 6:1817-1853, 2005.

B.H. Bloom. 1970, Space/time trade-offs in hash
coding with allowable errors, Communications of
the ACM 13 (7): 422–426

A. Blum and T. Mitchell. 1998. Combining labeled
and unlabeled data with co-training. Proceedings of
the Eleventh Annual Conference on Computational
Learning Theory pp. 92–100.

P.F. Brown, V.J. Della Pietra, P.V. de Souza, J.C. Lai,
and R.L. Mercer. 1992. Class-based n-gram models
of natural language. Computational Linguistics,
18(4):467–479.

H. L. Chieu and H. T. Ng. Named entity recognition
with a maximum entropy approach. In Proceedings
CoNLL-2003, pages 160–163, 2003.

J. Dean and S. Ghemawat. 2004. MapReduce:
Simpli fied data processing on large clusters. In
Proceedings of the Sixth Symposium on Operating
System Design and Implementation (OSDI-04),
San Francisco, CA, USA

S Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. A. Harshman. 1990. Indexing by
latent semantic analysis, Journal of the American
Society for Information Science, 1990, 41(6), 391-
407

R. Florian, A. Ittycheriah, H. Jing, and T. Zhang.
Named entity recognition through classifier
combination. In Proceedings CoNLL-2003, pages
168–171, 2003.

D. Klein, J. Smarr, H. Nguyen, and C. D. Manning.
Named entity recognition with character-level
models. In Proceedings CoNLL-2003, pages 188–
191, 2003.

P. Koehn, F.J. Och, and D. Marcu. 2003. Statistical
phrase-based translation. In Proceedings of HLT-
NAACL 2003, pp. 127–133.

T. Koo, X. Carreras, and M. Collins. Simple Semi-
supervised Dependency Parsing. Proceedings of
ACL, 2008.

J. Lafferty, A. McCallum, F. Pereira. Conditional
random fields: Probabilistic models for segmenting
and labeling sequence data. In: Proc. 18th
International Conf. on Machine Learning, Morgan
Kaufmann, San Francisco, CA (2001) 282–289

Y. Li, Z. Zheng, and H.K. Dai, KDD Cup-2005
Report: Facing a Great Challenge. SIGKDD
Explorations, 7 (2), 2005, 91-99.

D. Lin, S. Zhao, and B. Van Durme, and M. Pasca.
2008. Mining Parenthetical Translations from the

Web by Word Alignment. Proc. of ACL-08.
Columbus, OH.

J. Lin. Scalable Language Processing Algorithms for
the Masses: A Case Study in Computing Word Co-
occurrence Matrices with MapReduce. Proceedings
of EMNLP 2008, pp. 419-428, Honolulu, Hawaii.

J. B. MacQueen (1967): Some Methods for
classification and Analysis of Multivariate
Observations, Proc. of 5-th Berkeley Symposium
on Mathematical Statistics and Probability",
Berkeley, University of California Press, 1:281-
297

S. Miller, J. Guinness, and A. Zamanian. 2004. Name
Tagging with Word Clusters and Discriminative
Training. In Proceedings of HLT-NAACL, pages
337–342.

M. Sahami and T.D. Heilman. 2006. A web-based
kernel function for measuring the similarity of
short text snippets. Proceedings of the 15th
international conference on World Wide Web, pp.
377–386.

D. Shen, R. Pan, J.T. Sun, J.J. Pan, K. Wu, J. Yin, Q.
Yang. Q2C@UST: our winning solution to query
classification in KDDCUP 2005. SIGKDD
Explorations, 2005: 100~110.

J. Suzuki, and H. Isozaki. 2008. Semi-Supervised
Sequential Labeling and Segmentation using Giga-
word Scale Unlabeled Data. In Proc. of ACL/HLT-
08. Columbus, Ohio. pp. 665-673.

E. T. Tjong Kim Sang and F. De Meulder. 2003.
Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition.
In Proc. of CoNLL-2003, pages 142–147.

Y. Wong and H. T. Ng, 2007. One Class per Named
Entity: Exploiting Unlabeled Text for Named
Entity Recognition. In Proc. of IJCAI-07,
Hyderabad, India.

J. Uszkoreit and T. Brants. 2008. Distributed Word
Clustering for Large Scale Class-Based Language
Modeling in Machine Translation. Proceedings of
ACL-08: HLT, pp. 755-762.

V. Vapnik, 1999. The Nature of Statistical Learning
Theory, 2nd edition. Springer Verlag.

D. Vogel, S. Bickel, P. Haider, R. Schimpfky, P.
Siemen, S. Bridges, T. Scheffer. Classifying
Search Engine Queries Using the Web as
Background Knowledge. SIGKDD Explorations
7(2): 117-122. 2005.

1038

