
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 224–231,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

SVM Model Tampering and Anchored Learning: A Case Study in Hebrew
NP Chunking

Yoav Goldberg and Michael Elhadad
Computer Science Department

Ben Gurion University of the Negev
P.O.B 653 Be’er Sheva 84105, Israel
yoavg,elhadad@cs.bgu.ac.il

Abstract

We study the issue of porting a known NLP
method to a language with little existing NLP
resources, specifically Hebrew SVM-based
chunking. We introduce two SVM-based
methods – Model Tampering and Anchored
Learning. These allow fine grained analysis
of the learned SVM models, which provides
guidance to identify errors in the training cor-
pus, distinguish the role and interaction of
lexical features and eventually construct a
model with∼10% error reduction. The re-
sulting chunker is shown to be robust in the
presence of noise in the training corpus, relies
on less lexical features than was previously
understood and achieves an F-measure perfor-
mance of 92.2 on automatically PoS-tagged
text. The SVM analysis methods also provide
general insight on SVM-based chunking.

1 Introduction

While high-quality NLP corpora and tools are avail-
able in English, such resources are difficult to obtain
in most other languages. Three challenges must be
met when adapting results established in English to
another language: (1) acquiring high quality anno-
tated data; (2) adapting the English task definition
to the nature of a different language, and (3) adapt-
ing the algorithm to the new language. This paper
presents a case study in the adaptation of a well
known task to a language with few NLP resources
available. Specifically, we deal with SVM based He-
brew NP chunking. In (Goldberg et al., 2006), we
established that the task is not trivially transferable

to Hebrew, but reported that SVM based chunking
(Kudo and Matsumoto, 2000) performs well. We
extend that work and study the problem from 3 an-
gles: (1) how to deal with a corpus that is smaller
and with a higher level of noise than is available in
English; we propose techniques that help identify
‘suspicious’ data points in the corpus, and identify
how robust the model is in the presence of noise;
(2) we compare the task definition in English and in
Hebrew through quantitative evaluation of the differ-
ences between the two languages by analyzing the
relative importance of features in the learned SVM
models; and (3) we analyze the structure of learned
SVM models to better understand the characteristics
of the chunking problem in Hebrew.

While most work on chunking with machine
learning techniques tend to treat the classification
engine as a black-box, we try to investigate the re-
sulting classification model in order to understand
its inner working, strengths and weaknesses. We in-
troduce two SVM-based methods – Model Tamper-
ing and Anchored Learning – and demonstrate how
a fine-grained analysis of SVM models provides in-
sights on all three accounts. The understanding of
the relative contribution of each feature in the model
helps us construct a better model, which achieves
∼10% error reduction in Hebrew chunking, as well
as identify corpus errors. The methods also provide
general insight on SVM-based chunking.

2 Previous Work

NP chunking is the task of marking the bound-
aries of simple noun-phrases in text. It is a well
studied problem in English, and was the focus of
CoNLL2000’s Shared Task (Sang and Buchholz,

224

2000). Early attempts at NP Chunking were rule
learning systems, such as the Error Driven Prun-
ing method of Pierce and Cardie (1998). Follow-
ing Ramshaw and Marcus (1995), the current dom-
inant approach is formulating chunking as a clas-
sification task, in which each word is classified as
the (B)eginning, (I)nside or (O)outside of a chunk.
Features for this classification usually involve local
context features. Kudo and Matsumoto (2000) used
SVM as a classification engine and achieved an F-
Score of 93.79 on the shared task NPs. Since SVM
is a binary classifier, to use it for the 3-class classi-
fication of the chunking task, 3 different classifiers
{B/I, B/O, I/O} were trained and their majority vote
was taken.

NP chunks in the shared task data are BaseNPs,
which are non-recursive NPs, a definition first pro-
posed by Ramshaw and Marcus (1995). This defini-
tion yields good NP chunks for English. In (Gold-
berg et al., 2006) we argued that it is not applica-
ble to Hebrew, mainly because of the prevalence
of the Hebrew’s construct state (smixut). Smixut

is similar to a noun-compound construct, but one
that can join a noun (with a special morphologi-
cal marking) with a full NP. It appears in about
40% of Hebrew NPs. We proposed an alterna-
tive definition (termed SimpleNP) for Hebrew NP
chunks. A SimpleNP cannot contain embedded rel-
atives, prepositions, VPs and NP-conjunctions (ex-
cept when they are licensed bysmixut). It can
containsmixut, possessives (even when they are
attached by the ’of/של‘ preposition) and partitives
(and, therefore, allows for a limited amount of re-
cursion). We applied this definition to the Hebrew
Tree Bank (Sima’an et al., 2001), and constructed
a moderate size corpus (about 5,000 sentences) for
Hebrew SimpleNP chunking. SimpleNPs are differ-
ent than English BaseNPs, and indeed some meth-
ods that work well for English performed poorly
on Hebrew data. However, we found that chunk-
ing with SVM provides good result for Hebrew Sim-
pleNPs. We analyzed that this success comes from
SVM’s ability to use lexical features, as well as two
Hebrew morphological features, namely “number”
and “construct-state”.

One of the main issues when dealing with Hebrew
chunking is that the available tree bank is rather
small, and since it is quite new, and has not been
used intensively, it contains a certain amount of in-

consistencies and tagging errors. In addition, the
identification of SimpleNPs from the tree bank also
introduces some errors. Finally, we want to investi-
gate chunking in a scenario where PoS tags are as-
signed automatically and chunks are then computed.
The Hebrew PoS tagger we use introduces about 8%
errors (compared with about 4% in English). We
are, therefore, interested in identifying errors in the
chunking corpus, and investigating how the chunker
operates in the presence of noise in the PoS tag se-
quence.

3 Model Tampering

3.1 Notation and Technical Review

This section presents notation as well as a technical
review of SVM chunking details relevant to the cur-
rent study. Further details can be found in Kudo and
Matsumoto (2000; 2003).

SVM (Vapnik, 1995) is a supervised binary clas-
sifier. The input to the learner is a set ofl train-
ing samples(x1, y1), . . . , (xl, yl), x ∈ Rn, y ∈
{+1,−1}. xi is an n dimensional feature vec-
tor representing theith sample, andyi is the la-
bel for that sample. The result of the learning pro-
cess is the setSV of Support Vectors, the asso-
ciated weightsαi, and a constantb. The Support
Vectors are a subset of the training vectors, and to-
gether with the weights andb they define a hyper-
plane that optimally separates the training samples.
The basic SVM formulation is of a linear classifier,
but by introducing a kernel functionK that non-
linearly transforms the data fromRn into a higher
dimensional space, SVM can be used to perform
non-linear classification. SVM’s decision function
is: y(x) = sgn

(

∑

j∈SV yjαjK(xj , x) + b
)

where
x is an n dimensional feature vector to be classi-
fied. In the linear case,K is a dot product oper-
ation and the sumw =

∑

yjαjxj is ann dimen-
sional weight vector assigning weight for each of
the n features. The other kernel function we con-
sider in this paper is a polynomial kernel of degree
2: K(xi, xj) = (xi · xj + 1)2. When using binary
valued features, this kernel function essentially im-
plies that the classifier considers not only the explic-
itly specified features, but also all available pairs of
features. In order to cope with inseparable data, the
learning process of SVM allows for some misclas-
sification, the amount of which is determined by a

225

parameterC, which can be thought of as a penalty
for each misclassified training sample.

In SVM based chunking, each word and its con-
text is considered a learning sample. We refer to
the word being classified asw0, and to its part-of-
speech (PoS) tag, morphology, and B/I/O tag asp0,
m0 and t0 respectively. The information consid-
ered for classification isw−cw . . . wcw, p−cp . . . pcp,
m−cm . . .mcm andt−ct . . . t−1. The feature vector
F is an indexed list of all the features present in
the corpus. A featurefi of the formw+1 = dog

means that the word following the one being clas-
sified is ‘dog’. Every learning sample is repre-
sented by ann = |F | dimensional binary vectorx.
xi = 1 iff the featurefi is active in the given sample,
and 0 otherwise. This encoding leads to extremely
high dimensional vectors, due to the lexical features
w−cw . . . wcw.

3.2 Introducing Model Tampering

An important observation about SVM classifiers is
that features which are not active in any of the Sup-
port Vectors have no effect on the classifier deci-
sion. We introduce Model Tampering, a procedure
in which we change the Support Vectors in a model
by forcing some values in the vectors to 0.

The result of this procedure is a new Model in
which the deleted features never take part in the clas-
sification.

Model tampering is different than feature selec-
tion: on the one hand, it is a method that helps us
identify irrelevant features in a model after training;
on the other hand, and this is the key insight, re-
moving featuresafter training is not the same as re-
moving them before training. The presence of the
low-relevance features during training has an impact
on the generalization performed by the learner as
shown below.

3.3 The Role of Lexical Features

In Goldberget al. (2006), we have established that
using lexical features increases the chunking F-
measure from 78 to over 92 on the Hebrew Tree-
bank. We refine this observation by using Model
Tampering, in order to assess the importance of lex-
ical features in NP Chunking. We are interested in
identifying which specific lexical items and contexts
impact the chunking decision, and quantifying their
effect. Our method is to train a chunking model

on a given training corpus, tamper with the result-
ing model in various ways and measure the perfor-
mance1 of the tampered models on a test corpus.

3.4 Experimental Setting

We conducted experiments both for English and He-
brew chunking. For the Hebrew experiments, we use
the corpora of (Goldberg et al., 2006). The first one
is derived from the original Treebank by projecting
the full syntactic tree, constructed manually, onto a
set of NP chunks according to the SimpleNP rules.
We refer to the resulting corpus asHEBGold since
PoS tags are fully reliable. TheHEBErr version
of the corpus is obtained by projecting the chunk
boundaries on the sequence of PoS and morphology
tags obtained by the automatic PoS tagger of Adler
& Elhadad (2006). This corpus includes an error
rate of about 8% on PoS tags. The first 500 sen-
tences are used for testing, and the rest for training.
The corpus contains 27K NP chunks. For the En-
glish experiments, we use the now-standard training
and test sets that were introduced in (Marcus and
Ramshaw, 1995)2. Training was done using Kudo’s
YAMCHA toolkit 3. Both Hebrew and English mod-
els were trained using a polynomial kernel of de-
gree 2, withC = 1. For English, the features used
were:w−2 . . . w2, p−2 . . . p2, t−2 . . . t−1. The same
features were used for Hebrew, with the addition of
m−2 . . .m2. These are the same settings as in (Kudo
and Matsumoto, 2000; Goldberg et al., 2006).

3.5 Tamperings

We experimented with the following tamperings:
TopN – We definemodel feature countto be the

number of Support Vectors in which a feature is ac-
tive in a given classifier. This tampering leaves in the
model only the top N lexical features in each classi-
fier, according to their count.

NoPOS– all the lexical features corresponding to
a given part-of-speech are removed from the model.
For example, in a NoJJ tampering, all the features of
the formwi = X are removed from all the support
vectors in whichpi = JJ is active.

Loc6=i – all the lexical features with indexi are
removed from the modele.g., in a Loc6=+2 tamper-

1The performance metric we use is the standard Preci-
sion/Recall/F measures, as computed by the conlleval program:
http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt

2ftp://ftp.cis.upenn.edu/pub/chunker
3http://chasen.org/∼taku/software/yamcha/

226

ing, features of the formw+2 = X are removed).
Loc=i – all the lexical features with an index other

thani are removed from the model.

3.6 Results and Discussion

Highlights of the results are presented in Tables (1-
3). The numbers reported are F measures.

TopN HEBGold HEBErr ENG
ALL 93.58 92.48 93.79
N=0 78.32 76.27 90.10
N=10 90.21 88.68 90.24
N=50 91.78 90.85 91.22
N=100 92.25 91.62 91.72
N=500 93.60 92.23 93.12
N=1000 93.56 92.41 93.30

Table 1: Results of TopN Tampering.

The results of the TopN tamperings show that for
both languages, most of the lexical features are irrel-
evant for the classification – the numbers achieved
by using all the lexical features (about 30,000 in He-
brew and 75,000 in English) are very close to those
obtained using only a few lexical features. This
finding is very encouraging, and suggests that SVM
based chunking is robust to corpus variations.

Another conclusion is that lexical features help
balance the fact that PoS tags can be noisy: we
know bothHEBErr and ENG include PoS tag-
ging errors (about 8% in Hebrew and 4% in En-
glish). While in the case of “perfect” PoS tagging
(HEBGold), a very small amount of lexical features
is sufficient to reach the best F-result (500 out of
30,264), in the presence of PoS errors, more than
the top 1000 lexical features are needed to reach the
result obtained with all lexical features.

More striking is the fact that in Hebrew, the
top 10 lexical features are responsible for an im-
provement of 12.4 in F-score. The words cov-
ered by these 10 features are the following:Start
of Sentence marker and comma, quote,
‘of/של’, ‘ and/ו’, ‘ the/ה’ and ‘in/ב’.

This finding suggests that the Hebrew PoS tagset
might not be informative enough for the chunking
task, especially where punctuation4 and preposi-
tions are concerned. The results in Table 2 give fur-
ther support for this claim.

4Unlike the WSJ PoS tagset in which most punctuations get
unique tags, our tagset treat punctuation marks as one group.

NoPOS HEBG HEBE NoPOS HEBG HEBE

Prep 85.25 84.40 Pronoun 92.97 92.14
Punct 88.90 87.66 Conjunction 92.31 91.67
Adverb 92.02 90.72 Determiner 92.55 91.39

Table 2: Results of Hebrew NoPOS Tampering.
Other scores are≥ 93.3(HEBG), ≥ 92.2(HEBE).

When removing lexical features of a specific
PoS, the most dramatic loss of F-score is reached
for Prepositions and Punctuation marks, followed
by Adverbs, and Conjunctions. Strikingly, lexi-
cal information for most open-class PoS (including
Proper Names and Nouns) has very little impact on
Hebrew chunking performance.

From this observation, one could conclude that
enriching a model based only on PoS with lexical
features for only a few closed-class PoS (prepo-
sitions and punctuation) could provide appropri-
ate results even with a simpler learning method,
one that cannot deal with a large number of fea-
tures. We tested this hypothesis by training the
Error-Driven Pruning (EDP) method of (Cardie and
Pierce, 1998) with an extended set of features. EDP
with PoS features only produced an F-result of 76.3
on HEBGold. By adding lexical features only for
prepositions{מ ב ה כ ,{של one conjunction{ו} and
punctuation, the F-score onHEBGold indeed jumps
to 85.4. However, when applied onHEBErr, EDP
falls down again to 59.4. This striking disparity, by
comparison, lets us appreciate the resilience of the
SVM model to PoS tagging errors, and its gener-
alization capability even with a reduced number of
lexical features.

Another implication of this data is that commas
and quotation marks play a major role in deter-
mining NP boundaries in Hebrew. In Goldberg
et al. (2006), we noted the Hebrew Treebank is not
consistent in its treatment of punctuation, and thus
we evaluated the chunker only after performing nor-
malization of chunk boundaries for punctuations.
We now hypothesize that, since commas and quo-
tation marks play such an important role in the clas-
sification, performing such normalizationbeforethe
training stage might be beneficial. Indeed results on
the normalized corpus show improvement of about
1.0 in F score on bothHEBErr andHEBGold. A
10-fold cross validation experiment on punctuation
normalizedHEBErr resulted in an F-Score of 92.2,
improving the results reported by (Goldberg et al.,

227

2006) on the same setting (91.4).

Loc=I HEBE ENG Loc6=I HEBE ENG
-2 78.26 89.79 -2 91.62 93.87
-1 76.96 90.90 -1 91.86 93.03
0 90.33 92.37 0 79.44 91.16
1 76.90 90.47 1 92.33 93.30
2 76.55 90.06 2 92.18 93.65

Table 3: Results of Loc Tamperings.

We now turn to analyzing the importance of con-
text positions (Table 3). For both languages, the
most important lexical feature (by far) is at position
0, that is, the word currently being classified. For
English, it is followed by positions 1 and -1, and
then positions 2 and -2. For Hebrew, back context
seems to have more effect than front context. In
Hebrew, all the positions positively contribute to the
decision, while in English removingw2/−2 slightly
improves the results (note also that including only
featurew2/−2 performs worse than with no lexical
information in English).

3.7 The Real Role of Lexical Features

Model tampering (i.e., removing features after the
learning stage) is not the same as learning without
these features. This claim is verified empirically:
training on the English corpus without the lexical
features at position –2 yields worse results than with
them (93.73 vs. 93.79) – while removing thew−2

features via tampering on a model trained withw−2

yields better results (93.87). Similarly, for all cor-
pora, training using only the top 1,000 features (as
defined in the Top1000 tampering) results in loss of
about 2 in F-Score (ENG 92.02,HEBErr 90.30,
HEBGold 91.67), while tampering Top1000 yields
a result very close to the best obtained (93.56, 92.41
or 93.3F).

This observation leads us to an interesting conclu-
sion about the real role of lexical features in SVM
based chunking:rare events (features) are used to
memorize hard examples. Intuitively, by giving a
heavy weight to rare events, the classifier learns spe-
cific rules such as “if the word at position -2 is X and
the PoS at position 2 is Y, then the current word is
Inside a noun-phrase”. Most of these rules are acci-
dental – there is no real relation between the partic-
ular word-pos combination and the class of the cur-
rent word, it just happens to be this way in the train-
ing samples. Marking the rare occurrences helps the
learner achieve better generalization on the other,

more common cases, which are similar to the outlier
on most features, except the “irrelevant ones”. As
the events are rare, such rules usually have no effect
on chunking accuracy: they simply never occur in
the test data. This observation refines the common
conception that SVM chunking does not suffer from
irrelevant features: in chunking, SVM indeed gener-
alizes well for the common cases but also over-fits
the model on outliers.

Model tampering helps us design a model in two
ways: (1) it is a way to “open the black box” ob-
tained when training an SVM and to analyze the re-
spective importance of features. In our case, this
analysis allowed us to identify the importance of
punctuation and prepositions and improve the model
by defining more focused features (improving over-
all result by∼1.0 F-point). (2) The analysis also led
us to the conclusion that “feature selection” is com-
plex in the case of SVM – irrelevant features help
prevent over-generalization by forcing over-fitting
on outliers.

We have also confirmed that the model learned re-
mains robust in the presence of noise in the PoS tags
and relies on only few lexical features. This veri-
fication is critical in the context of languages with
few computational resources, as we expect the size
of corpora and the quality of taggers to keep lagging
behind that achieved in English.

4 Anchored Learning

We pursue the observation of how SVM deals
with outliers by developing theAnchored Learning
method. The idea behind Anchored Learning is to
add a unique featureai (ananchor) to each training
sample (we add as many new features to the model
as there are training samples). These new features
make our data linearly separable. The SVM learner
can then use these anchors (which will never occur
on the test data) to memorize the hard cases, de-
creasing this burden from “real” features.

We present two uses for Anchored Learning. The
first is the identification of hard cases and corpus er-
rors, and the second is a preliminary feature selec-
tion approach for SVM to improve chunking accu-
racy.

4.1 Mining for Errors and Hard Cases

Following the intuition that SVM gives more weight
to anchor features of hard-to-classify cases, we can

228

actively look for such cases by training an SVM
chunker on anchored data (as the anchored data is
guaranteed to be linearly separable, we can set a very
high value to theC parameter, preventing any mis-
classification), and then investigating either the an-
chors whose weights5 are above some thresholdt or
the topN heaviest anchors, and their corresponding
corpus locations.These locations are those that
the learner considers hard to classify. They can
be either corpus errors, or genuinely hard cases.

This method is similar to the corpus error detec-
tion method presented by Nakagawa and Matsumoto
(2002). They constructed an SVM model for PoS
tagging, and considered Support Vectors with high
α values to be indicative of suspicious corpus loca-
tions. These locations can be either outliers, or cor-
rectly labeled locations similar to an outlier. They
then looked for similar corpus locations with a dif-
ferent label, to point out right-wrong pairs with high
precision.

Using anchors improves their method in three as-
pects: (1) without anchors, similar examples are of-
ten indistinguishable to the SVM learner, and in case
they have conflicting labels both examples will be
given high weights. That is, both the regular case
and the hard case will be considered as hard exam-
ples. Moreover, similar corpus errors might result
in only one support vector that cover all the group of
similar errors. Anchors mitigate these effects, result-
ing in better precision and recall. (2) The more er-
rors there are in the corpus, the less linearly separa-
ble it is. Un-anchored learning on erroneous corpus
can take unreasonable amount of time. (3) Anchors
allow learning while removing some of the impor-
tant features but still allow the process to converge
in reasonable time. This lets us analyze which cases
become hard to learn if we don’t use certain features,
or in other words: what problematic cases are solved
by specific features.

The hard cases analysis achieved by anchored
learning is different from the usual error analysis
carried out on observed classification errors. The
traditional methods give us intuitions about where
the classifierfails to generalize, while the method
we present here gives us intuition about what the
classifier considers hard to learn, based on the
training examples alone.

5As each anchor appear in only one support vector, we can
treat the vector’sα value as the anchor weight

The intuition that “hard to learn” examples are
suspect corpus errors is not new, and appears also
in Abneyet al. (1999) , who consider the “heaviest”
samples in the final distribution of the AdaBoost al-
gorithm to be the hardest to classify and thus likely
corpus errors. While AdaBoost models are easy to
interpret, this is not the case with SVM. Anchored
learning allows us to extract the hard to learn cases
from an SVM model. Interestingly, while both Ad-
aBoost and SVM are ‘large margin’ based classi-
fiers, there is less than 50% overlap in the hard cases
for the two methods (in terms of mistakes on the test
data, there were 234 mistakes shared by AdaBoost
and SVM, 69 errors unique to SVM and 126 errors
unique to AdaBoost)6. Analyzing the difference in
what the two classifiers consider hard is interesting,
and we will address it in future work. In the current
work, we note that for finding corpus errors the two
methods are complementary.

Experiment 1 – Locating Hard Cases

A linear SVM model (Mfull) was trained on
the training subset of the anchored, punctuation-
normalized,HEBGold corpus, with the same fea-
tures as in the previous experiments, and aC value
of 9,999. Corpus locations corresponding to anchors
with weights>1 were inspected. There were about
120 such locations out of 4,500 sentences used in the
training set. Decreasing the thresholdt would result
in more cases. We analyzed these locations into 3
categories: corpus errors, cases that challenge the
SimpleNP definition, and cases where the chunking
decision is genuinely difficult to make in the absence
of global syntactic context or world knowledge.

Corpus Errors : The analysis revealed the fol-
lowing corpus errors: we identified 29 hard cases
related to conjunction and apposition (is the comma,
colon or slash inside an NP or separating two distinct
NPs). 14 of these hard cases were indeed mistakes
in the corpus. This was anticipated, as we distin-
guished appositions and conjunctive commas using
heuristics, since the Treebank marking of conjunc-
tions is somewhat inconsistent.

In order to build the Chunk NP corpus, the syn-
tactic trees of the Treebank were processed to derive
chunks according to the SimpleNP definition. The
hard cases analysis identified 18 instances where this

6These numbers are for pairwise Linear SVM and AdaBoost
classifiers trained on the same features.

229

transformation results in erroneous chunks. For ex-
ample, null elements result in improper chunks, such
as chunks containing only adverbs or only adjec-
tives.

We also found 3 invalid sentences, 6 inconsisten-
cies in the tagging of interrogatives with respect to
chunk boundaries, as well as 34 other specific mis-
takes. Overall, more than half of the locations iden-
tified by the anchors were corpus errors. Looking for
cases similar to the errors identified by anchors, we
found 99 more locations, 77 of which were errors.

Refining the SimpleNP Definition: The hard
cases analysis identified examples that challenge
the SimpleNP definition proposed in Goldberg
et al. (2006). The most notable cases are:
The ‘et’ marker: ‘et’ is a syntactic marker of defi-
nite direct objects in Hebrew. It was regarded as a
part of SimpleNPs in their definition. In some cases,
this forces the resulting SimpleNP to be too inclu-
sive:

והתקשורת] המשפט בית הכנסת הממשלה, [את
[‘et’ (the government, the parliament and the media)]

Because in the Treebank the conjunction depends on
‘et’ as a single constituent, it is fully embedded in
the chunk. Such a conjunction should not be consid-
ered simple.
Theשל preposition (‘of ’)marks generalized posses-
sion and was considered unambiguous and included
in SimpleNPs. We found cases where ’של‘ causes
PP attachment ambiguity:

[המשטרה] של [משמעת] ל הדין] בית [נשיא
[president-cons house-cons the-law] for [discipline] of [the

police] / The Police Disciplinary Court President

Because 2 prepositions are involved in this NP, ’של‘
(of) and ’ל‘ (for), the ’של‘ part cannot be attached
unambiguously to its head (‘court’). It is unclear
whether the ’ל‘ preposition should be given special
treatment to allow it to enter simple NPs in certain
contexts, or whether the inconsistent handling of
the ’של‘ that results from the ’ל‘ inter-position is
preferable.
Complex determiners and quantifiers: In many
cases, complex determiners in Hebrew are multi-
word expressions that include nouns. The inclusion
of such determiners inside the SimpleNPs is not
consistent.

Genuinely hard cases were also identified.
These include prepositions, conjunctions and multi-
word idioms (most of them are adjectives and prepo-
sitions which are made up of nouns and determin-

ers, e.g., as the wordunanimouslyis expressed in
Hebrew as the multi-word expression ‘one mouth’).
Also, someadverbialsandadjectivesare impossible
to distinguish using only local context.

The anchors analysis helped us improve the
chunking method on two accounts: (1) it identified
corpus errors with high precision; (2) it made us fo-
cus on hard cases that challenge the linguistic defi-
nition of chunks we have adopted. Following these
findings, we intend to refine the Hebrew SimpleNP
definition, and create a new version of the Hebrew
chunking corpus.

Experiment 2 – determining the role of
contextual lexical features

The intent of this experiment is to understand the
role of the contextual lexical features (wi, i 6= 0).
This is done by training 2 additional anchored lin-
ear SVM models,Mno−cont andMnear. These are
the same asMfull except for the lexical features
used during training.Mno−cont uses onlyw0, while
Mnear usesw0,w−1,w+1.

Anchors are again used to locate the hard exam-
ples for each classifier, and the differences are ex-
amined. The examples that are hard forMnear but
not for Mfull are those solved byw−2,w+2. Sim-
ilarly, the examples that are hard forMno−cont but
not forMnear are those solved byw−1,w+1. Table 4
indicates the number of hard cases identified by the
anchor method for each model. One way to inter-
pret these figures, is that the introduction of features
w−1,+1 solves 5 times more hard cases thanw−2,+2.

Model Number of hard
cases (t = 1)

Hard cases for
classifier B-I

Mfull 120 2
Mnear 320 (+ 200) 12
Mno−cont 1360 (+ 1040) 164

Table 4: Number of hard cases per model type.

Qualitative analysis of the hard cases solved by
the contextual lexical features shows that they con-
tribute mostly to the identification of chunk bound-
aries in cases of conjunction, apposition, attachment
of adverbs and adjectives, and some multi-word ex-
pressions.

The number of hard cases specific to the B-I clas-
sifier indicates how the features contribute to the de-
cision of splitting or continuing back-to-back NPs.
Back-to-back NPs amount to 6% of the NPs in
HEBGold and 8% of the NPs inENG. However,

230

while in English most of these cases are easily re-
solved, Hebrew phenomena such as null-equatives
and free word order make them harder. To quantify
the difference: 79% of the first words of the second
NP in English belong to one of the closed classes
POS, DT, WDT, PRP, WP – categories which mostly
cannot appear in the middle of base NPs. In con-
trast, in Hebrew, 59% are Nouns, Numbers or Proper
Names. Moreover, in English the ratio of unique first
words to number of adjacent NPs is 0.068, while in
Hebrew it is 0.47. That is, in Hebrew, almost every
second such NP starts with a different word.

These figures explain why surrounding lexical in-
formation is needed by the learner in order to clas-
sify such cases. They also suggest that this learning
is mostly superficial, that is, the learner just mem-
orizes some examples, but these will not generalize
well on test data. Indeed, the most common class of
errors reported in Goldberget al. , 2006 are of the
split/merge type. These are followed by conjunction
related errors, which suffer from the same problem.
Morphological features ofsmixutand agreement can
help to some extent, but this is still a limited solu-
tion. It seems that deciding the [NP][NP] case is
beyond the capabilities of chunking with local con-
text features alone, and more global features should
be sought.

4.2 Facilitating Better Learning

This section presents preliminary results using An-
chored Learning for better NP chunking. We present
a setting (English Base NP chunking) in which
selected features coupled together with anchored
learning show an improvement over previous results.

Section 3.6 hinted that SVM based chunking
might be hurt by using too many lexical features.
Specifically, the featuresw−2,w+2 were shown to
cause the chunker to overfit in English chunking.
Learning without these features, however, yields
lower results. This can be overcome by introduc-
ing anchors as a substitute. Anchors play the same
role as rare features when learning, while lowering
the chance of misleading the classifier on test data.

The results of the experiment using 5-fold cross
validation onENG indicate that the F-score im-
proves on average from 93.95 to 94.10 when using
anchors instead ofw±2 (+0.15), while just ignoring
thew±2 features drops the F-score by 0.10. The im-
provement is minor but consistent. Its implication

is that anchors can substitute for “irrelevant” lexical
features for better learning results. In future work,
we will experiment with better informed sets of lex-
ical features mixed with anchors.

5 Conclusion

We have introduced two novel methods to under-
stand the inner structure of SVM-learned models.
We have applied these techniques to Hebrew NP
chunking, and demonstrated that the learned model
is robust in the presence of noise in the PoS tags, and
relies on only a few lexical features. We have iden-
tified corpus errors, better understood the nature of
the task in Hebrew – and compared it quantitatively
to the task in English.

The methods provide general insight in the way
SVM classification works for chunking.

References
S. Abney, R. Schapire, and Y. Singer. 1999. Boosting

applied to tagging and PP attachment.EMNLP-1999.

M. Adler and M. Elhadad. 2006. An unsupervised
morpheme-based hmm for hebrew morphological dis-
ambiguation. InCOLING/ACL2006.

C. Cardie and D. Pierce. 1998. Error-driven pruning of
treebank grammars for base noun phrase identification.
In ACL-1998.

Y. Goldberg, M. Adler, and M. Elhadad. 2006. Noun
phrase chunking in hebrew: Influence of lexical and
morphological features. InCOLING/ACL2006.

T. Kudo and Y. Matsumoto. 2000. Use of support vector
learning for chunk identification. InCoNLL-2000.

T. Kudo and Y. Matsumoto. 2003. Fast methods for
kernel-based text analysis. InACL-2003.

M. Marcus and L. Ramshaw. 1995. Text Chunking Us-
ing Transformation-Based Learning. InProc. of the
3rd ACL Workshop on Very Large Corpora.

T. Nakagawa and Y. Matsumoto. 2002. Detecting er-
rors in corpora using support vector machines. In
COLING-2002.

Erik F. Tjong Kim Sang and S. Buchholz. 2000. Intro-
duction to the conll-2000 shared task: chunking. In
CoNLL-2000.

K. Sima’an, A. Itai, Y. Winter, A. Altman, and N. Nativ.
2001. Building a tree-bank of modern hebrew text.
Traitement Automatique des Langues, 42(2).

V. Vapnik. 1995. The nature of statistical learning the-
ory. Springer-Verlag New York, Inc.

231

