
Proceedings of ACL-08: HLT, Short Papers (Companion Volume), pages 213–216,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Unlexicalised Hidden Variable Models of Split Dependency Grammars∗

Gabriele Antonio Musillo
Department of Computer Science

and Department of Linguistics
University of Geneva

1211 Geneva 4, Switzerland
musillo4@etu.unige.ch

Paola Merlo
Department of Linguistics

University of Geneva
1211 Geneva 4, Switzerland

merlo@lettres.unige.ch

Abstract

This paper investigates transforms of split
dependency grammars into unlexicalised
context-free grammars annotated with hidden
symbols. Our best unlexicalised grammar
achieves an accuracy of 88% on the Penn
Treebank data set, that represents a 50%
reduction in error over previously published
results on unlexicalised dependency parsing.

1 Introduction
Recent research in natural language parsing has
extensively investigated probabilistic models of
phrase-structure parse trees. As well as being the
most commonly used probabilistic models of parse
trees, probabilistic context-free grammars (PCFGs)
are the best understood. As shown in (Klein and
Manning, 2003), the ability of PCFG models to dis-
ambiguate phrases crucially depends on the expres-
siveness of the symbolic backbone they use.

Treebank-specific heuristics have commonly been
used both to alleviate inadequate independence
assumptions stipulated by naive PCFGs (Collins,
1999; Charniak, 2000). Such methods stand in sharp
contrast to partially supervised techniques that have
recently been proposed to induce hidden grammati-
cal representations that are finer-grained than those
that can be read off the parsed sentences in tree-
banks (Henderson, 2003; Matsuzaki et al., 2005;
Prescher, 2005; Petrov et al., 2006).

∗Part of this work was done when Gabriele Musillo was
visiting the MIT Computer Science and Artificial Intelligence
Laboratory, funded by a grant from the Swiss NSF (PBGE2-
117146). Many thanks to Michael Collins and Xavier Carreras
for their insightful comments on the work presented here.

This paper presents extensions of such gram-
mar induction techniques to dependency grammars.
Our extensions rely on transformations of depen-
dency grammars into efficiently parsable context-
free grammars (CFG) annotated with hidden sym-
bols. Because dependency grammars are reduced to
CFGs, any learning algorithm developed for PCFGs
can be applied to them. Specifically, we use the
Inside-Outside algorithm defined in (Pereira and
Schabes, 1992) to learn transformed dependency
grammars annotated with hidden symbols. What
distinguishes our work from most previous work on
dependency parsing is that our models are not lexi-
calised. Our models are instead decorated with hid-
den symbols that are designed to capture both lex-
ical and structural information relevant to accurate
dependency parsing without having to rely on any
explicit supervision.

2 Transforms of Dependency Grammars
Contrary to phrase-structure grammars that stipulate
the existence of phrasal nodes, dependency gram-
mars assume that syntactic structures are connected
acyclic graphs consisting of vertices representing
terminal tokens related by directed edges represent-
ing dependency relations. Such terminal symbols
are most commonly assumed to be words. In our un-
lexicalised models reported below, they are instead
assumed to be part-of-speech (PoS) tags. A typical
dependency graph is illustrated in Figure 1 below.

Various projective dependency grammars exem-
plify the concept of split bilexical dependency gram-
mar (SBG) defined in (Eisner, 2000). 1 SBGs are

1An SBG is a tuple 〈V, W, L, R〉 such that:

213



R1
rootkk

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

R1
root/R1

V BDBSS
R1

V BDB

YYYYYYYYYYYYY
kk

1r
V BDB RRRlll

R1
V BDB

/R1
IND

RRR
R1

INDlll

L1
V BDB RR

0V BDB Rp
V BDB

/R1
NNPCRR

1r
IND

R1
IND

/R1
NNF

RRR
L1

V BDB
\L1

NNPA

ll
1r

NNPC
0IND 1r

NNF
RRRR

llll

1l
NNPA

0NNPC L1
NNF RRR

0NNF

0NNPA L1
NNF

\L1
DTE

lll
1l

DTE

0DTE

Nica hit
uu

33 66Miles with 88the trumpet
vv

Figure 1: A projective dependency graph for the sentence Nica hit Miles with the trumpet paired with its second-order
unlexicalised derivation tree annotated with hidden variables.

closely related to CFGs as they both define struc-
tures that are rooted ordered projective trees. Such a
close relationship is clarified in this section.

It follows from the equivalence of finite au-
tomata and regular grammars that any SBG can
be transformed into an equivalent CFG. Let D =
〈V,W,L,R〉 be a SBG and G = 〈N,W,P, S〉 a
CFG. To transform D into G we to define the set
P of productions, the set N of non-terminals, and
the start symbol S as follows:
• For each v in W , transform the automaton Lv

into a right-linear grammar GLv whose start
symbol is L1

v; by construction, GLv consists of
rules such as Lp

v → u Lq
v or Lp

v → ε, where ter-
minal symbols such as u belong to W and non-
terminals such as Lp

v correspond to the states of
the Lv automaton; include all ε-productions in
P , and, if a rule such as Lp

v → u Lq
v is in GLv ,

include the rule Lp
v → 2l

u L
q
v in P .

• For each v in V , transform the automaton Rv

into a left-linear grammar GRv whose start
symbol is R1

v; by construction, GRv consists

• V is a set of terminal symbols which include a distin-
guished element root;

• L is a function that, for any v ∈ W (= V − { root}),
returns a finite automaton that recognises the well-formed
sequences in W ∗ of left dependents of v;

• R is a function that, for each v ∈ V , returns a finite
automaton that recognises the well-formed sequences of
right dependents in W ∗ for v.

of rules such as Rp
v → Rq

v u or Rp
v → ε,

where terminal symbols such as u belongs to
W and non-terminals such as Rp

v correspond
to the states of the Rv automaton; include all ε-
productions in P , and, if a rule such as Rp

v →
Rq

v u is in GRv , include the rule Rp
v → Rq

v 2r
u

in P .
• For each symbol 2l

u occurring in P , include the
productions 2l

u → L1
u 1l

u, 1l
u → 0u R1

u, and
0u → u in P ; for each symbol 2r

u in P , include
the productions 2r

u → 1r
u R1

u, 1r
u → L1

u 0u,
and 0u → u in P .

• Set the start symbol S to R1
root.

2

Parsing CFGs resulting from such transforms
runs in O(n4). The head index v decorating non-
terminals such as 1l

v, 1r
v, 0v, Lp

v and Rq
v can be com-

puted in O(1) given the left and right indices of the
sub-string wi,j they cover. 3 Observe, however, that
if 2l

v or 2r
v derives wi,j , then v does not functionally

depend on either i or j. Because it is possible for the
head index v of 2l

v or 2r
v to vary from i to j, v has

to be tracked by the parser, resulting in an overall
O(n4) time complexity.

In the following, we show how to transform
our O(n4) CFGs into O(n3) grammars by ap-

2CFGs resulting from such transformations can further be
normalised by removing the ε-productions from P .

3Indeed, if 1l
v or 0v derives wi,j , then v = i; if 1r

v derives
wi,j , then v = j; if wi,j is derived from Lp

v , then v = j + 1;
and if wi,j is derived from Rq

v , then v = i− 1.

214



plying transformations, closely related to those in
(McAllester, 1999) and (Johnson, 2007), that elimi-
nate the 2l

v and 2r
v symbols.

We only detail the elimination of the symbols 2r
v.

The elimination of the 2l
v symbols can be derived

symmetrically. By construction, a 2r
v symbol is the

right successor of a non-terminalRp
u. Consequently,

2r
v can only occur in a derivation such as

α Rp
u β ` α Rq

u 2r
v β ` α Rq

u 1r
v R1

v β.
To substitute for the problematic 2r

v non-terminal in
the above derivation, we derive the form Rq

u 1r
v R1

v

from Rp
u/R1

v R1
v where Rp

u/R1
v is a new non-

terminal whose right-hand side is Rq
u 1r

v. We thus
transform the above derivation into the derivation
α Rp

u β ` α Rp
u/R1

v R1
vβ ` α Rq

u 1r
v R1

v β. 4

Because u = i − 1 and v = j if Rp
u/R1

v derives
wi,j , and u = j + 1 and v = i if Lp

u\L1
v derives

wi,j , the parsing algorithm does not have to track
any head indices and can consequently parse strings
in O(n3) time.

The grammars described above can be further
transformed to capture linear second-order depen-
dencies involving three distinct head indices. A
second-order dependency structure is illustrated in
Figure 1 that involves two adjacent dependents,
Miles and with, of a single head, hit.

To see how linear second-order dependencies can
be captured, consider the following derivation of a
sequence of right dependents of a head u:

α Rp
u/R1

v β ` α Rq
u 1r

v β ` α Rq
u/R1

w R1
w 1r

v β.

The form Rq
u/R1

w R1
w 1v mentions three heads: u

is the the head that governs both v and w, and w
precedes v. To encode the linear relationship be-
tween w and v, we redefine the right-hand side of
Rp

u/R1
v as Rq

u/R1
w 〈R1

w, 1r
v〉 and include the pro-

duction 〈R1
w, 1r

v〉 → R1
w 1r

v in the productions.
The relationship between the dependents w and v of
the head u is captured, because Rp

u/R1
v jointly gen-

erates R1
w and 1r

v. 5

Any second-order grammar resulting from trans-
forming the derivations of right and left dependents

4Symmetrically, the derivation α Lp
u β ` α 2l

v Lq
u β `

α L1
v 1l

v Lq
u β involving the 2l

v symbol is transformed into
α Lp

u β ` α L1
v Lp

u\L1
v β ` α L1

v 1l
v Lq

u β.
5Symmetrically, to transform the derivation of a sequence of

left dependents of u, we redefine the right-hand side of Lp
u\L1

v

as 〈1l
v,L1

w〉 Lq
u\L1

w and include the production 〈1l
v,L1

w〉 →
1l

v L1
w in the set of rules.

in the way described above can be parsed in O(n3),
because the head indices decorating its symbols can
be computed in O(1).

In the following section, we show how to enrich
both our first-order and second-order grammars with
hidden variables.

3 Hidden Variable Models
Because they do not stipulate the existence of
phrasal nodes, commonly used unlabelled depen-
dency models are not sufficiently expressive to dis-
criminate between distinct projections of a given
head. Both our first-order and second-order gram-
mars conflate distributionally distinct projections if
they are projected from the same head. 6

To capture various distinct projections of a head,
we annotate each of the symbols that refers to it with
a unique hidden variable. We thus constrain the dis-
tribution of the possible values of the hidden vari-
ables in a linguistically meaningful way. Figure 1 il-
lustrates such constraints: the same hidden variable
B decorates each occurrence of the PoS tag VBD of
the head hit.

Enforcing such agreement constraints between
hidden variables provides a principled way to cap-
ture not only phrasal information but also lexical in-
formation. Lexical pieces of information conveyed
by a minimal projection such as 0V BDB

in Figure 1
will consistently be propagated through the deriva-
tion tree and will condition the generation of the
right and left dependents of hit.

In addition, states such as p and q that decorate
non-terminal symbols such as Rp

u or Lq
u can also

capture structural information, because they can en-
code the most recent steps in the derivation history.
In the models reported in the next section, these
states are assumed to be hidden and a distribution
over their possible values is automatically induced.

4 Empirical Work and Discussion
The models reported below were trained, validated,
and tested on the commonly used sections from the
Penn Treebank. Projective dependency trees, ob-

6As observed in (Collins, 1999), an unambiguous verbal
head such as prove bearing the VB tag may project a clause with
an overt subject as well as a clause without an overt subject, but
only the latter is a possible dependent of subject control verbs
such as try.

215



Development Data – section 24 per word per sentence
FOM: q = 1, h = 1 75.7 9.9
SOM: q = 1, h = 1 80.5 16.2
FOM: q = 2, h = 2 81.9 17.4
FOM: q = 2, h = 4 84.7 22.0
SOM: q = 2, h = 2 84.3 21.5
SOM: q = 1, h = 4 87.0 25.8

Test Data – section 23 per word per sentence
(Eisner and Smith, 2005) 75.6 NA
SOM: q = 1, h = 4 88.0 30.6
(McDonald, 2006) 91.5 36.7

Table 1: Accuracy results on the development and test
data set, where q denotes the number of hidden states and
h the number of hidden values annotating a PoS tag in-
volved in our first-order (FOM) and second-order (SOM)
models.

tained using the rules stated in (Yamada and Mat-
sumoto, 2003), were transformed into first-order and
second-order structures. CFGs extracted from such
structures were then annotated with hidden variables
encoding the constraints described in the previous
section and trained until convergence by means of
the Inside-Outside algorithm defined in (Pereira and
Schabes, 1992) and applied in (Matsuzaki et al.,
2005). To efficiently decode our hidden variable
models, we pruned the search space as in (Petrov et
al., 2006). To evaluate the performance of our mod-
els, we report two of the standard measures: the per
word and per sentence accuracy (McDonald, 2006).

Figures reported in the upper section of Table 1
measure the effect on accuracy of the transforms
we designed. Our baseline first-order model (q =
1, h = 1) reaches a poor per word accuracy that sug-
gests that information conveyed by bare PoS tags is
not fine-grained enough to accurately predict depen-
dencies. Results reported in the second line shows
that modelling adjacency relations between depen-
dents as second-order models do is relevant to accu-
racy. The third line indicates that annotating both
the states and the PoS tags of a first-order model
with two hidden values is sufficient to reach a per-
formance comparable to the one achieved by a naive
second-order model. However, comparing the re-
sults obtained by our best first-order models to the
accuracy achieved by our best second-order model
conclusively shows that first-order models exploit
such dependencies to a much lesser extent. Overall,
such results provide a first solution to the problem
left open in (Johnson, 2007) as to whether second-

order transforms are relevant to parsing accuracy or
not.

The lower section of Table 1 reports the results
achieved by our best model on the test data set and
compare them both to those obtained by the only un-
lexicalised dependency model we know of (Eisner
and Smith, 2005) and to those achieved by the state-
of-the-art dependency parser in (McDonald, 2006).
While clearly not state-of-the-art, the performance
achieved by our best model suggests that massive
lexicalisation of dependency models might not be
necessary to achieve competitive performance. Fu-
ture work will lie in investigating the issue of lex-
icalisation in the context of dependency parsing by
weakly lexicalising our hidden variable models.

References
Eugene Charniak. 2000. A maximum-entropy-inspired parser.

In NAACL’00.
Michael John Collins. 1999. Head-Driven Statistical Models

for Natural Language Parsing. Ph.D. thesis, University
of Pennsylvania.

Jason Eisner and Noah A. Smith. 2005. Parsing with soft and
hard constraints on dependency length. In IWPT’05.

Jason Eisner. 2000. Bilexical grammars and their cubic-time
parsing algorithms. In H.Bunt and A. Nijholt, eds., Ad-
vances in Probabilistic and Other Parsing Technologies,
pages 29–62. Kluwer Academic Publishers.

Jamie Henderson. 2003. Inducing history representations for
broad-coverage statistical parsing. In NAACL-HLT’03.

Mark Johnson. 2007. Transforming projective bilexical de-
pendency grammars into efficiently-parsable cfgs with
unfold-fold. In ACL’06.

Dan Klein and Christopher D. Manning. 2003. Accurate unlex-
icalized parsing. In ACL’03.

Takuya Matsuzaki, Yusuke Miyao, and Junichi Tsujii. 2005.
Probabilistic CFG with latent annotations. In ACL’05.

David McAllester. 1999. A reformulation of eisner and
satta’s cubit time parser for split head automata gram-
mars. http://ttic.uchicago.edu/d̃mcallester.

Ryan McDonald. 2006. Discriminative Training and Spanning
Tree Algorithms for Dependency Parsing. Ph.D. thesis,
University of Pennsylvania.

Fernando Pereira and Yves Schabes. 1992. Inside-outside rees-
timation form partially bracketed corpora. In ACL’92.

Slav Petrov, Leon Barrett Romain Thibaux, and Dan Klein.
2006. Learning accurate, compact, and interpretable tree
annotation. In ACL’06.

Detlef Prescher. 2005. Head-driven PCFGs with latent-head
statistics. In IWPT’05.

H. Yamada and Y. Matsumoto. 2003. Statistical dependency
analysis with support vectore machines. In IWPT’03.

216


