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Abstract 

This paper presents collaborative decoding 

(co-decoding), a new method to improve ma-

chine translation accuracy by leveraging trans-

lation consensus between multiple machine 

translation decoders. Different from system 

combination and MBR decoding, which post-

process the n-best lists or word lattice of ma-

chine translation decoders, in our method mul-

tiple machine translation decoders collaborate 

by exchanging partial translation results. Us-

ing an iterative decoding approach, n-gram 

agreement statistics between translations of 

multiple decoders are employed to re-rank 

both full and partial hypothesis explored in 

decoding. Experimental results on data sets for 

NIST Chinese-to-English machine translation 

task show that the co-decoding method can 

bring significant improvements to all baseline 

decoders, and the outputs from co-decoding 

can be used to further improve the result of 

system combination. 

1 Introduction 

Recent research has shown substantial improve-

ments can be achieved by utilizing consensus 

statistics obtained from outputs of multiple ma-

chine translation systems. Translation consensus 

can be measured either at sentence level or at 

word level. For example, Minimum Bayes Risk 

(MBR) (Kumar and Byrne, 2004) decoding over 

n-best list tries to find a hypothesis with lowest 

expected loss with respect to all the other transla-

tions, which can be viewed as sentence-level 

consensus-based decoding. Word based methods 

proposed range from straightforward consensus 

voting (Bangalore et al., 2001; Matusov et al., 

2006) to more complicated word-based system 

combination model (Rosti et al., 2007; Sim et al., 

2007). Typically, the resulting systems take out-

puts of individual machine translation systems as 

input, and build a new confusion network for 

second-pass decoding. 

There have been many efforts dedicated to ad-

vance the state-of-the-art performance by com-

bining multiple systems’ outputs. Most of the 

work focused on seeking better word alignment 

for consensus-based confusion network decoding 

(Matusov et al., 2006) or word-level system 

combination (He et al., 2008; Ayan et al., 2008). 

In addition to better alignment, Rosti et al. 

(2008) introduced an incremental strategy for 

confusion network construction; and Hildebrand 

and Vogel (2008) proposed a hypotheses re-

ranking model for multiple systems’ outputs with 

more features including word translation proba-

bility and n-gram agreement statistics. 

A common property of all the work mentioned 

above is that the combination models work on 

the basis of n-best translation lists (full hypo-

theses) of existing machine translation systems. 

However, the n-best list only presents a very 

small portion of the entire search space of a Sta-

tistical Machine Translation (SMT) model while 

a majority of the space, within which there are 

many potentially good translations, is pruned 

away in decoding. In fact, due to the limitations 

of present-day computational resources, a consi-

derable number of promising possibilities have to 

be abandoned at the early stage of the decoding 

process. It is therefore expected that exploring 

additional possibilities beyond n-best hypotheses 

lists for full sentences could bring improvements 

to consensus-based decoding. 

In this paper, we present collaborative decod-

ing (or co-decoding), a new SMT decoding 

scheme to leverage consensus information be-

tween multiple machine translation systems. In 

this scheme, instead of using a post-processing 

step, multiple machine translation decoders col-

laborate during the decoding process, and trans-

lation consensus statistics are taken into account 

to improve ranking not only for full translations, 

but also for partial hypotheses. In this way, we 
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expect to reduce search errors caused by partial 

hypotheses pruning, maximize the contribution 

of translation consensus, and result in better final 

translations. 

We will discuss the general co-decoding mod-

el, requirements for decoders that enable colla-

borative decoding and describe the updated mod-

el structures. We will present experimental re-

sults on the data sets of NIST Chinese-to-English 

machine translation task, and demonstrate that 

co-decoding can bring significant improvements 

to baseline systems.  We also conduct extensive 

investigations when different settings of co-

decoding are applied, and make comparisons 

with related methods such as word-level system 

combination of hypothesis selection from mul-

tiple n-best lists.  

The rest of the paper is structured as follows. 

Section 2 gives a formal description of the co-

decoding model, the strategy to apply consensus 

information and hypotheses ranking in decoding. 

In Section 3, we make detailed comparison be-

tween co-decoding and related work such as sys-

tem combination and hypotheses selection out of 

multiple systems.  Experimental results and dis-

cussions are presented in Section 4. Section 5 

concludes the paper. 

2 Collaborative Decoding 

2.1 Overview 

Collaborative decoding does not present a full 

SMT model as other SMT decoders do such as 

Pharaoh (Koehn, 2004) or Hiero (Chiang, 2005). 

Instead, it provides a framework that accommo-

dates and coordinates multiple MT decoders. 

Conceptually, collaborative decoding incorpo-

rates the following four constituents:  

1. Co-decoding model. A co-decoding model 

consists of a set of member models, which 

are a set of augmented baseline models. We 

call decoders based on member models 

member decoders, and those based on base-

line models baseline decoders. In our work, 

any Maximum A Posteriori (MAP) SMT 

model with log-linear formulation (Och, 

2002) can be a qualified candidate for a 

baseline model. The requirement for a log-

linear model aims to provide a natural way to 

integrate the new co-decoding features. 

2. Co-decoding features. Member models are 

built by adding additional translation consen-

sus -based co-decoding features to baseline 

models. A baseline model can be viewed as a 

special case of member model with all co-

decoding feature values set to 0. Accordingly, 

a baseline decoder can be viewed as a special 

setting of a member decoder. 

3. Decoder coordinating. In co-decoding, each 

member decoder cannot proceed solely based 

on its own agenda. To share consensus statis-

tics with others, the decoding must be per-

formed in a coordinated way.  

4. Model training. Since we use multiple inter-

related decoders and introduce more features 

in member models, we also need to address 

the parameter estimation issue in the frame-

work of co-decoding. 

In the following sub-sections we first establish a 

general model for co-decoding, and then present 

details of feature design and decoder implemen-

tation, as well as parameter estimation in the co-

decoding framework. We leave the investigation 

of using specific member models to the experi-

ment section. 

2.2 Generic Collaborative Decoding Model 

For a given source sentence f, a member model 

in co-decoding finds the best translation 𝑒∗ 
among the set of possible candidate translations 

ℋ(𝑓) based on a scoring function 𝐹: 

𝑒∗ = argmax𝑒∈ℋ(𝑓)𝐹(𝑒) (1) 

In the following, we will use 𝑑𝑘  to denote the 

𝑘𝑡ℎ  member decoder, and also use the notation 

ℋ𝑘(𝑓) for the translation hypothesis space of f 

determined by 𝑑𝑘 . The 𝑚𝑡ℎ  member model can 

be written as: 

𝐹𝑚  𝑒 = Φ𝑚 (𝑓, 𝑒) +  Ψ𝑘(𝑒,ℋ𝑘(𝑓))
𝑘,𝑘≠𝑚

 (2) 

where Φ𝑚 (𝑓, 𝑒) is the score function of the 𝑚𝑡ℎ  

baseline model, and each Ψ𝑘(𝑒,ℋ𝑘(𝑓)) is a par-

tial consensus score function with respect to 𝑑𝑘  

and is defined over e and ℋ𝑘 𝑓 :  

Ψ𝑘 𝑒,ℋ𝑘 𝑓  =  𝜆𝑘 ,𝑙  ℎ𝑘,𝑙(𝑒,ℋ𝑘 𝑓 ) 
𝑙

 (3) 

where each ℎ𝑘 ,𝑙(𝑒,ℋ𝑘 𝑓 ) is a feature function 

based on a consensus measure between e and 

ℋ𝑘 𝑓 , and 𝜆𝑘,𝑙  is the corresponding feature 

weight. Feature index l ranges over all consen-

sus-based features in Equation 3. 

2.3 Decoder Coordination 

Before discussing the design and computation of 

translation consensus -based features, we first 
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describe the multiple decoder coordination issue 

in co-decoding. Note that in Equation 2, though 

the baseline score function Φ𝑚  𝑓, 𝑒  can be 

computed inside each decoder, the case of 

Ψ𝑘(𝑒,ℋ𝑘(𝑓))  is more complicated. Because 

usually it is not feasible to enumerate the entire 

hypothesis space for machine translation, we ap-

proximate ℋ𝑘 𝑓  with n-best hypotheses by 

convention. Then there is a circular dependency 

between co-decoding features and ℋ𝑘(𝑓) : on 

one hand, searching for n-best approximation of 

ℋ𝑘(𝑓) requires using Equation 2 to select top-

ranked hypotheses; while on the other hand, Eq-

uation 2 cannot be computed until every ℋ𝑘(𝑓) 

is available.  

We address this issue by employing a boot-

strapping method, in which the key idea is that 

we can use baseline models’ n-best hypotheses 

as seeds, and iteratively refine member models’ 

n-best hypotheses with co-decoding. Similar to a 

typical phrase-based decoder (Koehn, 2004), we 

associate each hypothesis with a coverage vector 

c to track translated source words in it. We will 

use ℋ𝑘(𝑐,𝑓) for the set of hypotheses associated 

with c, and we also denote with ℋ𝑘(𝑓) =
 ℋ𝑘(𝑐,𝑓)𝑐  the set of all hypotheses generated 

by member decoder 𝑑𝑘  in decoding. The co-

decoding process can be described as follows: 

1. For each member decoder 𝑑𝑘 , perform de-

coding with a baseline model, and memorize 

all translation hypotheses generated during 

decoding in ℋ𝑘(𝑓); 

2. Re-group translation hypotheses in ℋ𝑘(𝑓) 

into a set of buckets  ℋ𝑘 𝑐,𝑓  by the cover-

age vector c associated with each hypothesis; 

3. Use member decoders to re-decode source 

sentence 𝑓 with member models. For mem-

ber decoder 𝑑𝑘 , consensus-based features of 

any hypotheses associated with coverage 

vector c are computed based on current set-

ting of ℋ𝑠 𝑐,𝑓  for all s but k. New hypo-

theses generated by 𝑑𝑘  in re-decoding are 

cached in ℋ𝑘
′ (𝑓); 

4. Update all ℋ𝑘(𝑓) with ℋ𝑘
′ (𝑓); 

5. Iterate from step 2 to step 4 until a preset 

iteration limit is reached. 

In the iterative decoding procedure described 

above, hypotheses of different decoders can be 

mutually improved. For example, given two de-

coders 𝑑1  and 𝑑2  with hypotheses sets ℋ1  and 

ℋ2 , improvements on ℋ1  enable 𝑑2  to improve 

ℋ2, and in turn ℋ1 benefits from improved ℋ2, 

and so forth. 

Step 2 is used to facilitate the computation of 

feature functions ℎ𝑘 ,𝑙(𝑒,ℋ𝑘 ∙ ) , which require 

both e and every hypothesis in ℋ𝑘 ∙   should be 

translations of the same set of source words. This 

step seems to be redundant for CKY-style MT 

decoders (Liu et al., 2006; Xiong et al., 2006; 

Chiang, 2005) since the grouping is immediately 

available from decoders because all hypotheses 

spanning the same range of source sentence have 

been stacked together in the same chart cell. But 

to be a general framework, this step is necessary 

for some state-of-the-art phrase-based decoders 

(Koehn, 2007; Och and Ney, 2004) because in 

these decoders, hypotheses with different cover-

age vectors can co-exist in the same bin, or hypo-

theses associated with the same coverage vector 

might appear in different bins.  

Note that a member model does not enlarge 

the theoretical search space of its baseline model, 

the only change is hypothesis scoring. By re-

running a complete decoding process, member 

model can be applied to re-score all hypotheses 

explored by a decoder. Therefore step 3 can be 

viewed as full-scale hypothesis re-ranking be-

cause the re-ranking scope is beyond the limited 

n-best hypotheses currently cached in ℋ𝑘 .  

In the implementation of member decoders, 

there are two major modifications compared to 

their baseline decoders. One is the support for 

co-decoding features, including computation of 

feature values and the use of augmented co-

decoding score function (Equation 2) for hypo-

thesis ranking and pruning. The other is hypothe-

sis grouping based on coverage vector and a me-

chanism to effectively access grouped hypothes-

es in step 2 and step 3. 

2.4 Co-decoding Features 

We now present the consensus-based feature 

functions  ℎ𝑘 ,𝑙(𝑒,ℋ𝑘 𝑓 ) introduced in Equation 

3. In this work all the consensus-based features 

have the following formulation: 

ℎ𝑘 ,𝑙 𝑒,ℋ𝑘 𝑓  =  𝑃 𝑒′ 𝑑𝑘 𝐺𝑙(𝑒, 𝑒′)

𝑒′∈ℋ𝑘 𝑓 

 (4) 

where e is a translation of f by decoder 𝑑𝑚 (𝑚 ≠
𝑘), 𝑒 ′  is a translation in ℋ𝑘 𝑓  and 𝑃 𝑒′ 𝑑𝑘  is 

the posterior probability of translation 𝑒 ′  deter-

mined by decoder 𝑑𝑘  given source sentence f. 

𝐺𝑙(𝑒, 𝑒′) is a consensus measure defined on e and 

𝑒′, by varying which different feature functions 

can be obtained.  
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Referring to the log-linear model formulation, 

the translation posterior 𝑃 𝑒′ 𝑑𝑘  can be com-

puted as: 

𝑃 𝑒′ 𝑑𝑘 =
exp 𝛼𝐹𝑘 𝑒′  

 exp 𝛼𝐹𝑘 𝑒′′  𝑒′′ ∈ℋ𝑘 𝑓 

 (5) 

where 𝐹𝑘(∙) is the score function given in Equa-

tion 2, and  𝛼 is a scaling factor following the 

work of Tromble et al. (2008) 

To compute the consensus measures, we fur-

ther decompose each 𝐺𝑙 𝑒, 𝑒′  into n-gram 

matching statistics between e and 𝑒′. Here we do 

not discriminate among different lexical n-grams 

and are only concerned with statistics aggrega-

tion of all n-grams of the same order. For each n-

gram of order n, we introduce a pair of comple-

mentary consensus measure functions 𝐺𝑛+ 𝑒, 𝑒′  
and 𝐺𝑛− 𝑒, 𝑒′  described as follows: 

𝐺𝑛+ 𝑒, 𝑒 ′  is the n-gram agreement measure 

function which counts the number of occurrences 

in 𝑒 ′of n-grams in e. So the corresponding fea-

ture value will be the expected number of occur-

rences in ℋ𝑘 𝑓  of all n-grams in e:  

𝐺𝑛+ 𝑒, 𝑒′ =  𝜏(𝑒𝑖
𝑖+𝑛−1 , 𝑒′)

 𝑒 −𝑛+1

𝑖=1
 

where 𝜏(∙,∙)  is a binary indicator function – 

𝜏 𝑒𝑖
𝑖+𝑛−1 , 𝑒′  is 1 if the n-gram 𝑒𝑖

𝑖+𝑛−1 occurs in 

𝑒 ′  and 0 otherwise. 

𝐺𝑛− 𝑒, 𝑒 ′  is the n-gram disagreement meas-

ure function which is complementary to 

𝐺𝑛+ 𝑒, 𝑒 ′ : 

𝐺𝑛− 𝑒, 𝑒′ =   1 − 𝜏 𝑒𝑖
𝑖+𝑛−1 , 𝑒′  

 𝑒 −𝑛+1

𝑖=1
 

This feature is designed because 𝐺𝑛+ 𝑒, 𝑒 ′  
does not penalize long translation with low pre-

cision. Obviously we have the following: 

𝐺𝑛+ 𝑒, 𝑒′ + 𝐺𝑛− 𝑒, 𝑒′ =  𝑒 − 𝑛 + 1 

So if the weights of agreement and disagree-

ment features are equal, the disagreement-based 

features will be equivalent to the translation 

length features. Using disagreement measures 

instead of translation length there could be two 

potential advantages: 1) a length feature has been 

included in the baseline model and we do not 

need to add one; 2) we can scale disagreement 

features independently and gain more modeling 

flexibility. 

Similar to a language model score, n-gram 

consensus -based feature values cannot be 

summed up from smaller hypotheses. Instead, it 

must be re-computed when building each new 

hypothesis. 

2.5 Model Training 

We adapt the Minimum Error Rate Training 

(MERT) (Och, 2003) algorithm to estimate pa-

rameters for each member model in co-decoding. 

Let 𝝀𝑚  be the feature weight vector for member 

decoder 𝑑𝑚 , the training procedure proceeds as 

follows: 

1. Choose initial values for 𝝀1 ,… ,𝝀𝑀   

2. Perform co-decoding using all member de-

coders on a development set D with 

𝝀1 ,… ,𝝀𝑀 . For each decoder 𝑑𝑚 , find a new 

feature weight vector 𝝀𝑚
′  which optimizes 

the specified evaluation criterion L on D us-

ing the MERT algorithm based on the n-best 

list ℋ𝑚  generated by 𝑑𝑚 : 

𝝀𝑚
′ = argmax𝝀 𝐿 (𝑇|𝝀,ℋ𝑚  ,𝐷)) 

where T denotes the translations selected by 

re-ranking the translations in ℋ𝑚  using a 

new feature weight vector 𝝀 

3. Let 𝝀1 = 𝝀1
′ ,… ,𝝀𝑀 = 𝝀𝑀

′  and repeat step 2 

until convergence or a preset iteration limit is 

reached. 

 

Figure 1. Model training for co-decoding 

In step 2, there is no global criterion to optim-

ize the co-decoding parameters across member 

models. Instead, parameters of different member 

models are tuned to maximize the evaluation cri-

teria on each member decoder’s own n-best out-

put.  Figure 1 illustrates the training process of 

co-decoding with 2 member decoders. 

Source sentence

decoder1 decoder2

ℋ1

MERT

ℋ2

MERT

co-decoding

ref

1


2

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2.6 Output Selection 

Since there is more than one model in co-

decoding, we cannot rely on member model’s 

score function to choose one best translation 

from multiple decoders’ outputs because the 

model scores are not directly comparable. We 

will examine the following two system combina-

tion -based solutions to this task: 

 Word-level system combination (Rosti et al., 

2007) of member decoders’ n-best outputs  

 Hypothesis selection from combined n-best 

lists as proposed in Hildebrand  and Vogel 

(2008) 

3 Experiments 

In this section we present experiments to eva-

luate the co-decoding method. We first describe 

the data sets and baseline systems. 

3.1 Data and Metric 

We conduct our experiments on the test data 

from the NIST 2005 and NIST 2008 Chinese-to-

English machine translation tasks. The NIST 

2003 test data is used for development data to 

estimate model parameters. Statistics of the data 

sets are shown in Table 1. In our experiments all 

the models are optimized with case-insensitive 

NIST version of BLEU score and we report re-

sults using this metric in percentage numbers. 

 

Data set # Sentences # Words 

NIST 2003 (dev) 919 23,782 

NIST 2005 (test) 1,082 29,258 

NIST 2008 (test) 1,357 31,592 

Table 1: Data set statistics 

We use the parallel data available for the 

NIST 2008 constrained track of Chinese-to-

English machine translation task as bilingual 

training data, which contains 5.1M sentence 

pairs, 128M Chinese words and 147M English 

words after pre-processing. GIZA++ is used to 

perform word alignment in both directions with 

default settings, and the intersect-diag-grow me-

thod is used to generate symmetric word align-

ment refinement. 

The language model used for all models (in-

clude decoding models and system combination 

models described in Section 2.6) is a 5-gram 

model trained with the English part of bilingual 

data and xinhua portion of LDC English Giga-

word corpus version 3. 

3.2 Member Decoders 

We use three baseline decoders in the experi-

ments. The first one (SYS1) is re-implementation 

of Hiero, a hierarchical phrase-based decoder. 

Phrasal rules are extracted from all bilingual sen-

tence pairs, while rules with variables are ex-

tracted only from selected data sets including 

LDC2003E14, LDC2003E07, LDC2005T06 and 

LDC2005T10, which contain around 350,000 

sentence pairs, 8.8M Chinese words and 10.3M 

English words. The second one (SYS2) is a BTG 

decoder with lexicalized reordering model based 

on maximum entropy principle as proposed by 

Xiong et al. (2006). We use all the bilingual data 

to extract phrases up to length 3. The third one 

(SYS3) is a string-to-dependency tree –based 

decoder as proposed by Shen et al. (2008). For 

rule extraction we use the same setting as in 

SYS1. We parsed the language model training 

data with Berkeley parser, and then trained a de-

pendency language model based on the parsing 

output. All baseline decoders are extended with 

n-gram consensus –based co-decoding features 

to construct member decoders. By default, the 

beam size of 20 is used for all decoders in the 

experiments. We run two iterations of decoding 

for each member decoder, and hold the value of 

𝛼  in Equation 5 as a constant 0.05, which is 

tuned on the test data of NIST 2004 Chinese-to-

English machine translation task. 

3.3 Translation Results 

We first present the overall results of co-

decoding on both test sets using the settings as 

we described. For member decoders, up to 4-

gram agreement and disagreement features are 

used. We also implemented the word-level sys-

tem combination (Rosti et al., 2007) and the hy-

pothesis selection method (Hildebrand and Vogel, 

2008). 20-best translations from all decoders are 

used in the experiments for these two combina-

tion methods. Parameters for both system com-

bination and hypothesis selection are also tuned 

on NIST 2003 test data. The results are shown in 

Table 2. 

 

 NIST 2005 NIST 2008 

SYS1 38.66/40.08 27.67/29.19 

SYS2 38.04/39.93 27.25/29.14 

SYS3 39.50/40.32 28.75/29.68 

Word-level Comb 40.45/40.85 29.52/30.35 

Hypo Selection 40.09/40.50 29.02/29.71 

Table 2: Co-decoding results on test data 
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In the Table 2, the results of a member decod-

er and its corresponding baseline decoder are 

grouped together with the later one for the mem-

ber decoders. On both test sets, every member 

decoder performs significantly better than its 

baseline decoder (using the method proposed in 

Koehn (2004) for statistical significance test).  

We apply system combination methods to the 

n-best outputs of both baseline decoders and 

member decoders. We notice that we can achieve 

even better performance by applying system 

combination methods to member decoders’ n-

best outputs. However, the improvement margins 

are smaller than those of baseline decoders on 

both test sets. This could be the result of less di-

versified outputs from co-decoding than those 

from baseline decoders. In particular, the results 

for hypothesis selection are only slightly better 

than the best system in co-decoding.  

We also evaluate the performance of system 

combination using different n-best sizes, and the 

results on NIST 2005 data set are shown in Fig-

ure 2, where bl- and co- legends denote combina-

tion results of baseline decoding and co-decoding 

respectively. From the results we can see that 

combination based on co-decoding’s outputs per-

forms consistently better than that based on base-

line decoders’ outputs for all n-best sizes we ex-

perimented with. However, we did not observe 

any significant improvements for both combina-

tion schemes when n-best size is larger than 20. 

 

Figure 2. Performance of system combination 

with different sizes of n-best lists 

One interesting observation in Table 2 is that 

the performance gap between baseline decoders 

is narrowed through co-decoding. For example, 

the 1.5 points gap between SYS2 and SYS3 on 

NIST 2008 data set is narrowed to 0.5. Actually 

we find that the TER score between two member 

decoders’ outputs are significantly reduced (as 

shown in Table 3), which indicates that the out-

puts become more similar due to the use of con-

sensus information. For example, the TER score 

between SYS2 and SYS3 of the NIST 2008 out-

puts are reduced from 0.4238 to 0.2665.  

 

 NIST 2005 NIST 2008 

SYS1 vs. SYS2 0.3190/0.2274 0.4016/0.2686 

SYS1 vs. SYS3 0.3252/0.1840 0.4176/0.2469 

SYS2 vs. SYS3 0.3498/0.2171 0.4238/0.2665 

Table 3: TER scores between co-decoding  

translation outputs 

In the rest of this section we run a series of 

experiments to investigate the impacts of differ-

ent factors in co-decoding. All the results are 

reported on NIST 2005 test set.  

We start with investigating the performance 

gain due to partial hypothesis re-ranking. Be-

cause Equation 3 is a general model that can be 

applied to both partial hypothesis and n-best (full 

hypothesis) re-scoring, we compare the results of 

both cases. Figure 3 shows the BLEU score 

curves with up to 1000 candidates used for re-

ranking. In Figure 3, the suffix p denotes results 

for partial hypothesis re-ranking, and f for n-best 

re-ranking only. For partial hypothesis re-

ranking, obtaining more top-ranked results re-

quires increasing the beam size, which is not af-

fordable for large numbers in experiments. We 

work around this issue by approximating beam 

sizes larger than 20 by only enlarging the beam 

size for the span covering the entire source sen-

tence. From Figure 3 we can see that all decoders 

can gain improvements before the size of candi-

date set reaches 100. When the size is larger than 

50, co-decoding performs consistently and sig-

nificantly better than the re-ranking results on 

any baseline decoder’s n-best outputs.  

 

Figure 3. Partial hypothesis vs. n-best re-ranking 

results on NIST 2005 test data 

Figure 4 shows the BLEU scores of a two-

system co-decoding as a function of re-decoding 

iterations. From the results we can see that the 

results for both decoders converge after two ite-

rations.  

In Figure 4, iteration 0 denotes decoding with 

baseline model. The setting of iteration 1 can be 

viewed as the case of partial co-decoding, in 
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which one decoder uses member model and the 

other keeps using baseline model. The results 

show that member models help each other: al-

though improvements can be made using a single 

member model, best BLEU scores can only be 

achieved when both member models are used as 

shown by the results of iteration 2. The results 

also help justify the independent parameter esti-

mation of member decoders described in Section 

2.5, since optimizing the performance of one de-

coder will eventually bring performance im-

provements to all member decoders. 

 
Figure 4. Results using incremental iterations  

in co-decoding 

Next we examine the impacts of different con-

sensus-based features in co-decoding. Table 4 

shows the comparison results of a two-system 

co-decoding using different settings of n-gram 

agreement and disagreement features. It is clear-

ly shown that both n-gram agreement and disa-

greement types of features are helpful, and using 

them together is the best choice. 

 SYS1 SYS2 

Baseline 38.66 38.04 

+agreement –disagreement 39.36 39.02 

–agreement +disagreement  39.12 38.67 

+agreement +disagreement 39.68 39.61 

Table 4: Co-decoding with/without n-gram 

agreement and disagreement features 

In Table 5 we show in another dimension the 

impact of consensus-based features by restricting 

the maximum order of n-grams used to compute 

agreement statistics. 

 SYS1 SYS2 

1 38.75 38.27 

2  39.21 39.10 

3 39.48 39.25 

4 39.68 39.61 

5 39.52 39.36 

6 39.58 39.47 

Table 5: Co-decoding with varied n-gram agree-

ment and disagreement features 

From the results we do not observe BLEU im-

provement for 𝑛 > 4. One reason could be that 

the data sparsity for high-order n-grams leads to 

over fitting on development data. 

We also empirically investigated the impact of 

scaling factor 𝛼 in Equation 5. It is observed in 

Figure 5 that the optimal value is between 0.01 ~ 

0.1 on both development and test data.  

 

Figure 5. Impact of scaling factor 𝛼  

4 Discussion 

Word-level system combination (system combi-

nation hereafter) (Rosti et al., 2007; He et al., 

2008) has been proven to be an effective way to 

improve machine translation quality by using 

outputs from multiple systems. Our method is 

different from system combination in several 

ways. System combination uses unigram consen-

sus only and a standalone decoding model irrele-

vant to single decoders. Our method uses agree-

ment information of n-grams, and consensus fea-

tures are integrated into decoding models. By 

constructing a confusion network, system com-

bination is able to generate new translations dif-

ferent from any one in the input n-best lists, 

while our method does not extend the search 

spaces of baseline decoding models. Member 

decoders only change the scoring and ranking of 

the candidates in the search spaces. Results in 

Table 2 show that these two approaches can be 

used together to obtain further improvements. 

The work on multi-system hypothesis selec-

tion of Hildebrand and Vogel (2008) bears more 

resemblance to our method in that both make use 

of n-gram agreement statistics. They also empiri-

cally show that n-gram agreement is the most 

important factor for improvement apart from 

language models.  

Lattice MBR decoding (Tromble et al., 2008) 

also uses n-gram agreement statistics. Their work 

focuses on exploring larger evidence space by 

using a translation lattice instead of the n-best list. 

They also show the connection between expected 

n-gram change and corpus Log-BLEU loss. 
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5 Conclusion 

Improving machine translation with multiple sys-

tems has been a focus in recent SMT research. In 

this paper, we present a framework of collabora-

tive decoding, in which multiple MT decoders 

are coordinated to search for better translations 

by re-ranking partial hypotheses using aug-

mented log-linear models with translation con-

sensus -based features. An iterative approach is 

proposed to re-rank all hypotheses explored in 

decoding. Experimental results show that with 

collaborative decoding every member decoder 

performs significantly better than its baseline 

decoder. In the future, we will extend our method 

to use lattice or hypergraph to compute consen-

sus statistics instead of n-best lists. 
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