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Abstract

Finding temporal and causal relations is cru-
cial to understanding the semantic structure
of a text. Since existing corpora provide no
parallel temporal and causal annotations, we
annotated 1000 conjoined event pairs, achiev-
ing inter-annotator agreement of 81.2% on
temporal relations and 77.8% on causal re-
lations. We trained machine learning mod-
els using features derived from WordNet and
the Google N-gram corpus, and they out-
performed a variety of baselines, achieving
an F-measure of 49.0 for temporals and 52.4
for causals. Analysis of these models sug-
gests that additional data will improve perfor-
mance, and that temporal information is cru-
cial to causal relation identification.

1 Introduction

Working out how events are tied together temporally
and causally is a crucial component for successful
natural language understanding. Consider the text:

(1) T ate a bad tuna sandwich, got food poisoning
and had to have a shot in my shoulder. wsj_0409

To understand the semantic structure here, a system
must order events along a timeline, recognizing that
getting food poisoning occurred BEFORE having a
shot. The system must also identify when an event
is not independent of the surrounding events, e.g.
got food poisoning was CAUSED by eating a bad
sandwich. Recognizing these temporal and causal
relations is crucial for applications like question an-
swering which must face queries like How did he get
food poisoning? or What was the treatment?
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Currently, no existing resource has all the neces-
sary pieces for investigating parallel temporal and
causal phenomena. The TimeBank (Pustejovsky et
al., 2003) links events with BEFORE and AFTER
relations, but includes no causal links. PropBank
(Kingsbury and Palmer, 2002) identifies ARGM—-TMP
and ARGM-CAU relations, but arguments may only
be temporal or causal, never both. Thus existing
corpora are missing some crucial pieces for study-
ing temporal-causal interactions. Our research aims
to fill these gaps by building a corpus of parallel
temporal and causal relations and exploring machine
learning approaches to extracting these relations.

2 Related Work

Much recent work on temporal relations revolved
around the TimeBank and TempEval (Verhagen et
al., 2007). These works annotated temporal relations
between events and times, but low inter-annotator
agreement made many TimeBank and TempEval
tasks difficult (Boguraev and Ando, 2005; Verha-
gen et al., 2007). Still, TempEval showed that on a
constrained tense identification task, systems could
achieve accuracies in the 80s, and Bethard and col-
leagues (Bethard et al., 2007) showed that temporal
relations between a verb and a complement clause
could be identified with accuracies of nearly 90%.
Recent work on causal relations has also found
that arbitrary relations in text are difficult to annotate
and give poor system performance (Reitter, 2003).
Girju and colleagues have made progress by select-
ing constrained pairs of events using web search pat-
terns. Both manually generated Cause-Effect pat-
terns (Girju et al., 2007) and patterns based on nouns
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Full Train Test
Documents 556 344 212
Event pairs 1000 697 303
BEFORE relations 313 232 81

AFTER relations 16 11 5
CAUSAL relations 271 207 64

Table 1: Contents of the corpus and its train/test sections

Task | Agreement Kappa  F
Temporals 81.2 0.715 719
Causals 77.8 0.556 66.5

Table 2: Inter-annotator agreement by task.

linked causally in WordNet (Girju, 2003) were used
to collect examples for annotation, with the result-
ing corpora allowing machine learning models to
achieve performance in the 70s and 80s.

3 Conjoined Events Corpus

Prior work showed that finding temporal and causal
relations is more tractable in carefully selected cor-
pora. Thus we chose a simple construction that
frequently expressed both temporal and causal rela-
tions, and accounted for 10% of all adjacent verbal
events: events conjoined by the word and.

Our temporal annotation guidelines were based
on the guidelines for TimeBank and TempEval, aug-
mented with the guidelines of (Bethard et al., 2008).
Annotators used the labels:

BEFORE The first event fully precedes the second
AFTER The second event fully precedes the first
NO-REL Neither event clearly precedes the other

Our causal annotation guidelines were based on
paraphrasing rather than the intuitive notions of
cause used in prior work (Girju, 2003; Girju et al.,
2007). Annotators selected the best paraphrase of
“and” from the following options:

CAUSAL and as a result, and as a consequence,
and enabled by that
NO-REL and independently, and for similar reasons

To build the corpus, we first identified verbs
that represented events by running the system of
(Bethard and Martin, 2006) on the TreeBank. We
then used a set of tree-walking rules to identify con-
joined event pairs. 1000 pairs were annotated by
two annotators and adjudicated by a third. Table 1
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Figure 1: Syntactic tree from wsj_0450 with events fook
and began highlighted.

and Table 2 give statistics for the resulting corpus'.
The annotators had substantial agreement on tem-
porals (81.2%) and moderate agreement on causals
(77.8%). We also report F-measure agreement, since
BEFORE, AFTER and CAUSAL relations are more in-
teresting than NO-REL. Annotators had F-measure
agreement of 71.9 on temporals and 66.5 causals.

4 Machine Learning Methods

We used our corpus for machine learning experi-
ments where relation identification was viewed as
pair-wise classification. Consider the sentence:

(2) The man who had brought it in for an esti-
mate had [gygNT returned] to collect it and was
[EVENT waiting] in the hall. wsj_0450

A temporal classifier should label returned-waiting
with BEFORE since refurned occurred first, and a
causal classifier should label it CAUSAL since this
and can be paraphrased as and as a result.

We identified both syntactic and semantic features
for our task. These will be described using the ex-
ample event pair in Figure 1. Our syntactic features
characterized surrounding surface structures:

e The event words, lemmas and part-of-speech tags,
e.g. took, take, VBD and began, begin, VBD.

e All words, lemmas and part-of-speech tags in the
verb phrases of each event, e.g. took, take, VBD
and began, to, trade, begin, trade, VBD, TO, VB.

e The syntactic paths from the first event to
the common ancestor to the second event, e.g.
VBD>VP, VP and VP<VBD.

"Train: wsj_0416-wsj_0759. Test: wsj_0760-wsj_0971.
verbs.colorado.edu/~bethard/treebank- verb-conj-anns.xml



o All words before, between and after the event pair,
e.g. Then, they plus the, art, to, Acapulco, and
plus to, trade, some, of, it, for, cocaine.

Our semantic features encoded surrounding word
meanings. We used WordNet (Fellbaum, 1998) root
synsets (roots) and lexicographer file names (lex-
names) to derive the following features:

e All event roots and lexnames, e.g. take#33,
move#l ...body, change ... for took and be#0,
begin#l ... change, communication ... for began.

e All lexnames before, between and after the event
pair, e.g. all plus artifact, location, etc. plus pos-
session, artifact, etc.

e All roots and lexnames shared by both events, e.g.
took and began were both act#0, be#0 and change,
communication, etc.

e The least common ancestor (LCA) senses shared
by both events, e.g. took and began meet only at
their roots, so the LCA senses are act#0 and be#0.

We also extracted temporal and causal word associ-
ations from the Google N-gram corpus (Brants and
Franz, 2006), using <keyword> <pronoun>
<word> patterns, where before and after were the
keywords for temporals, and because was the key-
word for causals. Word scores were assigned as:

score(w) = log (7Nke§’\}“(‘;;‘)i(w))
where Njeyword(w) is the number of times the word
appeared in the keyword’s pattern, and IV (w) is the
number of times the word was in the corpus. The

following features were derived from these scores:

e Whether the event score was in at least the Nth
percentile, e.g. took’s —6.1 because score placed
it above 84% of the scores, so the feature was true
for N = 70 and N = 80, but false for N = 90.

e Whether the first event score was greater than the
second by at least IV, e.g. took and began have
after scores of —6.3 and —6.2 so the feature was
true for N = —1, but false for N = 0and NV = 1.

5 Results

We trained SVMP¢/ classifiers (Joachims, 2005) for
the temporal and causal relation tasks” using the

>We built multi-class SVMs using the one-vs-rest approach
and used 5-fold cross-validation on the training data to set pa-
rameters. For temporals, C=0.1 (for syntactic-only models),
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Temporals Causals

Model P R F1 P R F1

BEFORE | 26.7 942 41.6 - - -
CAUSAL - - -1 21.1 100.0 34.8
1 Event | 35.0 244 288 |31.0 203 245
2" Event | 36.1 302 329|224 172 195
POS Pair | 46.7 8.1 13.9 | 30.0 47 8.1
Syntactic | 36.5 53.5 434|244 79.7 374
Semantic | 35.8 55.8 43.6 |27.2 64.1 38.1
All 43,6 558 49.0|27.0 594 37.1
All+Tmp - - -1469 594 524

Table 3: Performance of the temporal relation identifica-
tion models: (A)ccuracy, (P)recision, (R)ecall and (F1)-
measure. The null label is NO-REL.

train/test split from Table 1 and the feature sets:

Syntactic The syntactic features from Section 4.
Semantic The semantic features from Section 4.
All Both syntactic and semantic features.
All4+Tmp (Causals Only) Syntactic and semantic
features, plus the gold-standard temporal label.

We compared our models against several baselines,
using precision, recall and F-measure since the NO-
REL labels were uninteresting. Two simple baselines
had 0% recall: a lookup table of event word pairs°,
and the majority class (NO-REL) label for causals.

We therefore considered the following baselines:

BEFORE Classify all instances as BEFORE, the ma-
jority class label for temporals.

CAUSAL Classify all instances as CAUSAL.

1%t Event Use a lookup table of 1% words and the
labels they were assigned in the training data.

2" Event As 1%t Event, but using 2" words.

POS Pair As 1% Event, but using part of speech tag
pairs. POS tags encode tense, so this suggests the
performance of a tense-based classifier.

The results on our test data are shown in Table 3. For
temporal relations, the F-measures of all SVM mod-
els exceeded all baselines, with the combination of
syntactic and semantic features performing 5 points
better (43.6% precision and 55.8% recall) than either
feature set individually. This suggests that our syn-
tactic and semantic features encoded complemen-
tary information for the temporal relation task. For

C=1.0 (for all other models), and loss-function=F1 (for all
models). For causals, C=0.1 and loss-function=precision/recall
break even point (for all models).

3Only 3 word pairs from training were seen during testing.
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Figure 2: Model precisions (dotted lines) and percent of
events in the test data seen during training (solid lines),
given increasing fractions of the training data.

causal relations, all SVM models again exceeded all
baselines, but combining syntactic features with se-
mantic ones gained little. However, knowing about
underlying temporal relations boosted performance
to 46.9% precision and 59.4% recall. This shows
that progress in causal relation identification will re-
quire knowledge of temporal relations.

We examined the effect of corpus size on our
models by training them on increasing fractions of
the training data and evaluating them on the test
data. The precisions of the resulting models are
shown as dotted lines in Figure 2. The models im-
prove steadily, and the causals precision can be seen
to follow the solid curves which show how event
coverage increases with increased training data. A
logarithmic trendline fit to these seen-event curves
suggests that annotating all 5,013 event pairs in the
Penn TreeBank could move event coverage up from
the mid 50s to the mid 80s. Thus annotating addi-
tional data should provide a substantial benefit to our
temporal and causal relation identification systems.

6 Conclusions

Our research fills a gap in existing corpora and NLP
systems, examining parallel temporal and causal re-
lations. We annotated 1000 event pairs conjoined
by the word and, assigning each pair both a tempo-
ral and causal relation. Annotators achieved 81.2%
agreement on temporal relations and 77.8% agree-
ment on causal relations. Using features based on
WordNet and the Google N-gram corpus, we trained
support vector machine models that achieved 49.0
F on temporal relations, and 37.1 F on causal rela-
tions. Providing temporal information to the causal
relations classifier boosted its results to 52.4 F. Fu-
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ture work will investigate increasing the size of the
corpus and developing more statistical approaches
like the Google N-gram scores to take advantage of
large-scale resources to characterize word meaning.
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