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Abstract

Creating large amounts of annotated data to
train statistical PCFG parsers is expensive,
and the performance of such parsers declines
when training and test data are taken from
different domains. In this paper we use self-
training in order to improve the quality of
a parser and to adapt it to a different do-
main, using only small amounts of manually
annotated seed data. We report significant
improvement both when the seed and test
data are in the same domain and in the out-
of-domain adaptation scenario. In particu-
lar, we achieve 50% reduction in annotation
cost for the in-domain case, yielding an im-
provement of 66% over previous work, and a
20-33% reduction for the domain adaptation
case. This is the first time that self-training
with small labeled datasets is applied suc-
cessfully to these tasks. We were also able
to formulate a characterization of when self-
training is valuable.

1 Introduction

State of the art statistical parsers (Collins, 1999;
Charniak, 2000; Koo and Collins, 2005; Charniak
and Johnson, 2005) are trained on manually anno-
tated treebanks that are highly expensive to create.
Furthermore, the performance of these parsers de-
creases as the distance between the genres of their
training and test data increases. Therefore, enhanc-
ing the performance of parsers when trained on
smallmanually annotated datasets is of great impor-
tance, both when the seed and test data are taken

from the same domain (thein-domainscenario) and
when they are taken from different domains (theout-
of-domainor parser adaptationscenario). Since the
problem is the expense in manual annotation, we de-
fine ‘small’ to be 100-2,000 sentences, which are the
sizes of sentence sets that can be manually annotated
by constituent structure in a few hours1.

Self-training is a method for using unannotated
data when training supervised models. The model is
first trained using manually annotated (‘seed’) data,
then the model is used to automatically annotate a
pool of unannotated (‘self-training’) data, and then
the manually and automatically annotated datasets
are combined to create the training data for the fi-
nal model. Self-training of parsers trained on small
datasets is of enormous potential practical impor-
tance, due to the huge amounts of unannotated data
that are becoming available today and to the high
cost of manual annotation.

In this paper we use self-training to enhance the
performance of a generative statistical PCFG parser
(Collins, 1999) for both the in-domain and the parser
adaptation scenarios, using only small amounts of
manually annotated data. We perform four experi-
ments, examining all combinations of in-domain and
out-of-domain seed and self-training data.

Our results show that self-training is of substantial
benefit for the problem. In particular, we present:

• 50% reduction in annotation cost when the seed
and test data are taken from the same domain,
which is 66% higher than any previous result
with small manually annotated datasets.

1We note in passing that quantitative research on the cost of
annotation using various annotation schemes is clearly lacking.
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• The first time that self-training improves a gen-
erative parser when the seed and test data are
from the same domain.

• 20-33% reduction in annotation cost when the
seed and test data are from different domains.

• The first time that self-training succeeds in
adapting a generative parser between domains
using a small manually annotated dataset.

• The first formulation (related to the number of
unknown words in a sentence) of when self-
training is valuable.

Section 2 discusses previous work, and Section 3
compares in-depth our protocol to a previous one.
Sections 4 and 5 present the experimental setup and
our results, and Section 6 analyzes the results in an
attempt to shed light on the phenomenon of self-
training.

2 Related Work

Self-training might seem a strange idea: why should
a parser trained on its own output learn anything
new? Indeed, (Clark et al., 2003) applied self-
training to POS-tagging with poor results, and
(Charniak, 1997) applied it to a generative statisti-
cal PCFG parser trained on a large seed set (40K
sentences), without any gain in performance.

Recently, (McClosky et al., 2006a; McClosky et
al., 2006b) have successfully applied self-training to
various parser adaptation scenarios using the rerank-
ing parser of (Charniak and Johnson, 2005). A
reranking parser (see also (Koo and Collins, 2005))
is a layered model: the base layer is a generative sta-
tistical PCFG parser that creates a ranked list of k
parses (say, 50), and the second layer is a reranker
that reorders these parses using more detailed fea-
tures. McClosky et al (2006a) use sections 2-21 of
the WSJ PennTreebank as seed data and between
50K to 2,500K unlabeled NANC corpus sentences
as self-training data. They train the PCFG parser and
the reranker with the manually annotated WSJ data,
and parse the NANC data with the 50-best PCFG
parser. Then they proceed in two directions. In
the first, they reorder the 50-best parse list with the
reranker to create a new 1-best list. In the second,

they leave the 1-best list produced by the genera-
tive PCFG parser untouched. Then they combine the
1-best list (each direction has its own list) with the
WSJ training set, to retrain the PCFG parser. The
final PCFG model and the reranker (trained only on
annotated WSJ material) are then used to parse the
test section (23) of WSJ.

There are two major differences between these pa-
pers and the current one, stemming from their usage
of a reranker and of large seed data. First, when
their 1-best list of the base PCFG parser was used
as self training data for the PCFG parser (the sec-
ond direction), the performance of the base parser
did not improve. It had improved only when the 1-
best list of thererankerwas used. In this paper we
show how the 1-best list of a base (generative) PCFG
parser can be used as a self-training material for the
base parser itself and enhance its performance, with-
out using any reranker. This reveals a noteworthy
characteristic of generative PCFG models and offers
a potential direction for parser improvement, since
the quality of a parser-reranker combination criti-
cally depends on that of the base parser.

Second, these papers did not explore self-training
when the seed is small, a scenario whose importance
has been discussed above. In general, PCFG mod-
els trained on small datasets are less likely to parse
the self-training data correctly. For example, the f-
score of WSJ data parsed by the base PCFG parser
of (Charniak and Johnson, 2005) when trained on
the training sections of WSJ is between 89% to
90%, while the f-score of WSJ data parsed with the
Collins’ model that we use, and a small seed, is be-
tween 40% and 80%. As a result, the good results of
(McClosky et al, 2006a; 2006b) with large seed sets
do not immediately imply success with small seed
sets. Demonstration of such success is a contribu-
tion of the present paper.

Bacchiani et al (2006) explored the scenario of
out-of-domain seed data (the Brown training set
containing about 20K sentences) and in-domain
self-training data (between 4K to 200K sentences
from the WSJ) and showed an improvement over
the baseline of training the parser with the seed data
only. However, they did not explore the case of small
seed datasets (the effort in manually annotating 20K
is substantial) and their work addresses only one of
our scenarios (OI, see below).
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A work closely related to ours is (Steedman et
al., 2003a), which applied co-training (Blum and
Mitchell, 1998) and self-training to Collins’ pars-
ing model using a small seed dataset (500 sentences
for both methods and 1,000 sentences for co-training
only). The seed, self-training and test datasets they
used are similar to those we use in our II experi-
ment (see below), but the self-training protocols are
different. They first train the parser with the seed
sentences sampled from WSJ sections 2-21. Then,
iteratively, 30 sentences are sampled from these sec-
tions, parsed by the parser, and the 20 best sentences
(in terms of parser confidence defined as probability
of top parse) are selected and combined with the pre-
viously annotated data to retrain the parser. The co-
training protocol is similar except that each parser
is trained with the 20 best sentences of the other
parser. Self-training did not improve parser perfor-
mance on the WSJ test section (23). Steedman et
al (2003b) followed a similar co-training protocol
except that the selection function (three functions
were explored) considered the differences between
the confidence scores of the two parsers. In this pa-
per we show a self-training protocol that achieves
better results than all of these methods (Table 2).
The next section discusses possible explanations for
the difference in results. Steedman et al (2003b) and
Hwa et al, (2003) also used several versions of cor-
rected co-training which are not comparable to ours
and other suggested methods because their evalua-
tion requires different measures (e.g. reviewed and
corrected constituents are separately counted).

As far as we know, (Becker and Osborne, 2005)
is the only additional work that tries to improve a
generative PCFG parsers using small seed data. The
techniques used are based on active learning (Cohn
et al., 1994). The authors test two novel methods,
along with the tree entropy (TE) method of (Hwa,
2004). The seed, the unannotated and the test sets,
as well as the parser used in that work, are similar
to those we use in our II experiment. Our results are
superior, as shown in Table 3.

3 Self-Training Protocols

There are many possible ways to do self-training.
A main goal of this paper is to identify a self-
training protocol most suitable for enhancement and

domain adaptation of statistical parsers trained on
small datasets. No previous work has succeeded in
identifying such a protocol for this task. In this sec-
tion we try to understand why.

In the protocol we apply, the self-training set con-
tains several thousand sentences A parser trained
with a small seed set parses the self-training set, and
then thewholeautomatically annotated self-training
set is combined with the manually annotated seed
set to retrain the parser. This protocol and that of
Steedman et al (2003a) were applied to the problem,
with the same seed, self-training and test sets. As
we show below (see Section 4 and Section 5), while
Steedman’s protocol does not improve over the base-
line of using only the seed data, our protocol does.

There are four differences between the protocols.
First, Steedman et al’s seed set consists ofconsecu-
tiveWSJ sentences, while we select them randomly.
In the next section we show that this difference is
immaterial. Second, Steedman et al’s protocol looks
for sentences of high quality parse, while our pro-
tocol prefers to use many sentences without check-
ing their parse quality. Third, their protocol is itera-
tive while ours uses a single step. Fourth, our self-
training set is orders of magnitude larger than theirs.
To examine the parse quality issue, we performed
their experiment using their setting but selecting the
high quality parse sentences using their f-score rel-
ative to the gold standard annotation from secs 2-
21 rather than a quality estimate. No improvement
over the baseline was achieved even with this or-
acle. Thus the problem with their protocol does
not lie with the parse quality assessment function;
no other function would produce results better than
the oracle. To examine the iteration issue, we per-
formed their experiment in a single step, selecting at
once the oracle-best 2,000 among 3,000 sentences2,
which produced only a mediocre improvement. We
thus conclude that the size of the self-training set is a
major factor responsible for the difference between
the protocols.

4 Experimental Setup

We used a reimplementation of Collins’ parsing
model 2 (Bikel, 2004). We performed four experi-
ments, II, IO, OI, and OO, two with in-domain seed

2Corresponding to a 100 iterations of 30 sentences each.
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(II, IO) and two with out-of-domain seed (OI, OO),
examining in-domain self-training (II, OI) and out-
of-domain self-training (IO, OO). Note that being
‘in’ or ‘out’ of domain is determined by thetestdata.
Each experiment contained 19 runs. In each run a
different seed size was used, from 100 sentences on-
wards, in steps of 100. For statistical significance,
we repeated each experiment five times, in each rep-
etition randomly sampling different manually anno-
tated sentences to form the seed dataset3.

The seed data were taken from WSJ sections 2-
21. For II and IO, the test data is WSJ section 23
(2416 sentences) and the self-training data are either
WSJ sections 2-21 (in II, excluding the seed sen-
tences) or the Brown training section (in IO). For
OI and OO, the test data is the Brown test section
(2424 sentences), and the self-training data is either
the Brown training section (in OI) or WSJ sections
2-21 (in OO). We removed the manual annotations
from the self-training sections before using them.

For the Brown corpus, we based our division
on (Bacchiani et al., 2006; McClosky et al., 2006b).
The test and training sections consist of sentences
from all of the genres that form the corpus. The
training division consists of 90% (9 of each 10 con-
secutive sentences) of the data, and the test section
are the remaining 10% (We did not use any held out
data). Parsing performance is measured by f-score,
f =

2×P×R

P+R
, whereP, R are labeled precision and

recall.
To further demonstrate our results for parser adap-

tation, we also performed the OI experiment where
seed data is taken from WSJ sections 2-21 and both
self-training and test data are taken from the Switch-
board corpus. The distance between the domains of
these corpora is much greater than the distance be-
tween the domains of WSJ and Brown. The Brown
and Switchboard corpora were divided to sections in
the same way.

We have also performed all four experiments with
the seed data taken from the Brown training section.

3 (Steedman et al., 2003a) used thefirst 500 sentences of
WSJ training section as seed data. For direct comparison, we
performed our protocol in the II scenario using the first 500 or
1000 sentences of WSJ training section as seed data and got
similar results to those reported below for our protocol withran-
domselection. We also applied the protocol of Steedman et al
to scenario II with 500 randomly selected sentences, getting no
improvement over the random baseline.

The results were very similar and will not be detailed
here due to space constraints.

5 Results

5.1 In-domain seed data

In these two experiments we show that when the
seed and test data are taken from the same domain, a
very significant enhancement of parser performance
can be achieved, whether the self-training material
is in-domain (II) or out-of-domain (IO). Figure 1
shows the improvement in parser f-score when self-
training data is used, compared to when it is not
used. Table 1 shows the reduction in manually an-
notated seed data needed to achieve certain f-score
levels. The enhancement in performance is very im-
pressive in the in-domain self-training data scenario
– a reduction of 50% in the number of manually an-
notated sentences needed for achieving 75 and 80 f-
score values. A significant improvement is achieved
in the out-of-domain self-training scenario as well.

Table 2 compares our results with self-training
and co-training results reported by (Steedman et al,
20003a; 2003b). As stated earlier, the experimental
setup of these works is similar to ours, but the self-
training protocols are different. For self-training,
our II improves an absolute 3.74% over their 74.3%
result, which constitutes a 14.5% reduction in error
(from 25.7%).

The table shows that for both seed sizes our
self training protocol outperforms both the self-
training and co-training protocols of (Steedman et
al, 20003a; 2003b). Results are not included in the
table only if they are not reported in the relevant pa-
per. The self-training protocol of (Steedman et al.,
2003a) does not actually improve over the baseline
of using only the seed data. Section 3 discussed a
possible explanation to the difference in results.

In Table 3 we compare our results to the results of
the methods tested in (Becker and Osborne, 2005)
(including TE)4. To do that, we compare the reduc-
tion in manually annotated data needed to achieve
an f-score value of 80 on WSJ section 23 achieved
by each method. We chose this measure since it is

4The measure is constituents and not sentences because this
is how results are reported in (Becker and Osborne, 2005).
However, the same reduction is obtained when sentences are
counted, because the number of constituents is averaged when
taking many sentences.
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f-score 75 80
Seed data only 600(0%) 1400(0%)
II 300(50%) 700(50%)
IO 500(17%) 1200(14.5%)

Table 1: Number of in-domain seed sentences
needed for achieving certain f-scores. Reductions
compared to no self-training (line 1) are given in
parentheses.

Seed
size

our
II

our
IO

Steedman
ST

Steedman
CT

Steedman
CT

2003a 2003b
500
sent.

78.04 75.81 74.3 76.9 —-

1,000
sent.

81.43 79.49 —- 79 81.2

Table 2: F-scores of our in-domain-seed self-
training vs. self-training (ST) and co-training (CT)
of (Steedman et al, 20003a; 2003b).

the only explicitly reported number in that work. As
the table shows, our method is superior: our reduc-
tion of 50% constitutes an improvement of 66% over
their best reduction of 30.6%.

When applying self-training to a parser trained
with a small dataset we expect the coverage of the
parser to increase, since the combined training set
should contain items that the seed dataset does not.
On the other hand, since the accuracy of annota-
tion of such a parser is poor (see the no self-training
curve in Figure 1) the combined training set surely
includes inaccurate labels that might harm parser
performance. Figure 2 (left) shows the increase in
coverage achieved for in-domain and out-of-domain
self-training data. The improvements induced by
both methods are similar. This is quite surpris-
ing given that the Brown sections we used as self-
training data contain science, fiction, humor, ro-
mance, mystery and adventure texts while the test
section in these experiments, WSJ section 23, con-
tains only news articles.

Figure 2 also compares recall (middle) and preci-
sion (right) for the different methods. For II there
is a significant improvement in both precision and
recall even though many more sentences are parsed.
For IO, there is a large gain in recall and a much
smaller loss in precision, yielding a substantial im-
provement in f-score (Figure 1).

F -
score

This
work - II

Becker
unparsed

Becker en-
tropy/unparsed

Hwa
TE

80 50% 29.4% 30.6% -5.7%

Table 3: Reduction of the number of manually anno-
tated constituents needed for achieving f score value
of 80 on section 23 of the WSJ. In all cases the seed
and additional sentences selected to train the parser
are taken from sections 02-21 of WSJ.

5.2 Out-of-domain seed data

In these two experiments we show that self-training
is valuable for adapting parsers from one domain to
another. Figure 3 compares out-of-domain seed data
used with in-domain (OI) or out-of-domain (OO)
self-training data against the baseline of training
only with the out-of-domain seed data.

The left graph shows a significant improvement
in f-score. In the middle and right graphs we exam-
ine the quality of the parses produced by the model
by plotting recall and precision vs. seed size. Re-
garding precision, the difference between the three
conditions is small relative to the f-score difference
shown in the left graph. The improvement in the
recall measure is much greater than the precision
differences, and this is reflected in the f-score re-
sult. The gain in coverage achieved by both meth-
ods, which is not shown in the figure, is similar to
that reported for the in-domain seed experiments.
The left graph along with the increase in coverage
show the power of self-training in parser adaptation
when small seed datasets are used: not only do OO
and OI parse many more sentences than the baseline,
but their f-score values are consistently better.

To see how much manually annotated data can
be saved by using out-of-domain seed, we train the
parsing model with manually annotated data from
the Brown training section, as described in Sec-
tion 4. We assume that given a fixed number of
training sentences the best performance of the parser
without self-training will occur when these sen-
tences are selected from the domain of the test sec-
tion, the Brown corpus. We compare the amounts of
manually annotated data needed to achieve certain f-
score levels in this condition with the corresponding
amounts of data needed by OI and OO. The results
are summarized in Table 4. We compare to two base-
lines using in- and out-of-domain seed data without
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Figure 1: Number of seed sentences vs. f-score, for the two in-domain seed experiments: II (triangles) and
IO (squares), and for the no self-training baseline. Self-training provides a substantial improvement.
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Figure 2: Number of seed sentences vs. coverage (left), recall (middle) and precision (right) for the two
in-domain seed experiments: II (triangles) and IO (squares), and for the no self-training baseline.

any self-training. The second line (ID) serves as a
reference to compute how much manual annotation
of the test domain was saved, and the first line (OD)
serves as a reference to show by how much self-
training improves the out-of-domain baseline. The
table stops at an f-score of 74 because that is the
best that the baselines can do.

A significant reduction in annotation cost over the
ID baseline is achieved where the seed size is be-
tween 100 and 1200. Improvement over the OD
baseline is for the whole range of seed sizes. Both
OO and OI achieve 20-33% reduction in manual an-
notation compared to the ID baseline and enhance
the performance of the parser by as much as 42.9%.

The only previous work that adapts a parser
trained on a small dataset between domains is that
of (Steedman et al., 2003a), which used co-training
(no self-training results were reported there or else-
where). In order to compare with that work, we per-
formed OI with seed taken from the Brown corpus
and self-training and test taken from WSJ, which
is the setup they use, obtaining a similar improve-

ment to that reported there. However, co-training is
a more complex method that requires an additional
parser (LTAG in their case).

To further substantiate our results for the parser
adaptation scenario, we used an additional corpus,
Switchboard. Figure 4 shows the results of an OI
experiment with WSJ seed and Switchboard self-
training and test data. Although the domains of these
two corpora are very different (more so than WSJ
and Brown), self-training provides a substantial im-
provement.

We have also performed all four experiments with
Brown and WSJ trading places. The results obtained
were very similar to those reported here, and will not
be detailed due to lack of space.

6 Analysis

In this section we try to better understand the ben-
efit in using self-training with small seed datasets.
We formulate the following criterion: the number of
words in a test sentence that do not appear in the
seed data (‘unknown words’) is a strong indicator
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Figure 3: Number of seed sentences vs. f-score (left), recall (middle)and precision (right), for the two
out-of-domain seed data experiments: OO (triangles) and OI (squares),and for the no self-training baseline.

f-sc. 66 68 70 72 74
OD 600 800 1, 000 1, 400 –
ID 600 700 800 1, 000 1, 200
OO 400 500 600 800 1100

33, 33 28.6, 37.5 33, 40 20, 42.9 8, –
OI 400 500 600 800 1, 300

33, 33 28.6, 37.5 33, 40 20, 42.9 −8, –

Table 4: Number of manually annotated seed sen-
tences needed for achieving certain f-score values.
The first two lines show the out-of-domain and in-
domain seed baselines. The reductions compared to
the baselines is given as ID, OD.
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Figure 4: Number of seed sentences vs. f-score,
for the OI experiment using WSJ seed data and
SwitchBoard self-training and test data. In spite of
the strong dissimilarity between the domains, self-
training provides a substantial improvement.

to whether it is worthwhile to use small seed self-
training. Figure 5 shows the number of unknown
words in a sentence vs. the probability that the self-
training model will parse a sentence no worse (up-
per curve) or better (lower curve) than the baseline
model.

The upper curve shows that regardless of the
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Figure 5: For sentences having the same number of
unknown words, we show the probability that the
self-training model parses a sentence from the set
no worse (upper curve) or better (lower curve) than
the baseline model.

number of unknown words in the sentence, there is
more than 50% chance that the self-training model
will not harm the result. This probability decreases
from almost 1 for a very small number of unknown
words to about 0.55 for 50 unknown words. The
lower curve shows that when the number of un-
known words increases, the probability that the
self-training model will do better than the baseline
model increases from almost 0 (for a very small
number of unknown words) to about 0.55. Hence,
the number of unknown words is an indication for
the potential benefit (value on the lower curve)
and risk (1 minus the value on the upper curve) in
using the self-training model compared to using the
baseline model. Unknown words were not identified
in (McClosky et al., 2006a) as a useful predictor for
the benefit of self-training.
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We also identified a length effect similar to that
studied by (McClosky et al., 2006a) for self-training
(using a reranker and large seed, as detailed in Sec-
tion 2). Due to space limitations we do not discuss
it here.

7 Discussion

Self-training is usually not considered to be a valu-
able technique in improving the performance of gen-
erative statistical parsers, especially when the man-
ually annotated seed sentence dataset is small. In-
deed, in the II scenario, (Steedman et al., 2003a;
McClosky et al., 2006a; Charniak, 1997) reported
no improvement of the base parser for small (500
sentences, in the first paper) and large (40K sen-
tences, in the last two papers) seed datasets respec-
tively. In the II, OO, and OI scenarios, (McClosky et
al, 2006a; 2006b) succeeded in improving the parser
performance only when a reranker was used to re-
order the 50-best list of the generative parser, with a
seed size of 40K sentences. Bacchiani et al (2006)
improved the parser performance in the OI scenario
but their seed size was large (about 20K sentences).

In this paper we have shown that self-training
can enhance the performance of generative parsers,
without a reranker, in four in- and out-of-domain
scenarios using a small seed dataset. For the II, IO
and OO scenarios, we are the first to show improve-
ment by self-training for generative parsers. We
achieved a 50% (20-33%) reduction in annotation
cost for the in-domain (out-of-domain) seed data
scenarios. Previous work with small seed datasets
considered only the II and OI scenarios. Our results
for the former are better than any previous method,
and our results for the latter (which are the first
reported self-training results) are similar to previ-
ous results for co-training, a more complex method.
We demonstrated our results using three corpora of
varying degrees of domain difference.

A direction for future research is combining
self-training data from various domains to enhance
parser adaptation.
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