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Abstract

This paper describes the first system for
large-scale acquisition of subcategorization
frames (SCFs) from English corpus data
which can be used to acquire comprehen-
sive lexicons for verbs, nouns and adjectives.
The system incorporates an extensive rule-
based classifier which identifies 168 verbal,
37 adjectival and 31 nominal frames from
grammatical relations (GRs) output by a ro-
bust parser. The system achieves state-of-
the-art performance on all three sets.

1 Introduction

Research into automatic acquisition of lexical in-
formation from large repositories of unannotated
text (such as the web, corpora of published text,
etc.) is starting to produce large scale lexical re-
sources which include frequency and usage infor-
mation tuned to genres and sublanguages. Such
resources are critical for natural language process-
ing (NLP), both for enhancing the performance of
state-of-art statistical systems and for improving the
portability of these systems between domains.

One type of lexical information with particular
importance forNLP is subcategorization. Access
to an accurate and comprehensive subcategoriza-
tion lexicon is vital for the development of success-
ful parsing technology (e.g. (Carroll et al., 1998),
important for manyNLP tasks (e.g. automatic verb
classification (Schulte im Walde and Brew, 2002))
and useful for any application which can benefit

from information about predicate-argument struc-
ture (e.g. Information Extraction (IE) ((Surdeanu et
al., 2003)).

The first systems capable of automatically learn-
ing a small number of verbal subcategorization
frames (SCFs) from unannotated English corpora
emerged over a decade ago (Brent, 1991; Manning,
1993). Subsequent research has yielded systems for
English (Carroll and Rooth, 1998; Briscoe and Car-
roll, 1997; Korhonen, 2002) capable of detecting
comprehensive sets ofSCFs with promising accu-
racy and demonstrated success in application tasks
(e.g. (Carroll et al., 1998; Korhonen et al., 2003)).
Recently, a large publicly available subcategoriza-
tion lexicon was produced using such technology
which contains frame and frequency information for
over 6,300 English verbs – theVALEX lexicon (Ko-
rhonen et al., 2006).

While there has been considerable work in the
area, most of it has focussed on verbs. Although
verbs are the richest words in terms of subcatego-
rization and although verbSCF distribution data is
likely to offer the greatest boost in parser perfor-
mance, accurate and comprehensive knowledge of
the many noun and adjectiveSCFs in English could
improve the accuracy of parsing at several levels
(from tagging to syntactic and semantic analysis).

Furthermore the selection of the correct analysis
from the set returned by a parser which does not ini-
tially utilize fine-grained lexico-syntactic informa-
tion can depend on theinteraction of conditional
probabilities of lemmas of different classes occur-
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ring with specificSCFs. For example, a) and b) be-
low indicate the most plausible analyses in which the
sentential complement attaches to the noun and verb
respectively

a) Kim (VP believes (NP the evidence (Scomp that
Sandy was present)))

b) Kim (VP persuaded (NP the judge) (Scomp that
Sandy was present))

However, both a) and b) consist of an identical
sequence of coarse-grained lexical syntactic cate-
gories, so correctly ranking them requires learn-
ing that P (NP | believe).P (Scomp | evidence) >

P (NP&Scomp | believe).P (None | evidence)

and P (NP | persuade).P (Scomp | judge) <

P (NP&Scomp | persuade).P (None | judge). If
we acquired frames and frame frequencies for all
open-class predicates takingSCFs using a single sys-
tem applied to similar data, we would have a better
chance of modeling such interactions accurately.

In this paper we present the first system for large-
scale acquisition ofSCFs from English corpus data
which can be used to acquire comprehensive lexi-
cons for verbs, nouns and adjectives. The classifier
incorporates 168 verbal, 37 adjectival and 31 nomi-
nal SCFdistinctions. An improved acquisition tech-
nique is used which expands on the ideas Yallop et
al. (2005) recently explored for a small experiment
on adjectivalSCFacquisition. It involves identifying
SCFs on the basis of grammatical relations (GRs) in
the output of theRASP (Robust Accurate Statistical
Parsing) system (Briscoe et al., 2006).

As detailed later, the system performs better with
verbs than previous comparable state-of-art systems,
achieving 68.9 F-measure in detectingSCF types. It
achieves similarly good performance with nouns and
adjectives (62.2 and 71.9 F-measure, respectively).

Additionally, we have developed a tool for lin-
guistic annotation ofSCFs in corpus data aimed at
alleviating the process of obtaining training and test
data for subcategorization acquisition. The tool in-
corporates an intuitive interface with the ability to
significantly reduce the number of frames presented
to the user for each sentence.

We introduce the new system forSCFacquisition
in section 2. Details of the experimental evaluation
are supplied in section 3. Section 4 provides discus-

sion of our results and future work, and section 5
concludes.

2 Description of the System

A common strategy in existing large-scaleSCF ac-
quisition systems (e.g. (Briscoe and Carroll, 1997))
is to extractSCFs from parse trees, introducing an
unnecessary dependence on the details of a particu-
lar parser. In our approachSCFs are extracted from
GRs — representations of head-dependent relations
which are more parser/grammar independent but at
the appropriate level of abstraction for extraction of
SCFs.

A similar approach was recently motivated and
explored by Yallop et al. (2005). A decision-tree
classifier was developed for 30 adjectivalSCF types
which tests for the presence ofGRs in theGR out-
put of theRASP (Robust Accurate Statistical Pars-
ing) system (Briscoe and Carroll, 2002). The results
reported with 9 test adjectives were promising (68.9
F-measure in detectingSCF types).

Our acquisition process consists of four main
steps: 1) extractingGRs from corpus data, 2) feeding
the GR sets as input to a rule-based classifier which
incrementally matches them with the corresponding
SCFs, 3) building lexical entries from the classified
data, and 4) filtering those entries to obtain a more
accurate lexicon. The details of these steps are pro-
vided in the subsequent sections.

2.1 Obtaining Grammatical Relations

We obtain theGRs using the recent, second release
of theRASP toolkit (Briscoe et al., 2006).RASP is a
modular statistical parsing system which includes a
tokenizer, tagger, lemmatizer, and a wide-coverage
unification-based tag-sequence parser. We use the
standard scripts supplied withRASPto output the set
of GRs for the most probable analysis returned by the
parser or, in the case of parse failures, theGRs for
the most likely sequence of subanalyses. TheGRs
are organized as a subsumption hierarchy as shown
in Figure 1.

The dependency relationships which theGRs em-
body correspond closely to the head-complement
structure which subcategorization acquisition at-
tempts to recover, which makesGRs ideal input to
the SCF classifier. Consider the arguments ofeasy
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dependent

ta arg mod det aux conj

mod arg

ncmod xmod cmod pmod
subj dobj

subj
comp

ncsubj xsubj csubj
obj pcomp clausal

dobj obj2 iobj xcomp ccomp

Figure 1: The GR hierarchy used by RASP
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Figure 2: Feature structure for SCF

adj-obj-for-to-inf

(|These:1_DD2| |example+s:2_NN2| |of:3_IO|
|animal:4_JJ| |senses:5_NN2| |be+:6_VBR|
|relatively:7_RR| |easy:8_JJ| |for:9_IF|
|we+:10_PPIO2| |to:11_TO| |comprehend:12_VV0|)

...
xcomp(_ be+[6] easy:[8])
xcomp(to[11] be+[6] comprehend:[12])

ncsubj(be+[6] example+s[2] _)
ncmod(for[9] easy[8] we+[10])

ncsubj(comprehend[12] we+[10], _)
...

Figure 3:GRs fromRASP for adj-obj-for-to-inf

in the sentence:These examples of animal senses
are relatively easy for us to comprehend as they are
not too far removed from our own experience.Ac-
cording to theCOMLEX classification, this is an ex-
ample of the frameadj-obj-for-to-inf, shown in
Figure 2, (usingAVM notation in place ofCOMLEX

s-expressions). Part of the output ofRASP for this
sentence is shown in Figure 3.

Each instantiatedGR in Figure 3 corresponds to
one or more parts of the feature structure in Fig-
ure 2. xcomp( be[6] easy[8]) establishesbe[6]
as the head of theVP in which easy[8] occurs as
a complement. The first (PP)-complement isfor us,
as indicated byncmod(for[9] easy[8] we+[10]),
with for as PFORM and we+ (us) as NP. The sec-
ond complement is represented byxcomp(to[11]
be+[6] comprehend[12]): a to-infinitive VP. The

xcomp ?Y : pos=vb,val=be ?X : pos=adj
xcomp ?S : val=to ?Y : pos=vb,val=be ?W : pos=VV0
ncsubj ?Y : pos=vb,val=be ?Z : pos=noun
ncmod ?T : val=for ?X : pos=adj ?Y: pos=pron
ncsubj ?W : pos=VV0 ?V : pos=pron

Figure 4: Pattern for frameadj-obj-for-to-inf

NP headed byexamplesis marked as the subject
of the frame byncsubj(be[6] examples[2]), and
ncsubj(comprehend[12] we+[10]) corresponds to
the coindexation marked by3 : the subject of the
VP is theNP of the PP. The only part of the feature
structure which is not represented by theGRs is coin-
dexation between the omitted direct object1 of the
VP-complement and the subject of the whole clause.

2.2 SCF Classifier

SCF Frames

The SCFs recognized by the classifier were ob-
tained by manually merging the frames exempli-
fied in theCOMLEX Syntax (Grishman et al., 1994),
ANLT (Boguraev et al., 1987) and/orNOMLEX

(Macleod et al., 1997) dictionaries and including
additional frames found by manual inspection of
unclassifiable examples during development of the
classifier. These consisted of e.g. some occurrences
of phrasal verbs with complex complementation and
with flexible ordering of the preposition/particle,
some non-passivizable words with a surface direct
object, and some rarer combinations of governed
preposition and complementizer combinations.

The frames were created so that they abstract
over specific lexically-governed particles and prepo-
sitions and specific predicate selectional preferences
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but include some derived semi-predictable bounded
dependency constructions.

Classifier

The classifier operates by attempting to match the
set ofGRs associated with each sentence against one
or more rules which express the possible mappings
from GRs to SCFs. The rules were manually devel-
oped by examining a set of development sentences
to determine which relations were actually emitted
by the parser for eachSCF.

In our rule representation, aGR pattern is a set of
partially instantiatedGRs with variables in place of
heads and dependents, augmented with constraints
that restrict the possible instantiations of the vari-
ables. A match is successful if the set ofGRs for
a sentence can be unified with any rule. Unifica-
tion of sentenceGRs and a ruleGR pattern occurs
when there is a one-to-one correspondence between
sentence elements and rule elements that includes a
consistent mapping from variables to values.

A sample pattern for matching
adj-obj-for-to-inf can be seen in Fig-
ure 4. Each element matches either an emptyGR

slot ( ), a variable with possible constraints on part
of speech (pos) and word value (val), or an already
instantiated variable. Unlike in Yallop’s work (Yal-
lop et al., 2005), our rules are declarative rather than
procedural and these rules, written independently
of the acquisition system, are expanded by the
system in a number of ways prior to execution. For
example, the verb rules which contain anncsubj
relation will not contain one inside an embedded
clause. For verbs, the basic rule set contains 248
rules but automatic expansion gives rise to 1088
classifier rules for verbs.

Numerous approaches were investigated to allow
an efficient execution of the system: for example, for
each target word in a sentence, we initially find the
number ofARGumentGRs (see Figure 1) containing
it in head position, as the word must appear in ex-
actly the same set in a matching rule. This allows
us to discard all patterns which specify a different
number ofGRs: for example, for verbs each group
only contains an average of 109 patterns.

For a further increase in speed, both the sentence
GRs and theGRs within the patterns are ordered (ac-
cording to frequency) and matching is performed us-

ing a backing off strategy allowing us to exploit the
relatively low number of possibleGRs (compared
to the number of possible rules). The system exe-
cutes on 3500 sentences in approx. 1.5 seconds of
real time on a machine with a 3.2 GHz Intel Xenon
processor and 4GB of RAM.

Lexicon Creation and Filtering

Lexical entries are constructed for each word and
SCFcombination found in the corpus data. Each lex-
ical entry includes the raw and relative frequency of
theSCFwith the word in question, and includes var-
ious additional information e.g. about the syntax of
detected arguments and the argument heads in dif-
ferent argument positions1.

Finally the entries are filtered to obtain a more
accurate lexicon. A way to maximise the accu-
racy of the lexicon would be to smooth (correct) the
acquiredSCF distributions with back-off estimates
based on lexical-semantic classes of verbs (Korho-
nen, 2002) (see section 4) before filtering them.
However, in this first experiment with the new sys-
tem we filtered the entries directly so that we could
evaluate the performance of the new classifier with-
out any additional modules. For the same reason, the
filtering was done by using a very simple method:
by setting empirically determined thresholds on the
relative frequencies ofSCFs.

3 Experimental Evaluation

3.1 Data

In order to test the accuracy of our system, we se-
lected a set of 183 verbs, 30 nouns and 30 adjec-
tives for experimentation. The words were selected
at random, subject to the constraint that they exhib-
ited multiple complementation patterns and had a
sufficient number of corpus occurrences (> 150) for
experimentation. We took the 100M-word British
National Corpus (BNC) (Burnard, 1995), and ex-
tracted all sentences containing an occurrence of one
of the test words. The sentences were processed us-
ing theSCFacquisition system described in the pre-
vious section. The citations from which entries were
derived totaled approximately 744K for verbs and
219K for nouns and adjectives, respectively.

1The lexical entries are similar to those in theVALEX lexi-
con. See (Korhonen et al., 2006) for a sample entry.
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3.2 Gold Standard

Our gold standard was based on a manual analysis
of some of the test corpus data, supplemented with
additional frames from theANLT , COMLEX, and/or
NOMLEX dictionaries. The gold standard for verbs
was available, but it was extended to include addi-
tional SCFs missing from the old system. For nouns
and adjectives the gold standard was created. For
each noun and adjective, 100-300 sentences from the
BNC (an average of 267 per word) were randomly
extracted. The resulting c. 16K sentences were then
manually associated with appropriateSCFs, and the
SCF frequency counts were recorded.

To alleviate the manual analysis we developed
a tool which first uses theRASP parser with some
heuristics to reduce the number ofSCF presented,
and then allows an annotator to select the preferred
choice in a window. The heuristics reduced the av-
erage number ofSCFs presented alongside each sen-
tence from 52 to 7. The annotator was also presented
with an example sentence of eachSCF and an intu-
itive name for the frame, such asPRED (e.g. Kim
is silly). The program includes an option to record
that particular sentences could not (initially) be clas-
sified. A screenshot of the tool is shown in Figure 5.

The manual analysis was done by two linguists;
one who did the first annotation for the whole data,
and another who re-evaluated and corrected some of
the initial frame assignments, and classified most of
the data left unclassified by the first annotator2). A
total of 27SCF types were found for the nouns and
30 for the adjectives in the annotated data. The av-
erage number ofSCFs taken by nouns was 9 (with
the average of 2 added from dictionaries to supple-
ment the manual annotation) and by adjectives 11
(3 of which were from dictionaries). The latter are
rare and may not be exemplified in the data given the
extraction system.

3.3 Evaluation Measures

We used the standard evaluation metrics to evaluate
the accuracy of theSCF lexicons: type precision (the
percentage ofSCF types that the system proposes

2The process precluded measurements of inter-annotator
agreement, but this was judged less important than the enhanced
accuracy of the gold standard data.

Figure 5: Sample screen of the annotation tool

which are correct), type recall (the percentage ofSCF

types in the gold standard that the system proposes)
and the F-measure which is the harmonic mean of
type precision and recall.

We also compared the similarity between the ac-
quired unfiltered3 SCF distributions and gold stan-
dard SCF distributions using various measures of
distributional similarity: the Spearman rank corre-
lation (RC), Kullback-Leibler distance (KL ), Jensen-
Shannon divergence (JS), cross entropy (CE), skew
divergence (SD) and intersection (IS). The details of
these measures and their application to subcatego-
rization acquisition can be found in (Korhonen and
Krymolowski, 2002).

Finally, we recorded the total number of gold
standardSCFs unseen in the system output, i.e. the
type of false negatives which were never detected
by the classifier.

3.4 Results

Table 1 includes the average results for the 183
verbs. The first column shows the results for Briscoe
and Carroll’s (1997) (B&C) system when this sys-
tem is run with the original classifier but a more
recent version of the parser (Briscoe and Carroll,
2002) and the same filtering technique as our new
system (thresholding based on the relative frequen-
cies ofSCFs). The classifier of B&C system is com-
parable to our classifier in the sense that it targets al-
most the same set of verbalSCFs (165 out of the 168;
the 3 additional ones are infrequent in language and
thus unlikely to affect the comparison). The second
column shows the results for our new system (New).

3No threshold was applied to remove the noisySCFs from
the distributions.
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Verbs - Method
Measures B&C New
Precision (%) 47.3 81.8
Recall (%) 40.4 59.5
F-measure 43.6 68.9
KL 3.24 1.57
JS 0.20 0.11
CE 4.85 3.10
SD 1.39 0.74
RC 0.33 0.66
IS 0.49 0.76
Unseen SCFs 28 17

Table 1: Average results for verbs

The figures show that the new system clearly per-
forms better than the B&C system. It yields 68.9 F-
measure which is a 25.3 absolute improvement over
the B&C system. The better performance can be ob-
served on all measures, but particularly onSCF type
precision (81.8% with our system vs. 47.3% with the
B&C system) and on measures of distributional sim-
ilarity. The clearly higherIS (0.76 vs. 0.49) and the
fewer gold standardSCFs unseen in the output of the
classifier (17 vs. 28) indicate that the new system is
capable of detecting a higher number ofSCFs.

The main reason for better performance is the
ability of the new system to detect a number of chal-
lenging or complexSCFs which the B&C system
could not detect4. The improvement is partly at-
tributable to more accurate parses produced by the
second release ofRASP and partly to the improved
SCFclassifier developed here. For example, the new
system is now able to distinguish predicative PP ar-
guments, such asI sent him as a messengerfrom the
wider class of referential PP arguments, supporting
discrimination of several syntactically similarSCFs
with distinct semantics.

Running our system on the adjective and noun test
data yielded the results summarized in Table 2. The
F-measure is lower for nouns (62.2) than for verbs
(68.9); for adjectives it is slightly better (71.9).5

4The results reported here for the B&C system are lower
than those recently reported in (Korhonen et al., 2006) for the
same set of 183 test verbs. This is because we use an improved
gold standard. However, the results for the B&C system re-
ported using the less ambitious gold standard are still less ac-
curate (58.6 F-measure) than the ones reported here for the new
system.

5The results for different word classes are not directly com-
parable because they are affected by the total number ofSCFs
evaluated for each word class, which is higher for verbs and

Measures Nouns Adjectives
Precision (%) 91.2 95.5
Recall (%) 47.2 57.6
F-measure 62.2 71.9
KL 0.91 0.69
JS 0.09 0.05
CE 2.03 2.01
SD 0.48 0.36
RC 0.70 0.77
IS 0.62 0.72
Unseen SCFs 15 7

Table 2: Average results for nouns and adjectives

The noun and adjective classifiers yield very high
precision compared to recall. The lower recall fig-
ures are mostly due to the higher number of gold
standardSCFs unseen in the classifier output (rather
than, for example, the filtering step). This is par-
ticularly evident for nouns for which 15 of the 27
frames exemplified in the gold standard are missing
in the classifier output. For adjectives only 7 of the
30 gold standardSCFs are unseen, resulting in better
recall (57.6% vs. 47.2% for nouns).

For verbs, subcategorization acquisition perfor-
mance often correlates with the size of the input
data to acquisition (the more data, the better perfor-
mance). When considering the F-measure results for
the individual words shown in Table 3 there appears
to be little such correlation for nouns and adjectives.
For example, although there are individual high fre-
quency nouns with high performance (e.g.plan,
freq. 5046, F 90.9) and low frequency nouns with
low performance (e.g.characterisation, freq. 91, F
40.0), there are also many nouns which contradict
the trend (compare e.g.answer, freq. 2510, F 50.0
with fondness, freq. 71, F 85.7).6

Although theSCF distributions for nouns and ad-
jectives appear Zipfian (i.e. the most frequent frames
are highly probable, but most frames are infre-
quent), the total number ofSCFs per word is typi-
cally smaller than for verbs, resulting in better resis-
tance to sparse data problems.

There is, however, a clear correlation between
the performance and the type of gold standardSCFs
taken by individual words. Many of the gold stan-

lower for nouns and adjectives. This particularly applies to the
sensitive measures of distributional similarity.

6The frequencies here refer to the number of citations suc-
cessfully processed by the parser and the classifier.
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Noun F Adjective F
abundance 75.0 able 66.7
acknowledgement 47.1 angry 62.5
answer 50.0 anxious 82.4
anxiety 53.3 aware 87.5
apology 50.0 certain 73.7
appearance 46.2 clear 77.8
appointment 66.7 curious 57.1
belief 76.9 desperate 83.3
call 58.8 difficult 77.8
characterisation 40.0 doubtful 63.6
communication 40.0 eager 83.3
condition 66.7 easy 66.7
danger 76.9 generous 57.1
decision 70.6 imperative 81.8
definition 42.8 important 60.9
demand 66.7 impractical 71.4
desire 71.4 improbable 54.6
doubt 66.7 insistent 80.0
evidence 66.7 kind 66.7
examination 54.6 likely 66.7
experimentation 60.0 practical 88.9
fondness 85.7 probable 80.0
message 66.7 sure 84.2
obsession 54.6 unaware 85.7
plan 90.9 uncertain 60.0
provision 70.6 unclear 63.2
reminder 63.2 unimportant 61.5
rumour 61.5 unlikely 69.6
temptation 71.4 unspecified 50.0
use 60.0 unsure 90.0

Table 3: System performance for each test noun and
adjective

dard nominal and adjectivalSCFs unseen by the
classifier involve complex complementation patterns
which are challenging to extract, e.g. those exem-
plified in Theargument of Jo with Kim about Fido
surfaced, Jo’s preference that Kim be sacked sur-
faced, andthat Sandy came iscertain. In addition,
many of theseSCFs unseen in the data are also very
low in frequency, and some may even be true nega-
tives (recall that the gold standard was supplemented
with additionalSCFs from dictionaries, which may
not necessarily appear in the test data).

The main problem is that theRASPparser system-
atically fails to select the correct analysis for some
SCFs with nouns and adjectives regardless of their
context of occurrence. In future work, we hope to al-
leviate this problem by using the weightedGR output
from the topn-ranked parses returned by the parser
as input to theSCFclassifier.

4 Discussion

The current system needs refinement to alleviate the
bias against someSCFs introduced by the parser’s
unlexicalized parse selection model. We plan to in-
vestigate using weightedGR output with the clas-
sifier rather than just theGR set from the highest
ranked parse. SomeSCFclasses also need to be fur-
ther resolved mainly to differentiate control options
with predicative complementation. This requires a
lexico-semantic classification of predicate classes.

Experiments with Briscoe and Carroll’s system
have shown that it is possible to incorporate some
semantic information in the acquisition process us-
ing a technique that smooths the acquiredSCF dis-
tributions using back-off (i.e. probability) estimates
based on lexical-semantic classes of verbs (Korho-
nen, 2002). The estimates help to correct the ac-
quiredSCFdistributions and predictSCFs which are
rare or unseen e.g. due to sparse data. They could
also form the basis for predicting control of predica-
tive complements.

We plan to modify and extend this technique for
the new system and use it to improve the perfor-
mance further. The technique has so far been applied
to verbs only, but it can also be applied to nouns
and adjectives because they can also be classified on
lexical-semantic grounds. For example, the adjec-
tive simplebelongs to the class ofEASY adjectives,
and this knowledge can help to predict that it takes
similar SCFs to the other class members and that
control of ‘understood’ arguments will pattern with
easy(e.g.easy, difficult, convenient): The problem
will be simple for John to solve, For John to solve
the problem will be simple, The problem will be sim-
ple to solve, etc.

Further research is needed before highly accurate
lexicons encoding information also about semantic
aspects of subcategorization (e.g. different predicate
senses, the mapping from syntactic arguments to
semantic representation of argument structure, se-
lectional preferences on argument heads, diathesis
alternations, etc.) can be obtained automatically.
However, with the extensions suggested above, the
system presented here is sufficiently accurate for
building an extensiveSCF lexicon capable of sup-
porting variousNLP application tasks. Such a lex-
icon will be built and distributed for research pur-
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poses along with the gold standard described here.

5 Conclusion

We have described the first system for automatically
acquiring verbal, nominal and adjectival subcat-
egorization and associated frequency information
from English corpora, which can be used to build
large-scale lexicons forNLP purposes. We have
also described a new annotation tool for producing
training and test data for the task. The acquisition
system, which is capable of distinguishing 168
verbal, 37 adjectival and 31 nominal frames, clas-
sifies corpus occurrences toSCFs on the basis of
GRs produced by a robust statistical parser. The
information provided byGRs closely matches the
structure that subcategorization acquisition seeks
to recover. Our experiment shows that the system
achieves state-of-the-art performance with each
word class. The discussion suggests ways in which
we could improve the system further before using it
to build a large subcategorization lexicon capable of
supporting variousNLP application tasks.
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