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Abstract
We investigate automatic classification
of speculative language (‘hedging’), in
biomedical text using weakly supervised
machine learning. Our contributions include
a precise description of the task with anno-
tation guidelines, analysis and discussion,
a probabilistic weakly supervised learning
model, and experimental evaluation of the
methods presented. We show that hedge
classification is feasible using weakly
supervised ML, and point toward avenues
for future research.

1 Introduction

The automatic processing of scientific papers using
NLP and machine learning (ML) techniques is an
increasingly important aspect of technical informat-
ics. In the quest for a deeper machine-driven ‘under-
standing’ of the mass of scientific literature, a fre-
quently occuring linguistic phenomenon that must
be accounted for is the use of hedging to denote
propositions of a speculative nature. Consider the
following:

1. Our results prove that XfK89 inhibits Felin-9.
2. Our results suggest that XfK89 might inhibit Felin-9.

The second example contains a hedge, signaled
by the use of suggest and might, which renders
the proposition inhibit(XfK89→Felin-9) speculative.
Such analysis would be useful in various applica-
tions; for instance, consider a system designed to
identify and extract interactions between genetic en-
tities in the biomedical domain. Case 1 above pro-
vides clear textual evidence of such an interaction

and justifies extraction of inhibit(XfK89→Felin-9),
whereas case 2 provides only weak evidence for
such an interaction.

Hedging occurs across the entire spectrum of sci-
entific literature, though it is particularly common in
the experimental natural sciences. In this study we
consider the problem of learning to automatically
classify sentences containing instances of hedging,
given only a very limited amount of annotator-
labelled ‘seed’ data. This falls within the weakly su-
pervised ML framework, for which a range of tech-
niques have been previously explored. The contri-
butions of our work are as follows:

1. We provide a clear description of the prob-
lem of hedge classification and offer an im-
proved and expanded set of annotation guide-
lines, which as we demonstrate experimentally
are sufficient to induce a high level of agree-
ment between independent annotators.

2. We discuss the specificities of hedge classifica-
tion as a weakly supervised ML task.

3. We derive a probabilistic weakly supervised
learning model and use it to motivate our ap-
proach.

4. We analyze our learning model experimentally
and report promising results for the task on a
new publicly-available dataset.1

2 Related Work

2.1 Hedge Classification

While there is a certain amount of literature within
the linguistics community on the use of hedging in

1available from www.cl.cam.ac.uk/∼bwm23/
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scientific text, eg. (Hyland, 1994), there is little of
direct relevance to the task of classifying speculative
language from an NLP/ML perspective.

The most clearly relevant study is Light et al.
(2004) where the focus is on introducing the prob-
lem, exploring annotation issues and outlining po-
tential applications rather than on the specificities
of the ML approach, though they do present some
results using a manually crafted substring match-
ing classifier and a supervised SVM on a collection
of Medline abstracts. We will draw on this work
throughout our presentation of the task.

Hedging is sometimes classed under the umbrella
concept of subjectivity, which covers a variety of lin-
guistic phenomena used to express differing forms
of authorial opinion (Wiebe et al., 2004). Riloff et al.
(2003) explore bootstrapping techniques to identify
subjective nouns and subsequently classify subjec-
tive vs. objective sentences in newswire text. Their
work bears some relation to ours; however, our do-
mains of interest differ (newswire vs. scientific text)
and they do not address the problem of hedge clas-
sification directly.

2.2 Weakly Supervised Learning
Recent years have witnessed a significant growth
of research into weakly supervised ML techniques
for NLP applications. Different approaches are of-
ten characterised as either multi- or single-view,
where the former generate multiple redundant (or
semi-redundant) ‘views’ of a data sample and per-
form mutual bootstrapping. This idea was for-
malised by Blum and Mitchell (1998) in their
presentation of co-training. Co-training has also
been used for named entity recognition (NER)
(Collins and Singer, 1999), coreference resolution
(Ng and Cardie, 2003), text categorization (Nigam
and Ghani, 2000) and improving gene name data
(Wellner, 2005).

Conversely, single-view learning models operate
without an explicit partition of the feature space.
Perhaps the most well known of such approaches
is expectation maximization (EM), used by Nigam
et al. (2000) for text categorization and by Ng and
Cardie (2003) in combination with a meta-level fea-
ture selection procedure. Self-training is an alterna-
tive single-view algorithm in which a labelled pool
is incrementally enlarged with unlabelled samples

for which the learner is most confident. Early work
by Yarowsky (1995) falls within this framework.
Banko and Brill (2001) use ‘bagging’ and agree-
ment to measure confidence on unlabelled samples,
and more recently McClosky et al. (2006) use self-
training for improving parse reranking.

Other relevant recent work includes (Zhang,
2004), in which random feature projection and a
committee of SVM classifiers is used in a hybrid
co/self-training strategy for weakly supervised re-
lation classification and (Chen et al., 2006) where
a graph based algorithm called label propagation is
employed to perform weakly supervised relation ex-
traction.

3 The Hedge Classification Task

Given a collection of sentences, S, the task is to
label each sentence as either speculative or non-
speculative (spec or nspec henceforth). Specifically,
S is to be partitioned into two disjoint sets, one rep-
resenting sentences that contain some form of hedg-
ing, and the other representing those that do not.

To further elucidate the nature of the task and im-
prove annotation consistency, we have developed a
new set of guidelines, building on the work of Light
et al. (2004). As noted by Light et al., speculative
assertions are to be identified on the basis of judge-
ments about the author’s intended meaning, rather
than on the presence of certain designated hedge
terms.

We begin with the hedge definition given by
Light et al. (item 1) and introduce a set of further
guidelines to help elucidate various ‘grey areas’ and
tighten the task specification. These were developed
after initial annotation by the authors, and through
discussion with colleagues. Further examples are
given in online Appendix A2.
The following are considered hedge instances:

1. An assertion relating to a result that does not
necessarily follow from work presented, but
could be extrapolated from it (Light et al.).

2. Relay of hedge made in previous work.
Dl and Ser have been proposed to act redundantly in the
sensory bristle lineage.

3. Statement of knowledge paucity.

2available from www.cl.cam.ac.uk/∼bwm23/
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How endocytosis of Dl leads to the activation of N re-
mains to be elucidated.

4. Speculative question.
A second important question is whether the roX genes
have the same, overlapping or complementing functions.

5. Statement of speculative hypothesis.
To test whether the reported sea urchin sequences repre-
sent a true RAG1-like match, we repeated the BLASTP
search against all GenBank proteins.

6. Anaphoric hedge reference.

This hypothesis is supported by our finding that both pu-

pariation rate and survival are affected by EL9.

The following are not considered hedge instances:

1. Indication of experimentally observed non-
universal behaviour.
proteins with single BIR domains can also have functions
in cell cycle regulation and cytokinesis.

2. Confident assertion based on external work.
Two distinct E3 ubiquitin ligases have been shown to reg-
ulate Dl signaling in Drosophila melanogaster.

3. Statement of existence of proposed alterna-
tives.
Different models have been proposed to explain how en-
docytosis of the ligand, which removes the ligand from the
cell surface, results in N receptor activation.

4. Experimentally-supported confirmation of pre-
vious speculation.
Here we show that the hemocytes are the main regulator
of adenosine in the Drosophila larva, as was speculated
previously for mammals.

5. Negation of previous hedge.
Although the adgf-a mutation leads to larval or pupal
death, we have shown that this is not due to the adenosine
or deoxyadenosine simply blocking cellular proliferation
or survival, as the experiments in vitro would suggest.

4 Data

We used an archive of 5579 full-text papers from the
functional genomics literature relating to Drosophila
melanogaster (the fruit fly). The papers were con-
verted to XML and linguistically processed using
the RASP toolkit3. We annotated six of the pa-
pers to form a test set with a total of 380 spec sen-
tences and 1157 nspec sentences, and randomly se-
lected 300,000 sentences from the remaining papers
as training data for the weakly supervised learner. To
ensure selection of complete sentences rather than

3www.informatics.susx.ac.uk/research/nlp/rasp

Frel
1 κ

Original 0.8293 0.9336
Corrected 0.9652 0.9848

Table 1: Agreement Scores

headings, captions etc., unlabelled samples were
chosen under the constraints that they must be at
least 10 words in length and contain a main verb.

5 Annotation and Agreement

Two separate annotators were commissioned to la-
bel the sentences in the test set, firstly one of the
authors and secondly a domain expert with no prior
input into the guideline development process. The
two annotators labelled the data independently us-
ing the guidelines outlined in section 3. Relative
F1 (Frel

1 ) and Cohen’s Kappa (κ) were then used to
quantify the level of agreement. For brevity we refer
the reader to (Artstein and Poesio, 2005) and (Hripc-
sak and Rothschild, 2004) for formulation and dis-
cussion of κ and Frel

1 respectively.
The two metrics are based on different assump-

tions about the nature of the annotation task. Frel
1

is founded on the premise that the task is to recog-
nise and label spec sentences from within a back-
ground population, and does not explicitly model
agreement on nspec instances. It ranges from 0 (no
agreement) to 1 (no disagreement). Conversely, κ
gives explicit credit for agreement on both spec and
nspec instances. The observed agreement is then
corrected for ‘chance agreement’, yielding a metric
that ranges between −1 and 1. Given our defini-
tion of hedge classification and assessing the manner
in which the annotation was carried out, we suggest
that the founding assumption of Frel

1 fits the nature
of the task better than that of κ.

Following initial agreement calculation, the in-
stances of disagreement were examined. It turned
out that the large majority of cases of disagreement
were due to negligence on behalf of one or other of
the annotators (i.e. cases of clear hedging that were
missed), and that the cases of genuine disagreement
were actually quite rare. New labelings were then
created with the negligent disagreements corrected,
resulting in significantly higher agreement scores.
Values for the original and negligence-corrected la-
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belings are reported in Table 1.
Annotator conferral violates the fundamental as-

sumption of annotator independence, and so the lat-
ter agreement scores do not represent the true level
of agreement; however, it is reasonable to conclude
that the actual agreement is approximately lower
bounded by the initial values and upper bounded by
the latter values. In fact even the lower bound is
well within the range usually accepted as represent-
ing ‘good’ agreement, and thus we are confident in
accepting human labeling as a gold-standard for the
hedge classification task. For our experiments, we
use the labeling of the genetics expert, corrected for
negligent instances.

6 Discussion

In this study we use single terms as features, based
on the intuition that many hedge cues are single
terms (suggest, likely etc.) and due to the success
of ‘bag of words’ representations in many classifica-
tion tasks to date. Investigating more complex sam-
ple representation strategies is an avenue for future
research.

There are a number of factors that make our for-
mulation of hedge classification both interesting and
challenging from a weakly supervised learning per-
spective. Firstly, due to the relative sparsity of hedge
cues, most samples contain large numbers of irrele-
vant features. This is in contrast to much previous
work on weakly supervised learning, where for in-
stance in the case of text categorization (Blum and
Mitchell, 1998; Nigam et al., 2000) almost all con-
tent terms are to some degree relevant, and irrel-
evant terms can often be filtered out (e.g. stop-
word removal). In the same vein, for the case of
entity/relation extraction and classification (Collins
and Singer, 1999; Zhang, 2004; Chen et al., 2006)
the context of the entity or entities in consideration
provides a highly relevant feature space.

Another interesting factor in our formulation of
hedge classification is that the nspec class is defined
on the basis of the absence of hedge cues, render-
ing it hard to model directly. This characteristic
is also problematic in terms of selecting a reliable
set of nspec seed sentences, as by definition at the
beginning of the learning cycle the learner has lit-
tle knowledge about what a hedge looks like. This

problem is addressed in section 10.3.
In this study we develop a learning model based

around the concept of iteratively predicting labels
for unlabelled training samples, the basic paradigm
for both co-training and self-training. However we
generalise by framing the task in terms of the acqui-
sition of labelled training data, from which a super-
vised classifier can subsequently be learned.

7 A Probabilistic Model for Training Data
Acquisition

In this section, we derive a simple probabilistic
model for acquiring training data for a given learn-
ing task, and use it to motivate our approach to
weakly supervised hedge classification.

Given:

• sample space X
• set of target concept classes Y = {y1 . . . yN}
• target function Y : X → Y
• set of seed samples for each class S1 . . .SN

where Si ⊂ X and ∀x ∈ Si[Y (x)=yi]
• set of unlabelled samples U = {x1 . . .xK}

Aim: Infer a set of training samples Ti for each con-
cept class yi such that ∀x ∈ Ti[Y (x) = yi]

Now, it follows that ∀x∈Ti[Y (x)=yi] is satisfied
in the case that ∀x∈Ti[P (yi|x)=1], which leads to
a model in which Ti is initialised to Si and then iter-
atively augmented with the unlabelled sample(s) for
which the posterior probability of class membership
is maximal. Formally:

At each iteration:

Ti ← xj(∈ U)
where j = arg max

j
[P (yi|xj)] (1)

Expansion with Bayes’ Rule yields:

arg max
j

[P (yi|xj)]

= arg max
j

[
P (xj |yi) · P (yi)

P (xj)

]
(2)

An interesting observation is the importance of
the sample prior P (xj) in the denominator, of-
ten ignored for classification purposes because of
its invariance to class. We can expand further by
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marginalising over the classes in the denominator in
expression 2, yielding:

arg max
j

[
P (xj |yi) · P (yi)∑N
n=1 P (yn)P (xj |yn)

]
(3)

so we are left with the class priors and class-
conditional likelihoods, which can usually be esti-
mated directly from the data, at least under limited
dependence assumptions. The class priors can be
estimated based on the relative distribution sizes de-
rived from the current training sets:

P (yi) =
|Ti|∑
k |Tk|

(4)

where |S| is the number of samples in training set S.
If we assume feature independence, which as we

will see for our task is not as gross an approximation
as it may at first seem, we can simplify the class-
conditional likelihood in the well known manner:

P (xj |yi) =
∏
k

P (xjk|yi) (5)

and then estimate the likelihood for each feature:

P (xk|yi) =
αP (yi) + f(xk, Ti)

αP (yi) + |Ti|
(6)

where f(x,S) is the number of samples in training
set S in which feature x is present, and α is a uni-
versal smoothing constant, scaled by the class prior.
This scaling is motivated by the principle that with-
out knowledge of the true distribution of a partic-
ular feature it makes sense to include knowledge
of the class distribution in the smoothing mecha-
nism. Smoothing is particularly important in the
early stages of the learning process when the amount
of training data is severely limited resulting in unre-
liable frequency estimates.

8 Hedge Classification

We will now consider how to apply this learning
model to the hedge classification task. As discussed
earlier, the speculative/non-speculative distinction
hinges on the presence or absence of a few hedge
cues within the sentence. Working on this premise,
all features are ranked according to their probability
of ‘hedge cue-ness’:

P (spec|xk) =
P (xk|spec) · P (spec)∑N

n=1 P (yn)P (xk|yn)
(7)

which can be computed directly using (4) and (6).
The m most probable features are then selected from
each sentence to compute (5) and the rest are ig-
nored. This has the dual benefit of removing irrele-
vant features and also reducing dependence between
features, as the selected features will often be non-
local and thus not too tightly correlated.

Note that this idea differs from traditional feature
selection in two important ways:

1. Only features indicative of the spec class are
retained, or to put it another way, nspec class
membership is inferred from the absence of
strong spec features.

2. Feature selection in this context is not a prepro-
cessing step; i.e. there is no re-estimation after
selection. This has the potentially detrimental
side effect of skewing the posterior estimates
in favour of the spec class, but is admissible
for the purposes of ranking and classification
by posterior thresholding (see next section).

9 Classification

The weakly supervised learner returns a labelled
data set for each class, from which a classifier can
be trained. We can easily derive a classifier using
the estimates from our learning model by:

xj → spec if P (spec|xj) > σ (8)

where σ is an arbitrary threshold used to control the
precision/recall balance. For comparison purposes,
we also use Joachims’ SVMlight (Joachims, 1999).

10 Experimental Evaluation

10.1 Method

To examine the practical efficacy of the learning and
classification models we have presented, we use the
following experimental method:

1. Generate seed training data: Sspec and Snspec

2. Initialise: Tspec←Sspec and Tnspec←Snspec

3. Iterate:
• Order U by P (spec|xj) (expression 3)
• Tspec ← most probable batch
• Tnspec ← least probable batch
• Train classifier using Tspec and Tnspec
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Rank α = 0 α = 1 α = 5 α = 100 α = 500
1 interactswith suggest suggest suggest suggest
2 TAFb likely likely likely likely
3 sexta may may may may
4 CRYs might might These These
5 DsRed seems seems results results
6 Cell-Nonautonomous suggests Taken might that
7 arva probably suggests observations be
8 inter-homologue suggesting probably Taken data
9 Mohanty possibly Together findings it
10 meld suggested suggesting Our Our
11 aDNA Taken possibly seems observations
12 Deer unlikely suggested together role
13 Borel Together findings Together most
14 substripe physiology observations role these
15 Failing modulated Given that together

Table 2: Features ranked by P (spec|xk) for varying α

• Compute spec recall/precision BEP
(break-even point) on the test data

The batch size for each iteration is set to 0.001∗ |U|.
After each learning iteration, we compute the preci-
sion/recall BEP for the spec class using both clas-
sifiers trained on the current labelled data. We use
BEP because it helps to mitigate against misleading
results due to discrepancies in classification thresh-
old placement. Disadvantageously, BEP does not
measure a classifier’s performance across the whole
of the recall/precision spectrum (as can be obtained,
for instance, from receiver-operating characteristic
(ROC) curves), but for our purposes it provides a
clear, abstracted overview of a classifier’s accuracy
given a particular training set.

10.2 Parameter Setting

The training and classification models we have pre-
sented require the setting of two parameters: the
smoothing parameter α and the number of features
per sample m. Analysis of the effect of varying α
on feature ranking reveals that when α = 0, low fre-
quency terms with spurious class correlation dom-
inate and as α increases, high frequency terms be-
come increasingly dominant, eventually smoothing
away genuine low-to-mid frequency correlations.
This effect is illustrated in Table 2, and from this
analysis we chose α = 5 as an appropriate level of
smoothing. We use m=5 based on the intuition that
five is a rough upper bound on the number of hedge
cue features likely to occur in any one sentence.

We use the linear kernel for SVMlight with the

default setting for the regularization parameter C.
We construct binary valued, L2-normalised (unit
length) input vectors to represent each sentence,
as this resulted in better performance than using
frequency-based weights and concords with our
presence/absence feature estimates.

10.3 Seed Generation

The learning model we have presented requires a
set of seeds for each class. To generate seeds for
the spec class, we extracted all sentences from U
containing either (or both) of the terms suggest or
likely, as these are very good (though not perfect)
hedge cues, yielding 6423 spec seeds. Generating
seeds for nspec is much more difficult, as integrity
requires the absence of hedge cues, and this cannot
be done automatically. Thus, we used the following
procedure to obtain a set of nspec seeds:

1. Create initial Snspec by sampling randomly
from U .

2. Manually remove more ‘obvious’ speculative
sentences using pattern matching

3. Iterate:

• Order Snspec by P (spec|xj) using esti-
mates from Sspec and current Snspec

• Examine most probable sentences and re-
move speculative instances

We started with 8830 sentences and after a couple of
hours work reduced this down to a (still potentially
noisy) nspec seed set of 7541 sentences.
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Figure 1: Learning curves

10.4 Baselines
As a baseline classifier we use the substring match-
ing technique of (Light et al., 2004), which labels
a sentence as spec if it contains one or more of the
following: suggest, potential, likely, may, at least,
in part, possibl, further investigation, unlikely, pu-
tative, insights, point toward, promise and propose.

To provide a comparison for our learning model,
we implement a more traditional self-training pro-
cedure in which at each iteration a committee of five
SVMs is trained on randomly generated overlapping
subsets of the training data and their cumulative con-
fidence is used to select items for augmenting the
labelled training data. For similar work see (Banko
and Brill, 2001; Zhang, 2004).

10.5 Results
Figure 1 plots accuracy as a function of the train-
ing iteration. After 150 iterations, all of the weakly
supervised learning models are significantly more
accurate than the baseline according to a binomial
sign test (p < 0.01), though there is clearly still
much room for improvement. The baseline classi-
fier achieves a BEP of 0.60 while both classifiers
using our learning model reach approximately 0.76
BEP with little to tell between them. Interestingly,
the combination of the SVM committee-based learn-
ing model with our classifier (denoted by ‘SVM
(Prob)’), performs competitively with both of the ap-
proaches that use our probabilistic learning model

and significantly better than the SVM committee-
based learning model with an SVM classifier, ‘SVM
(SVM)’, according to a binomial sign test (p<0.01)
after 150 iterations. These results suggest that per-
formance may be enhanced when the learning and
classification tasks are carried out by different mod-
els. This is an interesting possibility, which we in-
tend to explore further.

An important issue in incremental learning sce-
narios is identification of the optimum stopping
point. Various methods have been investigated to ad-
dress this problem, such as ‘counter-training’ (Yan-
garber, 2003) and committee agreement (Zhang,
2004); how such ideas can be adapted for this task is
one of many avenues for future research.

10.6 Error Analysis

Some errors are due to the variety of hedge forms.
For example, the learning models were unsuccess-
ful in identifying assertive statements of knowledge
paucity, eg: There is no clear evidence for cy-
tochrome c release during apoptosis in C elegans
or Drosophila. Whether it is possible to learn such
examples without additional seed information is an
open question. This example also highlights the po-
tential benefit of an enriched sample representation,
in this case one which accounts for the negation of
the phrase ‘clear evidence’ which otherwise might
suggest a strongly non-speculative assertion.

In many cases hedge classification is challenging
even for a human annotator. For instance, distin-
guishing between a speculative assertion and one
relating to a pattern of observed non-universal be-
haviour is often difficult. The following example
was chosen by the learner as a spec sentence on the
150th training iteration: Each component consists of
a set of subcomponents that can be localized within
a larger distributed neural system. The sentence
does not, in fact, contain a hedge but rather a state-
ment of observed non-universal behaviour. How-
ever, an almost identical variant with ‘could’ instead
of ‘can’ would be a strong speculative candidate.
This highlights the similarity between many hedge
and non-hedge instances, which makes such cases
hard to learn in a weakly supervised manner.

998



11 Conclusions and Future Work

We have shown that weakly supervised ML is ap-
plicable to the problem of hedge classification and
that a reasonable level of accuracy can be achieved.
The work presented here has application in the wider
academic community; in fact a key motivation in
this study is to incorporate hedge classification into
an interactive system for aiding curators in the con-
struction and population of gene databases. We have
presented our initial results on the task using a sim-
ple probabilistic model in the hope that this will
encourage others to investigate alternative learning
models and pursue new techniques for improving ac-
curacy. Our next aim is to explore possibilities of
introducing linguistically-motivated knowledge into
the sample representation to help the learner identify
key hedge-related sentential components, and also to
consider hedge classification at the granularity of as-
sertions rather than text sentences.
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