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Abstract

Spontaneously produced speech text often
includes disfluencies which make it diffi-
cult to analyze underlying structure. Suc-
cessful reconstruction of this text would
transform these errorful utterances into
fluent strings and offer an alternate mech-
anism for analysis.

Our investigation of naturally-occurring
spontaneous speaker errors aligned to
corrected text with manual semantico-
syntactic analysis yields new insight into
the syntactic and structural semantic
differences between spoken and recon-
structed language.

1 Introduction

In recent years, natural language processing tasks
such as machine translation, information extrac-
tion, and question answering have been steadily
improving, but relatively little of these systems
besides transcription have been applied to the
most natural form of language input: spontaneous
speech. Moreover, there has historically been lit-
tle consideration of how to analyze the underlying
semantico-syntactic structure of speech.

A system would accomplish reconstruction of
its spontaneous speech input if its output were
to represent, in flawless, fluent, and content-
preserved English, the message that the speaker
intended to convey (Fitzgerald and Jelinek, 2008;
Fitzgerald et al., 2009). Examples of such recon-
structions are seen in the following sentence-like
units (SUs).

EX1: that’s uh that’s a relief
becomes
that’s a relief

EX2: how can you do that without + it's a catch-22

becomes

Frederick Jelinek
Johns Hopkins University
Baltimore, MD, USA
jelinek@jhu.edu

Robert Frank
Yale University
New Haven, CT, USA
bob.frank@yale.edu

how can you do that without <ARG>
it's a catch-22

EX3: they like video games some kids do
becomes

some kids like video games

In EX1, reconstruction requires only the dele-
tion of a simple filled pause and speaker repetition
(or reparandum (Shriberg, 1994)). The second ex-
ample shows a restart fragment, where an utter-
ance is aborted by the speaker and then restarted
with a new train of thought. Reconstruction here
requires

1. Detection of an interruption point (denoted
+ in the example) between the abandoned
thought and its replacement,

2. Determination that the abandoned portion
contains unique and preservable content and
should be made a new sentence rather than be
deleted (which would alter meaning)

3. Analysis showing that a required argument
must be inserted in order to complete the sen-
tence.

Finally, in the third example EX3, in order to pro-
duce one of the reconstructions given, a system
must

1. Detect the anaphoric relationship between
“they” and “some kids”

2. Detect the referral of “do” to “like video games”

3. Make the necessary word reorderings and
deletion of the less informative lexemes.

These examples show varying degrees of diffi-
culty for the task of automatic reconstruction. In
each case, we also see that semantic analysis of the
reconstruction is more straightforward than of the
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original string directly. Such analysis not only in-
forms us of what the speaker intended to commu-
nicate, but also reveals insights into the types of er-
rors speakers make when speaking spontaneously
and where these errors occur. The semantic la-
beling of reconstructed sentences, when combined
with the reconstruction alignments, may yield new
quantifiable insights into the structure of disfluent
natural speech text.

In this paper, we will investigate this relation-
ship further. Generally, we seek to answer two
questions:

e What generalizations about the underlying
structure of errorful and reconstructed speech
utterances are possible?

e Are these generalizations sufficiently robust
as to be incorporated into statistical models
in automatic systems?

We begin by reviewing previous work in the au-
tomatic labeling of structural semantics and moti-
vating the analysis not only in terms of discovery
but also regarding its potential application to auto-
matic speech reconstruction research. In Section 2
we describe the Spontaneous Speech Reconstruc-
tion (SSR) corpus and the manual semantic role
labeling it includes. Section 3 analyzes structural
differences between verbatim and reconstructed
text in the SSR as evaluated by a combination of
manual and automatically generated phrasal con-
stituent parses, while Section 4 combines syntactic
structure and semantic label annotations to deter-
mine the consistency of patterns and their compar-
ison to similar patterns in the Wall Street Journal
(WSJ)-based Proposition Bank (PropBank) corpus
(Palmer et al., 2005). We conclude by offering a
high level analysis of discoveries made and sug-
gesting areas for continued analysis in the future.
Expanded analysis of these results is described in
(Fitzgerald, 2009).

1.1 Semantic role labeling

Every verb can be associated with a set of core
and optional argument roles, sometimes called a
roleset. For example, the verb “say” must have a
sayer and an utterance which is said, along with
an optionally defined hearer and any number of
locative, temporal, manner, etc. adjunctival argu-
ments.

The task of predicate-argument labeling (some-
times called semantic role labeling or SRL) as-
signs a simple who did what to whom when, where,
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some kids like video games
—— ,

ARGO0 predicate ARG1

Figure 1: Semantic role labeling for the sentence
“some kids like video games”. According to Prop-
Bank specifications, core arguments for each pred-
icate are assigned a corresponding label ARGO-
ARGS5 (where ARGO is a proto-agent, ARG]1 is a
proto-patient, etc. (Palmer et al., 2005)).

why, how, etc. structure to sentences (see Figure
1), often for downstream processes such as infor-
mation extraction and question answering. Reli-
ably identifying and assigning these roles to gram-
matical text is an active area of research (Gildea
and Jurafsky, 2002; Pradhan et al., 2004; Prad-
han et al., 2008), using training resources like the
Linguistic Data Consortium’s Proposition Bank
(PropBank) (Palmer et al., 2005), a 300k-word
corpus with semantic role relations labeled for
verbs in the WSJsection of the Penn Treebank.

A common approach for automatic semantic
role labeling is to separate the process into two
steps: argument identification and argument label-
ing. For each task, standard cue features in au-
tomatic systems include verb identification, anal-
ysis of the syntactic path between that verb and
the prospective argument, and the direction (to the
left or to the right) in which the candidate argu-
ment falls in respect to its predicate. In (Gildea
and Palmer, 2002), the effect of parser accuracy
on semantic role labeling is quantified, and con-
sistent quality parses were found to be essential
when automatically identifying semantic roles on
WSIJ text.

1.2 Potential benefit of semantic analysis to
speech reconstruction

With an adequate amount of appropriately anno-
tated conversational text, methods such as those
referred to in Section 1.1 may be adapted for
transcriptions of spontaneous speech in future re-
search. Furthermore, given a set of semantic
role labels on an ungrammatical string, and armed
with the knowledge of a set of core semantico-
syntactic principles which constrain the set of pos-
sible grammatical sentences, we hope to discover
and take advantage of new cues for construction
errors in the field of automatic spontaneous speech
reconstruction.



2 Data

We conducted our experiments on the Spon-
taneous Speech Reconstruction (SSR) corpus
(Fitzgerald and Jelinek, 2008), a 6,000 SU set of
reconstruction annotations atop a subset of Fisher
conversational telephone speech data (Cieri et al.,
2004), including

e manual word alignments between corre-
sponding original and cleaned sentence-like
units (SUs) which are labeled with transfor-
mation types (Section 2.1), and

e annotated semantic role labels on predicates
and their arguments for all grammatical re-
constructions (Section 2.2).

The fully reconstructed portion of the SSR cor-
pus consists of 6,116 SUs and 82,000 words to-
tal. While far smaller than the 300,000-word Prop-
Bank corpus, we believe that this data will be ad-
equate for an initial investigation to characterize
semantic structure of verbatim and reconstructed
speech.

2.1 Alignments and alteration labels

In the SSR corpus, words in each reconstructed
utterance were deleted, inserted, substituted, or
moved as required to make the SU as grammatical
as possible without altering the original meaning
and without the benefit of extrasentential context.
Alignments between the original words and their
reconstructed “source” words (i.e. in the noisy
channel paradigm) are explicitly defined, and for
each alteration a corresponding alteration label
has been chosen from the following.

- DELETE words: fillers, repetitions/revisions,
false starts, co-reference, leading conjuga-
tion, and extraneous phrases

- INSERT neutral elements, such as function
words like “the”, auxiliary verbs like “is”, or
undefined argument placeholders, as in “he

wants <ARG>"

- SUBSTITUTE words to change tense or num-
ber, correct transcriber errors, and replace
colloquial phrases (such as: “he was like..” —
“he said...”)

- REORDER words (within sentence bound-
aries) and label as adjuncts, arguments, or
other structural reorderings

748

Unchanged original words are aligned to the cor-
responding word in the reconstruction with an arc
marked BASIC.

2.2 Semantic role labeling in the SSR corpus

One goal of speech reconstruction is to develop
machinery to automatically reduce an utterance to
its underlying meaning and then generate clean
text. To do this, we would like to understand
how semantic structure in spontaneous speech text
varies from that of written text. Here, we can take
advantage of the semantic role labeling included
in the SSR annotation effort.

Rather than attempt to label incomplete ut-
terances or errorful phrases, SSR annotators as-
signed semantic annotation only to those utter-
ances which were well-formed and grammatical
post-reconstruction. Therefore, only these utter-
ances (about 72% of the annotated SSR data) can
be given a semantic analysis in the following sec-
tions. For each well-formed and grammatical sen-
tence, all (non-auxiliary and non-modal) verbs
were identified by annotators and the correspond-
ing predicate-argument structure was labeled ac-
cording to the role-sets defined in the PropBank
annotation effort!.

We believe the transitive bridge between the
aligned original and reconstructed sentences and
the predicate-argument labels for those recon-
structions (described further in Section 4) may
yield insight into the structure of speech errors and
how to extract these verb-argument relationships
in verbatim and errorful speech text.

3 Syntactic variation between original
and reconstructed strings

As we begin our analysis, we first aim to under-
stand the types of syntactic changes which occur
during the course of spontaneous speech recon-
struction. These observations are made empiri-
cally given automatic analysis of the SSR corpus
annotations. Syntactic evaluation of speech and
reconstructed structure is based on the following
resources:

1. the manual parse P, for each verbatim orig-
inal SU (from SSR)

2. the automatic parse P,, of each verbatim
original SU

"PropBank roleset definitions for given verbs can be re-
viewed at http://www.cs.rochester.edu/~gildea/Verbs/.



3. the automatic parse P, of each reconstructed
SU

We note that automatic parses (using the state
of the art (Charniak, 1999) parser) of verbatim,
unreconstructed strings are likely to contain many
errors due to the inconsistent structure of ver-
batim spontaneous speech (Harper et al., 2005).
While this limits the reliability of syntactic obser-
vations, it represents the current state of the art for
syntactic analysis of unreconstructed spontaneous
speech text.

On the other hand, automatically obtained
parses for cleaned reconstructed text are more
likely to be accurate given the simplified and more
predictable structure of these SUs. This obser-
vation is unfortunately not evaluable without first
manually parsing all reconstructions in the SSR
corpus, but is assumed in the course of the follow-
ing syntax-dependent analysis.

In reconstructing from errorful and disfluent
text to clean text, a system makes not only surface
changes but also changes in underlying constituent
dependencies and parser interpretation. We can
quantify these changes in part by comparing the
internal context-free structure between the two
sets of parses.

We compare the internal syntactic structure be-
tween sets P, and P,, of the SSR check set.
Statistics are compiled in Table 1 and analyzed be-
low.

e 64.2% of expansion rules in parses P,,
also occur in reconstruction parses Py, and
92.4% (86.8%) of reconstruction parse P,
expansions come directly from the verbatim
parses P,, (from columns one and two of Ta-
ble 1).

Column three of Table 1 shows the rule types
most often dropped from the verbatim string
parses P, in the transformation to recon-
struction. The P,, parses select full clause
non-terminals (NTs) for the verbatim parses
which are not in turn selected for automatic
parses of the reconstruction (e.g. [SBAR —
S] or [S — VP]). This suggests that these
rules may be used to handle errorful struc-
tures not seen by the trained grammar.

Rule types in column four of Table 1 are the
most often “generated” in F,, (as they are
unseen in the automatic parse P,,). Since
rules like [S — NP VP], [PP — IN NP],
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and [SBAR — IN S] appear in a recon-
struction parse but not corresponding verba-
tim parse at similar frequencies regardless of
whether P, or P,, are being compared, we
are more confident that these patterns are ef-
fects of the verbatim-reconstruction compar-
ison and not the specific parser used in anal-
ysis. The fact that these patterns occur in-
dicates that it is these common rules which
are most often confounded by spontaneous
speaker errors.

Given a Levenshtein alignment between al-
tered rules, the most common changes within
a given NT phrase are detailed in column five
of Table 1. We see that the most com-
mon aligned rule changes capture the most
basic of errors: a leading coordinator (#1
and 2) and rules proceeded by unnecessary
filler words (#3 and 5). Complementary rules
#7 and 9 (e.g. VP — [rule]/[rule SBAR] and
VP — [rule SBAR]/[rule]) show that comple-
menting clauses are both added and removed,
possibly in the same SU (i.e. a phrase shift),
during reconstruction.

4 Analysis of semantics for speech

T ey [ S— e — [=]
5 some kids like video games 5
' K L

E -
& | they like video games some kids do |2
© | Argd- M A lee] [ArgO——] V- | D

ishadow] shadow]| o

Figure 2: Manual semantic role labeling for the
sentence “some kids like video games” and SRL
mapped onto its verbatim source string “they like
video games and stuff some kids do”

To analyze the semantic and syntactic patterns
found in speech data and its corresponding recon-
structions, we project semantic role labels from
strings into automatic parses, and moreover from
their post-reconstruction source to the verbatim
original speech strings via the SSR manual word
alignments, as shown in Figures 2.

The automatic SRL mapping procedure from
the reconstructed string W), to related parses P,
and P,, and the verbatim original string W, is as
follows.



P,, rules | P, rules | P,, rules most P, rules most Levenshtein-aligned expansion

in P, in P, frequently dropped | frequently added changes (P,,/P;,)
1. NP — PRP 1. S— NP VP 1. S — [ CCrule]/[rule]
2. ROOT — S 2. PP — IN NP 2. S—[CC NP VP]/[NP VP]
3. S— NP VP 3. ROOT — S 3. S — [ INTJ rule] / [rule]
4. INTJ — UH 4. ADVP — RB 4. S — [ NP rule] / [rule]

64.2% 92.4% 5. PP — IN NP 5. 5— NP ADVP VP | 5. S— [INTJ NP VP]/[NP VP]
6. ADVP — RB 6. SBAR — IN S 6. S— [NP NP VP]/[NP VP]
7. SBAR — S 7. SBAR — S 7. VP — [rule] / [rule SBAR]
8. NP — DT NN 8. S— ADVP NP VP | 8. S — [RB rule]/ [rule]
9. s— vp 9. s— vp 9. VP — [rule SBAR]/ [rule]
10. PRN— s 10. np — NP SBAR | 10. s — [rule]/[ ADVP rule]

Table 1: Internal syntactic structure removed and gained during reconstruction. This table compares
the rule expansions for each verbatim string automatically parsed P,, and the automatic parse of the
corresponding reconstruction in the SSR corpus (7).

1. Tag each reconstruction word w, € string
W, with the annotated SRL tag t,,,.

(a) Tageach verbatim word w,, € string W,
aligned to w, via a BASIC, REORDER,
or SUBSTITUTE alteration label with the
SRL tag ¢, as well.

Tag each verbatim word w, aligned
to w, via a DELETE REPETITION
or DELETE CO-REFERENCE alignment
with a shadow of that SRL tag t,,,. (see
the lower tags in Figure 2 for an exam-
ple)

(b)

Any verbatim original word w, with any
other alignment label is ignored in this se-
mantic analysis as SRL labels for the aligned
reconstruction word w, do not directly trans-
late to them.

Overlay tagged words of string W,, and W,
with the automatic (or manual) parse of the
same string.

. Propagate labels. For each constituent in
the parse, if all children within a syntactic
constituent expansion (or all but EDITED or
INTJ) has a given SRL tag for a given pred-
icate, we instead tag that NT (and not chil-
dren) with the semantic label information.

4.1 Labeled verbs and their arguments

In the 3,626 well-formed and grammatical SUs la-
beled with semantic roles in the SSR, 895 distinct
verb types were labeled with core and adjunct ar-
guments as defined in Section 1.1. The most fre-
quent of these verbs was the orthographic form “s”
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which was labeled 623 times, or in roughly 5%
of analyzed sentences. Other forms of the verb
“to be”, including “is”, “was”, “be”, “are”, “re”, “m”,
and “being”, were labeled over 1,500 times, or at
a rate of nearly one in half of all well-formed re-
constructed sentences. The verb type frequencies
roughly follow a Zipfian distribution (Zipf, 1949),
where most verb words appear only once (49.9%)
or twice (16.0%).

On average, 1.86 core arguments (ARG[0-4])
are labeled per verb, but the specific argument
types and typical argument numbers per predicate
are verb-specific. For example, the ditransitive
verb “give” has an average of 2.61 core arguments
for its 18 occurrences, while the verb “divorced”
(whose core arguments “initiator of end of mar-
riage” and “ex-spouse” are often combined, as in
“we divorced two years ago”) was labeled 11 times
with an average of 1.00 core arguments per occur-
rence.

In the larger PropBank corpus, annotated atop
WSIJ news text, the most frequently reported verb
root is “say”, with over ten thousand labeled ap-
pearances in various tenses (this is primarily ex-
plained by the genre difference between WSJ and
telephone speech)?; again, most verbs occur two
or fewer times.

4.2 Structural semantic statistics in cleaned
speech

A reconstruction of a verbatim spoken utterance
can be considered an underlying form, analogous

The reported PropBank analysis ignores past and present
participle (passive) usage; we do not do this in our analysis.



to that of Chomskian theory or Harris’s concep-
tion of transformation (Harris, 1957). In this view,
the original verbatim string is the surface form of
the sentence, and as in linguistic theory should be
constrained in some manner similar to constraints
between Logical Form (LF) and Surface Structure
(SS).

Most common syntactic
Data | SRL Total | categories, with rel. frequency
P, 10110 NP (50%) PP (6%)
P., | Arcl 8341 NP (58%) SBAR (9%)
PBO0S5 Obj-NP (52%) S (22%)
Py, 4319 NP (90%) WHNP (3%)
P., | ARGO | 4518 NP (93%) WHNP (3%)
PB05 Subj-NP (97%) NP (2%)
Py, 3836 NP (28%) PP (13%)
P.., | ArG2 3179 NP (29%) PP (18%)
PB05 NP (36%) Obj-NP (29%)
P,, 931 ADVP (25%) NP (20%)
P., | Tmp 872 ADVP (27%) PP (18%)
PB05 ADVP (26%) PP-in (16%)
P,, 562 MD (58%) TO (18%)
P., | Mop 642 MD (57%) TO (19%)
PBO05 MD (99%) ADVP (1%)
P, 505 PP (47%)  ADVP (16%)
P., | Loc 489 PP (54%)  ADVP (17%)
PBO0S5 PP-in (59%) PP-on (10.0%)

Table 2: Most frequent phrasal categories for com-
mon arguments in the SSR (mapping SRLs onto
P, parses). PBOS refers to the PropBank data de-
scribed in (Palmer et al., 2005).

Most common argument

Data NT Total labels, with rel. frequency
P,, 10541 | ARGI (48%) ARGO (37%)
P, NP 10218 | ARG1 (47%) ARGO (41%)
PB05 ARG2 (34%) ARG1 (24%)
PBO0S5 | Subj-NP ARGO (79%) ARG (17%)
PB05 | Obj-NP ARG1 (84%) ARG2 (10%)
P,, PP 1714 | ARG1 (34%) ARG2 (30%)
P, 1777 | ARGI (31%) ARG2 (30%)
PB0O5 | PP-in Loc (48%) TMP (35%)
PB0O5 | PP-at EXT (36%) Loc (27%)
P,, 1519 | ARG2 (21%) ARG1 (19%)
P, ADVP 1444 | ARG2 (22%) ADV (20%)
PB05 TMP (30%) MNR (22%)
Py, 930 | ARGI1 (61%) ARG2 (14%)
P, SBAR 1241 | ARGI (62%) ARG2 (12%)
PB05 ADV 36%) TMmP (30%)
P,, 523 ARG1 (70%) ARG2 (16%)

e S 526 | ARGI (72%) ARG2 (17%)
PB05 ARGI (76%)  ADV (9%)
Py, 449 MoD (73%) ARG1 (18%)
P, MD 427 MoD (86%) ARG1 (11%)
PBO0S5 MoD (97%)Adjuncts (3%)

Table 3: Most frequent argument categories for
common syntactic phrases in the SSR (mapping
SRLs onto P,, parses).
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In this section, we identify additional trends
which may help us to better understand these con-
straints, such as the most common phrasal cate-
gory for common arguments in common contexts
— listed in Table 2 — and the most frequent seman-
tic argument type for NTs in the SSR — listed in
Table 3.

4.3 Structural semantic differences between
verbatim speech and reconstructed
speech

We now compare the placement of semantic role
labels with reconstruction-type labels assigned in
the SSR annotations.

These analyses were conducted on P, parses of
reconstructed strings, the strings upon which se-
mantic labels were directly assigned.

Reconstructive deletions

Q: Is there a relationship between speaker er-
ror types requiring deletions and the argument
shadows contained within? Only two deletion
types — repetitions/revisions and co-references —
have direct alignments between deleted text and
preserved text and thus can have argument shad-
ows from the reconstruction marked onto the ver-
batim text.

Of 9,082 propagated deleted repetition/ revision
phrase nodes from P, , we found that 31.0% of ar-
guments within were ARG1, 22.7% of arguments
were ARGO, 8.6% of nodes were predicates la-
beled with semantic roles of their own, and 8.4%
of argument nodes were ARG2. Just 8.4% of
“delete repetition/revision” nodes were modifier
(vs. core) arguments, with TMP and CAU labels
being the most common.

Far fewer (353) nodes from P, represented
deleted co-reference words. Of these, 57.2% of ar-
gument nodes were ARG1, 26.6% were ARGO and
13.9% were ARG2. 7.6% of “argument” nodes
here were SRL-labeled predicates, and 10.2%
were in modifier rather than core arguments, the
most prevalent were TMP and LOC.

These observations indicate to us that redun-
dant co-references are far most likely to occur for
ARG]1 roles (most often objects, though also sub-
jects for copular verbs (i.e. “to be”) and others) and
appear more likely than random to occur in core
argument regions of an utterance rather than in op-
tional modifying material.

Reconstructive insertions



Q: When null arguments are inserted into re-
constructions of errorful speech, what seman-
tic role do they typically fill? Three types of
insertions were made by annotators during the re-
construction of the SSR corpus. Inserted function
words, the most common, were also the most var-
ied. Analyzing the automatic parses of the recon-
structions P,,, we find that the most commonly
assigned parts-of-speech (POS) for these elements
was fittingly IN (21.5%, preposition), DT (16.7%,
determiner) and CC (14.3%, conjunction). Inter-
estingly, we found that the next most common
POS assignments were noun labels, which may in-
dicate errors in SSR labeling.

Other inserted word types were auxiliary or oth-
erwise neutral verbs, and, as expected, most POS
labels assigned by the parses were verb types,
mostly VBP (non-third person present singular).
About half of these were labeled as predicates with
corresponding semantic roles; the rest were unla-
beled which makes sense as true auxiliary verbs
were not labeled in the process.

Finally, around 147 insertion types made were
neutral arguments (given the orthographic form
<ARG>). 32.7% were common nouns and 18.4%
of these were labeled personal pronouns PRP. An-
other 11.6% were adjectives JJ. We found that 22
(40.7%) of 54 neutral argument nodes directly as-
signed as semantic roles were ARG1, and another
33.3% were ARGO. Nearly a quarter of inserted
arguments became part of a larger phrase serv-
ing as a modifier argument, the most common of
which were CAU and LoOC.

Reconstructive substitutions

Q: How often do substitutions occur in the an-
alyzed data, and is there any semantic con-
sistency in the types of words changed? 230
phrase tense substitutions occurred in the SSR cor-
pus. Only 13 of these were directly labeled as
predicate arguments (as opposed to being part of
a larger argument), 8 of which were ARG1. Mor-
phology changes generally affect verb tense rather
than subject number, and with no real impact on
semantic structure.

Colloguial substitutions of verbs, such as “he
was like..” — “he said..”, yield more unusual seman-
tic analysis on the unreconstructed side as non-
verbs were analyzed as verbs.

Reconstructive word re-orderings
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Q: How is the predicate-argument labeling af-
fected? If reorderings occur as a phrase, what
type of phrase? Word reorderings labeled as
argument movements occurred 136 times in the
3,626 semantics-annotated SUs in the SSR corpus.
Of these, 81% were directly labeled as arguments
to some sentence-internal predicate. 52% of those
arguments were ARG1, 17% were ARGO, and 13%
were predicates. 11% were labeled as modifying
arguments rather than core arguments, which may
indicate confusion on the part of the annotators
and possibly necessary cleanup.

More commonly labeled than argument move-
ment was adjunct movement, assigned to 206
phrases. 54% of these reordered adjuncts were not
directly labeled as predicate arguments but were
within other labeled arguments. The most com-
monly labeled adjunct types were TMP (19% of all
arguments), ADV (13%), and Loc (11%).

Syntactically, 25% of reordered adjuncts were
assigned ADVP by the automatic parser, 19% were
assigned NP, 18% were labeled PP, and remaining
common NT assignments included IN, RB, and
SBAR.

Finally, 239 phrases were labeled as being re-
ordered for the general reason of fixing the gram-
mar, the default change assignment given by the
annotation tool when a word was moved. This
category was meant to encompass all movements
not included in the previous two categories (argu-
ments and adjuncts), including moving “I guess”
from the middle or end of a sentence to the be-
ginning, determiner movement, etc. Semantically,
63% of nodes were directly labeled as predicates
or predicate arguments. 34% of these were PRED,
28% were ARG, 27% were ARGO, 8% were
ARG2, and 8% were roughly evenly distributed
across the adjunct argument types.

Syntactically, 31% of these changes were NPs,
16% were ADVPs, and 14% were VBPs (24% were
verbs in general). The remaining 30% of changes
were divided amongst 19 syntactic categories from
CCtoDT to PP.

4.4 Testing the generalizations required for
automatic SRL for speech

The results described in (Gildea and Palmer, 2002)
show that parsing dramatically helps during the
course of automatic SRL. We hypothesize that
the current state-of-art for parsing speech is ade-
quate to generally identify semantic roles in spon-



taneously produced speech text. For this to be true,
features for which SRL is currently dependent on
such as consistent predicate-to-parse paths within
automatic constituent parses must be found to ex-
ist in data such as the SSR corpus.

The predicate-argument path is defined as the
number of steps up and down a parse tree (and
through which NTs) which are taken to traverse
the tree from the predicate (verb) to its argument.
For example, the path from predicate VBP — “like”
to the argument ARGO (NP — “some kids”) might
be [VBP T VP T S | NP]. As trees grow more
complex, as well as more errorful (as expected
for the automatic parses of verbatim speech text),
the paths seen are more sparsely observed (i.e. the
probability density is less concentrated at the most
common paths than similar paths seen in the Prop-
Bank annotations). We thus consider two path
simplifications as well:

e compressed: only the source, target, and root
nodes are preserved in the path (so the path
above becomes [VBP T S | NP])

e POS class clusters: rather than distinguish,
for example, between different tenses of
verbs in a path, we consider only the first let-
ter of each NT. Thus, clustering compressed
output, the new path from predicate to ARGO
becomes [V T S | NJ.

The top paths were similarly consistent regardless
of whether paths are extracted from P, , P, , or
P,, (P,, results shown in Table 4), but we see that
the distributions of paths are much flatter (i.e. a
greater number and total relative frequency of path
types) going from manual to automatic parses and
from parses of verbatim to parses of reconstructed
strings.

5 Discussion

In this work, we sought to find generalizations
about the underlying structure of errorful and re-
constructed speech utterances, in the hopes of de-
termining semantic-based features which can be
incorporated into automatic systems identifying
semantic roles in speech text as well as statisti-
cal models for reconstruction itself. We analyzed
syntactic and semantic variation between original
and reconstructed utterances according to manu-
ally and automatically generated parses and man-
ually labeled semantic roles.
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[ Argument  Path from Predicate Freq |

VBP | VP | S | NP 49%

Predicate- VB T VP T VP T S | NP 3.9%
Argument VB T VP | NP 3.8%
Paths VBD T VP 1 S | NP 2.8%
944 more path types 84.7%

VB T S | NP 7.3%

VB 1 VP | NP 5.8%

Compressed VBP | S | NP 5.3%
VBD | S | NP 3.5%

333 more path types 77.1%

V]s|N 25.8%

viv|N 17.5%

POSclass+ Vv T Vv | A 8.2%
compressed V T VvV | V 7.7%
60 more path types 40.8%

Table 4: Frequent P,, predicate-argument paths

Syntactic paths from predicates to arguments
were similar to those presented for WSJ data
(Palmer et al., 2005), though these patterns de-
graded when considered for automatically parsed
verbatim and errorful data. We believe that auto-
matic models may be trained, but if entirely depen-
dent on automatic parses of verbatim strings, an
SRL-labeled resource much bigger than the SSR
and perhaps even PropBank may be required.

6 Conclusions and future work

This work is an initial proof of concept that au-
tomatic semantic role labeling (SRL) of verbatim
speech text may be produced in the future. This is
supported by the similarity of common predicate-
argument paths between this data and the Prop-
Bank WSJ annotations (Palmer et al., 2005) and
the consistency of other features currently empha-
sized in automatic SRL work on clean text data.
To automatically semantically label speech tran-
scripts, however, is expected to require additional
annotated data beyond the 3k utterances annotated
for SRL included in the SSR corpus, though it may
be adequate for initial adaptation studies.

This new ground work using available corpora
to model speaker errors may lead to new intelli-
gent feature design for automatic systems for shal-
low semantic labeling and speech reconstruction.
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