1

SVM Model Tampering and Anchored Learning: A Case Study in Hebrew

NP Chunking

Yoav Goldberg and Michael Elhadad

Computer Scie

nce Department

Ben Gurion University of the Negev
P.O.B 653 Be’er Sheva 84105, Israel
yoavg, el hadad@s. bgu. ac. i |

Abstract

We study the issue of porting a known NLP
method to a language with little existing NLP
resources, specifically Hebrew SVM-based
chunking. We introduce two SVM-based
methods — Model Tampering and Anchored
Learning. These allow fine grained analysis
of the learned SVM models, which provides
guidance to identify errors in the training cor-
pus, distinguish the role and interaction of
lexical features and eventually construct a
model with ~10% error reduction. The re-
sulting chunker is shown to be robust in the
presence of noise in the training corpus, relies
on less lexical features than was previously
understood and achieves an F-measure perfor-
mance of 92.2 on automatically PoS-tagged
text. The SVM analysis methods also provide
general insight on SVM-based chunking.

Introduction

While high-quality NLP corpora and tools are avalil

able in English, such resources are difficult to obtai

in most other languages. Three challenges must
met when adapting results established in English

another language: (1) acquiring high quality anno-
tated data; (2) adapting the English task definitioft
to the nature of a different language, and (3) adap

ing the algorithm to the new language. This pap

to Hebrew, but reported that SVM based chunking
(Kudo and Matsumoto, 2000) performs well. We
extend that work and study the problem from 3 an-
gles: (1) how to deal with a corpus that is smaller
and with a higher level of noise than is available in
English; we propose techniques that help identify
‘suspicious’ data points in the corpus, and identify
how robust the model is in the presence of noise;
(2) we compare the task definition in English and in
Hebrew through quantitative evaluation of the differ-
ences between the two languages by analyzing the
relative importance of features in the learned SVM
models; and (3) we analyze the structure of learned
SVM models to better understand the characteristics
of the chunking problem in Hebrew.

While most work on chunking with machine
learning techniques tend to treat the classification
engine as a black-box, we try to investigate the re-
sulting classification model in order to understand
its inner working, strengths and weaknesses. We in-
troduce two SVM-based methods — Model Tamper-
ing and Anchored Learning — and demonstrate how
a fine-grained analysis of SVM models provides in-

ights on all three accounts. The understanding of

e relative contribution of each feature in the model
&elps us construct a better model, which achieves
~10% error reduction in Hebrew chunking, as well
s identify corpus errors. The methods also provide
g_eneral insight on SVM-based chunking.

Previous Work

presents a case study in the adaptation of a well

known task to a language with few NLP resourcedlP chunking is the task of marking the bound-
available. Specifically, we deal with SVM based Hearies of simple noun-phrases in text. It is a well
brew NP chunking. In (Goldberg et al., 2006), westudied problem in English, and was the focus of
established that the task is not trivially transferabl€oNLL2000’s Shared Task (Sang and Buchholz,

224

Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 224-231,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics

2000). Early attempts at NP Chunking were ruleonsistencies and tagging errors. In addition, the
learning systems, such as the Error Driven Prundentification of SimpleNPs from the tree bank also
ing method of Pierce and Cardie (1998). Followintroduces some errors. Finally, we want to investi-
ing Ramshaw and Marcus (1995), the current donmgate chunking in a scenario where PoS tags are as-
inant approach is formulating chunking as a classigned automatically and chunks are then computed.
sification task, in which each word is classified aghe Hebrew PoS tagger we use introduces about 8%
the (B)eginning, (I)nside or (O)outside of a chunkerrors (compared with about 4% in English). We
Features for this classification usually involve locahre, therefore, interested in identifying errors in the
context features. Kudo and Matsumoto (2000) usechunking corpus, and investigating how the chunker
SVM as a classification engine and achieved an Bperates in the presence of noise in the PoS tag se-
Score of 93.79 on the shared task NPs. Since SViuence.

is a binary classifier, to use it for the 3-class classi-

fication of the chunking task, 3 different classifiers3 Model Tampering

{BIl, B/O, I/0} were trained and their majority vote
was taken. 3.1 Notation and Technical Review

NP chunks in the shared task data are BaseNPEhis section presents notation as well as a technical
which are non-recursive NPs, a definition first proreview of SVM chunking details relevant to the cur-
posed by Ramshaw and Marcus (1995). This definrent study. Further details can be found in Kudo and
tion yields good NP chunks for English. In (Gold-Matsumoto (2000; 2003).
berg et al., 2006) we argued that it is not applica- SVM (Vapnik, 1995) is a supervised binary clas-
ble to Hebrew, mainly because of the prevalencsifier. The input to the learner is a set bfrain-
of the Hebrew's construct statergizut). Smizut ing samples(xzy,v1),...,(z,y), * € R", y €
is similar to a noun-compound construct, but ong+41, —1}. x; is ann dimensional feature vec-
that can join a noun (with a special morphologitor representing théth sample, andy; is the la-
cal marking) with a full NP. It appears in aboutbel for that sample. The result of the learning pro-
40% of Hebrew NPs. We proposed an alternagess is the sefV of Support Vectors, the asso-
tive definition (termed SimpleNP) for Hebrew NPciated weightsy;, and a constant. The Support
chunks. A SimpleNP cannot contain embedded relfectors are a subset of the training vectors, and to-
atives, prepositions, VPs and NP-conjunctions (exgether with the weights anilthey define a hyper-
cept when they are licensed Bynizut). It can plane that optimally separates the training samples.
contain smizut, possessives (even when they arghe basic SVM formulation is of a linear classifier,
attached by thebv/ of * preposition) and partitives but by introducing a kernel functio® that non-
(and, therefore, allows for a limited amount of redinearly transforms the data froR™ into a higher
cursion). We applied this definition to the Hebrewdimensional space, SVM can be used to perform
Tree Bank (Sima’an et al., 2001), and constructeflon-linear classification. SVM'’s decision function
a moderate size corpus (about 5,000 sentences) fer y(x) = sgn (Zjesv yjo,; K (zj,2) + b) where
Hebrew SimpleNP chunking. SimpleNPs are differ;; s an dimensional feature vector to be classi-
ent than English BaseNPs, and indeed some meffleq. |n the linear casek is a dot product oper-
ods that work well for English performed poorly ation and the sumy — S yja x; is ann dimen-
on Hebrew data. However, we found that chunksjonal weight vector assigning weight for each of
ing with SVM provides good result for Hebrew Sim-the , features. The other kernel function we con-
pleNPs. We analyzed that this success comes fro§yer in this paper is a polynomial kernel of degree
SVM’s ability to use lexical features, as well as twoy. K(zi,x;) = (x; - x; + 1)%. When using binary
Hebrew morphological features, namely “numberya|yed features, this kernel function essentially im-
and “construct-state”. plies that the classifier considers not only the explic-

One of the main issues when dealing with Hebreutly specified features, but also all available pairs of
chunking is that the available tree bank is rathefeatures. In order to cope with inseparable data, the
small, and since it is quite new, and has not bedearning process of SVM allows for some misclas-
used intensively, it contains a certain amount of insification, the amount of which is determined by a

225

parametelC, which can be thought of as a penaltyon a given training corpus, tamper with the result-
for each misclassified training sample. ing model in various ways and measure the perfor-
In SVM based chunking, each word and its conmancé of the tampered models on a test corpus.
text is considered a learning sample. We refer tg i i
the word being classified as,, and to its part-of- >4 EXperimental Setting
speech (PoS) tag, morphology, and B/I/O tag@s We conducted experiments both for English and He-
mo andt, respectively. The information consid- brew chunking. For the Hebrew experiments, we use
ered for classification i®_cy . .. Wew, P—cp - - -Dep, the corpora of (Goldberg et al., 2006). The first one
M_em - - Mem @Ndt_q ... t_1. The feature vector is derived from the original Treebank by projecting
F is an indexed list of all the features present irthe full syntactic tree, constructed manually, onto a
the corpus. A featurd; of the formw,; = dog set of NP chunks according to the SimpleNP rules.
means that the word following the one being clasWe refer to the resulting corpus &5E B4 since
sified is ‘dog’. Every learning sample is repre-PoS tags are fully reliable. ThH EBp,, version
sented by am = |F| dimensional binary vector. of the corpus is obtained by projecting the chunk
x; = 1iff the featuref; is active in the given sample, boundaries on the sequence of PoS and morphology
and 0 otherwise. This encoding leads to extremeliags obtained by the automatic PoS tagger of Adler
high dimensional vectors, due to the lexical feature& Elhadad (2006). This corpus includes an error

Wy -+ - Wery- rate of about 8% on PoS tags. The first 500 sen-
. _ tences are used for testing, and the rest for training.
3.2 Introducing Model Tampering The corpus contains 27K NP chunks. For the En-

An important observation about SVM classifiers iglish experiments, we use the now-standard training
that features which are not active in any of the Supend test sets that were introduced in (Marcus and
port Vectors have no effect on the classifier deciRamshaw, 1995) Training was done using Kudo's
sion. We introduce Model Tampering, a procedurd AMCHA toolkit *. Both Hebrew and English mod-
in which we change the Support Vectors in a moded!s were trained using a polynomial kernel of de-
by forcing some values in the vectors to O. gree 2, withC' = 1. For English, the features used
The result of this procedure is a new Model ifVe€r&: w2 ... w2, p—g...ps,t5...1_1. The same
which the deleted features never take part in the clafgatures were used for Hebrew, with the addition of
sification. m_s ... mo. These are the same settings as in (Kudo
Model tampering is different than feature selec@"d Matsumoto, 2000; Goldberg et al., 2006).

tion: on the one hand, it is a method that helps ug g Tamperings

identify irrelevant features in a model after training'Wee perimented with the following tamperings
xperi wi Wi ings:

on the other hand, and this is the key insight, re G If h
moving featuresfter training is not the same as re- 10PN — We definemodel feature courto be the

moving them before training. The presence of thBUMPer of Support Vectors in which a feature is ac-

low-relevance features during training has an impa&V€ In @ given classifier. This tampering leaves in the

on the generalization performed by the learner 6{gnodel only the top N lexical features in each classi-
shown below fier, according to their count.

NoPOS- all the lexical features corresponding to
3.3 The Role of Lexical Features a given part-of-speech are removed from the model.

. For example, in a NoJJ tampering, all the features of
In Goldberget al. (2006), we have established tha he formw; = X are removed from all the support

Lo oKea fetres eases e ST Nectors iy 1)l e

bank. We refine this observation by using Mode| Loczi —all the lexical features with indexare
Lo Dy 9 removed from the moded.g, in a Loc#+2 tamper-

Tampering, in order to assess the importance of lex-

ical features in NP Chunking. We are interested in 'The performance metric we use is the standard Preci-

; . ; i ; ; ion/Recall/F measures, as computed by the conlleval program:

!dentlfymg which _SpeCIfIC_I(:_"XICal items an(_j C_O”teXt, ttp://lwww.cnts.ua.ac.be/conll2000/chunking/conlleval.txt

effect. Our method is to train a chunking model ®http://chasen.orgétaku/software/yamcha/

226

ing, features of the formv,» = X are removed). ’F\)'feF;OS ';E'gg g‘i% sfoigfn ';ngg g‘gBli
Loc=i —all the lexical features with an index othen pynct | 88.90 | 87.66 || Conjunction 92.31 | 91.67

than: are removed from the model. Adverb | 92.02 | 90.72 || Determiner| 92.55 | 91.39

3.6 Results and Discussion Table 2: Results of Hebrew NoPOS Tampering.

Highlights of the results are presented in Tables (1_Other scores arg 93.3(HERs), > 92.2(HEEg).

3). The numbers reported are F measures.
When removing lexical features of a specific

TopN | HEBgod | HEBg | ENG PoS, the most dramatic loss of F-score is reached
ALL 93.58 92.48 | 93.79 for Prepositions and Punctuation marks, followed
N=0 78.32 | 76.27 | 90.10 by Adverbs, and Conjunctions. Strikingly, lexi-
N=10 90.21 | 88.68 | 90.24 cal information for most open-class PoS (including
N=50 91.78 90.85 | 91.22 Proper Names and Nouns) has very little impact on
N=100 | 92.25 91.62 | 91.72 Hebrew chunking performance.

N=500 93.60 92.23 | 93.12 From this observation, one could conclude that
N=1000] 93.56 92.41 | 93.30 enriching a model based only on PoS with lexical

features for only a few closed-class PoS (prepo-
sitions and punctuation) could provide appropri-
The results of the TopN tamperings show that foate results even with a simpler learning method,
both languages, most of the lexical features are irrebne that cannot deal with a large number of fea-
evant for the classification — the numbers achievedires. We tested this hypothesis by training the
by using all the lexical features (about 30,000 in HeError-Driven Pruning (EDP) method of (Cardie and
brew and 75,000 in English) are very close to thosRierce, 1998) with an extended set of features. EDP
obtained using only a few lexical features. Thisyith PoS features only produced an F-result of 76.3
finding is very encouraging, and suggests that SVMn H EBg,,;. By adding lexical features only for
based chunking is robust to corpus variations. prepositiongn 2 n 5 v}, one conjunctior{} and
Another conclusion is that lexical features helgunctuation, the F-score dE B, indeed jumps
balance the fact that PoS tags can be noisy: we 85.4. However, when applied ditE Bg,,., EDP
know both H EBg,, and ENG include PoS tag- falls down again to 59.4. This striking disparity, by
ging errors (about 8% in Hebrew and 4% in Encomparison, lets us appreciate the resilience of the
glish). While in the case of “perfect” PoS taggingSVM model to PoS tagging errors, and its gener-
(H EBgoa), a very small amount of lexical featuresalization capability even with a reduced number of
is sufficient to reach the best F-result (500 out ofexical features.
30,264), in the presence of PoS errors, more than another implication of this data is that commas
the top 1000 lexical features are needed to reach thg guotation marks play a major role in deter-
result obtained with all lexical features. mining NP boundaries in Hebrew. In Goldberg
More striking is the fact that in Hebrew, the et a1, (2006), we noted the Hebrew Treebank is not
top 10 lexical features are responsible for an imgonsistent in its treatment of punctuation, and thus
provement of 12.4 in F-score. The words COVye evaluated the chunker only after performing nor-
ered by these 10 features are the followiart mgjization of chunk boundaries for punctuations.
of Sentence marker and comma, quote, e now hypothesize that, since commas and quo-
‘of /5v', *and/ v, "t he/ n"and ‘i n/ 2'. tation marks play such an important role in the clas-
This finding suggests that the Hebrew PoS tagsefication, performing such normalizatitreforethe
might not be informative enough for the chunkingaining stage might be beneficial. Indeed results on
task, especially where punctuatiénand preposi- the normalized corpus show improvement of about
tions are concerned. The results in Table 2 give fuk g in F score on bot#l EBg,, and HE Bgoa. A
ther support for this claim. 10-fold cross validation experiment on punctuation
" “Unlike the WSJ PoS tagset in which most punctuations gé?ormalizedHEBEW resulted in an F-Score of 92.2,
unique tags, our tagset treat punctuation marks as one groupimproving the results reported by (Goldberg et al.,
227

Table 1: Results of TopN Tampering.

2006) on the same setting (91.4). more common cases, which are similar to the outlier
on most features, except the “irrelevant ones”. As

Loc=I | HEBx | ENG [LocZl | HEBx | ENG
- 87618979 = o165 9387 the event; are rare, such rules_usually have no effect
1 76.96 | 90.90 1 91.86 | 93.03 on chunking accuracy: they simply never occur in
8 S;g-gg 3(2)-2; flJ ;g-gg gé-ég the test data. This observation refines the common
5 7655 | 90.06 5 9218 | 9365 _conceptlon that SVM chunk|_ng does npt suffer from
irrelevant features: in chunking, SVM indeed gener-
Table 3: Results of Loc Tamperings. alizes well for the common cases but also over-fits

. . the model on outliers.
We now turn to analyzing the importance of con- . . .
" Model tampering helps us design a model in two
text positions (Table 3). For both languages, the o . ,
. ! . .. Ways: (1) it is a way to “open the black box” ob-
most important lexical feature (by far) is at position

0, that is, the word currently being classified. FoFaIneOI when training an SVM and to analyze the re-

English, it is followed by positions 1 and -1, andspectlve importance of features. In our case, this

then positions 2 and -2. For Hebrew, back contexafnaIySIS .aIIowed us to_l_dentlfy the importance of
unctuation and prepositions and improve the model
seems to have more effect than front context. IE

Hebrew, all the positions positively contribute to the y defining more focu_sed features (|mprQV|ng over-
- L . : . all result by~1.0 F-point). (2) The analysis also led
decision, while in English removingy,,_, slightly

) : ; us to the conclusion that “feature selection” is com-
improves the results (note also that including on%lex in the case of SVM — irrelevant features help
featurew,,_, performs worse than with no lexical

information in English) prevent over-generalization by forcing over-fitting
9 ’ on outliers.
3.7 The Real Role of Lexical Features We have also confirmed that the model learned re-

Model tampering (i.e., removing features after th&hains r_obustmthe presence of noise in the I.DOS tqgs
nd relies on only few lexical features. This veri-

learning stage) is not the same as learning withm?t

these features. This claim is verified empirically:fg:ve\:tfonn:su‘f{gﬂgiglnrézguigg;exésoivfr;?(u2%tef’h\g'ts?ze
training on the English corpus without the lexical P ’ P

features at position —2 yields worse results than Witﬁf corpora and the quality of taggers to keep lagging

them (93.73 vs. 93.79) — while removing the o ehind that achieved in English.

fgatures via tampering on a mo<_jel_ trained with, 4 Anchored Learning

yields better results (93.87). Similarly, for all cor-

pora, training using only the top 1,000 features (a#/e pursue the observation of how SVM deals

defined in the Top1000 tampering) results in loss ofvith outliers by developing th&nchored Learning

about 2 in F-Score{NG 92.02, HEBg,, 90.30, method. The idea behind Anchored Learning is to

HFEBgyq 91.67), while tampering Top1000 yieldsadd a unique feature; (ananchoi to each training

a result very close to the best obtained (93.56, 92.4hmple (we add as many new features to the model

or 93.3F). as there are training samples). These new features
This observation leads us to an interesting conclumake our data linearly separable. The SVM learner

sion about the real role of lexical features in SVMcan then use these anchors (which will never occur

based chunkingrare events (features) are used to on the test data) to memorize the hard cases, de-

memorize hard examples Intuitively, by giving a creasing this burden from “real” features.

heavy weight to rare events, the classifier learns spe-We present two uses for Anchored Learning. The

cific rules such asif the word at position -2 is X and first is the identification of hard cases and corpus er-

the PoS at position 2 is Y, then the current word isors, and the second is a preliminary feature selec-

Inside a noun-phraseMost of these rules are acci- tion approach for SVM to improve chunking accu-

dental — there is no real relation between the particacy.

ular word-pos combination and the class of the cur- o

rent word, it just happens to be this way in the train4-1 Mining for Errors and Hard Cases

ing samples. Marking the rare occurrences helps th®llowing the intuition that SVM gives more weight

learner achieve better generalization on the othdn anchor features of hard-to-classify cases, we can

228

actively look for such cases by training an SVM The intuition that “hard to learn” examples are
chunker on anchored data (as the anchored datasisspect corpus errors is not new, and appears also
guaranteed to be linearly separable, we can set a vényAbney et al. (1999) , who consider the “heaviest”
high value to the” parameter, preventing any mis-samples in the final distribution of the AdaBoost al-
classification), and then investigating either the argorithm to be the hardest to classify and thus likely
chors whose weightsare above some threshaldr corpus errors. While AdaBoost models are easy to
the topV heaviest anchors, and their correspondingnterpret, this is not the case with SVM. Anchored
corpus locations.These locations are those that learning allows us to extract the hard to learn cases
the learner considers hard to classify They can from an SVM model. Interestingly, while both Ad-
be either corpus errors, or genuinely hard cases. aBoost and SVM are ‘large margin’ based classi-

This method is similar to the corpus error detecfiers, there is less than 50% overlap in the hard cases
tion method presented by Nakagawa and Matsumotor the two methods (in terms of mistakes on the test
(2002). They constructed an SVM model for PoSlata, there were 234 mistakes shared by AdaBoost
tagging, and considered Support Vectors with higand SVM, 69 errors unique to SVM and 126 errors
« values to be indicative of suspicious corpus locadnique to AdaBoost) Analyzing the difference in
tions. These locations can be either outliers, or cowhat the two classifiers consider hard is interesting,
rectly labeled locations similar to an outlier. Theyand we will address it in future work. In the current
then looked for similar corpus locations with a dif-work, we note that for finding corpus errors the two
ferent label, to point out right-wrong pairs with highmethods are complementary.
precision.))

Using anchors improves their method in three ad&=xPeriment 1 —Locating Hard Cases
pects: (1) without anchors, similar examples are of- A linear SVM model {(//;,;) was trained on
ten indistinguishable to the SVM learner, and in casthe training subset of the anchored, punctuation-
they have conflicting labels both examples will benormalized, 7 EBg,q corpus, with the same fea-
given high weights. That is, both the regular cas#ires as in the previous experiments, and galue
and the hard case will be considered as hard exa®f9,999. Corpus locations corresponding to anchors
ples. Moreover, similar corpus errors might resulwith weights>1 were inspected. There were about
in only one support vector that cover all the group of.20 such locations out of 4,500 sentences used in the
similar errors. Anchors mitigate these effects, resultraining set. Decreasing the thresholould result
ing in better precision and recall. (2) The more erth more cases. We analyzed these locations into 3
rors there are in the corpus, the less linearly separéategories: corpus errors, cases that challenge the
ble it is. Un-anchored learning on erroneous corpuSimpleNP definition, and cases where the chunking
can take unreasonable amount of time. (3) Ancho@gecision is genuinely difficult to make in the absence
allow learning while removing some of the impor-of global syntactic context or world knowledge.
tant features but still allow the process to converge Corpus Errors: The analysis revealed the fol-
in reasonable time. This lets us analyze which caséawing corpus errors: we identified 29 hard cases
become hard to learn if we don’t use certain featureselated to conjunction and apposition (is the comma,
or in other words: what problematic cases are solvetblon or slash inside an NP or separating two distinct
by specific features. NPs). 14 of these hard cases were indeed mistakes

The hard cases analysis achieved by anchoréul the corpus. This was anticipated, as we distin-
learning is different from the usual error analysiguished appositions and conjunctive commas using
carried out on observed classification errors. Thieuristics, since the Treebank marking of conjunc-
traditional methods give us intuitions about wherdions is somewhat inconsistent.
the classifieffails to generalize while the method In order to build the Chunk NP corpus, the syn-
we present here gives us intuition about what th&actic trees of the Treebank were processed to derive
classifier considers hard to learn based on the chunks according to the SimpleNP definition. The
training examples alone. hard cases analysis identified 18 instances where this

°As each anchor appear in only one support vector, we can ®These numbers are for pairwise Linear SVM and AdaBoost
treat the vector'sx value as the anchor weight classifiers trained on the same features.

229

transformation results in erroneous chunks. For exrs, e.g, as the wordunanimouslyis expressed in
ample, null elements result in improper chunks, sucHebrew as the multi-word expression ‘one mouth’).
as chunks containing only adverbs or only adjecAlso, someadverbialsandadjectivesare impossible
tives. to distinguish using only local context.

We also found 3 invalid sentences, 6 inconsisten- The anchors analysis helped us improve the
cies in the tagging of interrogatives with respect t@ehunking method on two accounts: (1) it identified
chunk boundaries, as well as 34 other specific migorpus errors with high precision; (2) it made us fo-
takes. Overall, more than half of the locations ideneus on hard cases that challenge the linguistic defi-
tified by the anchors were corpus errors. Looking fonition of chunks we have adopted. Following these
cases similar to the errors identified by anchors, windings, we intend to refine the Hebrew SimpleNP
found 99 more locations, 77 of which were errors. definition, and create a new version of the Hebrew

Refining the SimpleNP Definition The hard chunking corpus.
cases analysis identified examples that challen . -
the SimpleNP definition proposed in Goldberg%‘eXpe”mem 2 - determining the role of
et al.(2006). The most notable cases are: contextual lexical features
The ‘et marker: ‘et is a syntactic marker of defi- The intent of this exper?ment is to understand the
nite direct objects in Hebrew. It was regarded as Pl€ of the contextual lexical features(i # 0).

part of SimpleNPs in their definition. In some cases! Nis is done by training 2 additional anchored lin-
this forces the resulting SimpleNP to be too inclu®ar SYM modelsMy,—con: and Mo, These are

sive: the same as\iy,;; except for the lexical features
[NMWPNM VawnN A NN Mownnn nx] used during trainingM,,—cont USES ONlyw, while
[‘et’ (the government, the parliament and the media)] Meqr USESWH,W—_1,W41.-

Because in the Treebank the conjunction depends onAnchors are again used to locate the hard exam-
‘et as a single constituent, it is fully embedded inples for each classifier, and the differences are ex-
the chunk. Such a conjunction should not be considmined. The examples that are hard Adf,..,. but
ered simple. not for My,;; are those solved by_s,w 2. Sim-
Thebvw preposition (‘of)y marks generalized posses-ilarly, the examples that are hard f8¢,,,_..,: but
sion and was considered unambiguous and includeat for M,,.,, are those solved by_;,w,,. Table 4
in SimpleNPs. We found cases whebe' causes indicates the number of hard cases identified by the
PP attachment ambiguity: anchor method for each model. One way to inter-
[NvwNn] 5¢ [Nynwn] 5 [P0 12 Now)] pret these figures, is that the introduction of features

[president-cons house-cons the-law] for [discipline] of [the,, 141 solves 5 times more hard cases ﬂTl&ﬂz,+2-
police] / The Police Disciplinary Court President

Because 2 prepositions are involved in this N#®; * Model Number of hard [Hard cases for
(of) and &' (for), the v’ part cannot be attached - Casef'zl(oz 1) c|a55|2er Bl
unambiguously to its headapurt). It is unclear Ly 320 (+ 200) 12
whether the ¥’ preposition should be given special Mpo—cont | 1360 (+ 1040) 164

treatment to allow it to enter simple NPs in certain
contexts, or whether the inconsistent handling of
the v’ that results from theY inter-position is Qualitative analysis of the hard cases solved by
preferable. the contextual lexical features shows that they con-
Complex determiners and quantifiers In many tribute mostly to the identification of chunk bound-
cases, complex determiners in Hebrew are multaries in cases of conjunction, apposition, attachment
word expressions that include nouns. The inclusioaf adverbs and adjectives, and some multi-word ex-
of such determiners inside the SimpleNPs is nqgiressions.
consistent. The number of hard cases specific to the B-I clas-
Genuinely hard caseswere also identified. sifier indicates how the features contribute to the de-
These include prepositions, conjunctions and multeision of splitting or continuing back-to-back NPs.
word idioms (most of them are adjectives and prepd3ack-to-back NPs amount to 6% of the NPs in
sitions which are made up of nouns and determind £ B¢g.;q and 8% of the NPs ilENG. However,
230

Table 4: Number of hard cases per model type.

while in English most of these cases are easily ras that anchors can substitute for “irrelevant” lexical
solved, Hebrew phenomena such as null-equativésatures for better learning results. In future work,
and free word order make them harder. To quantifwe will experiment with better informed sets of lex-
the difference: 79% of the first words of the secondtal features mixed with anchors.
NP in English belong to one of the closed classe,
POS, DT, WDT, PRP, WP — categories which mostl
cannot appear in the middle of base NPs. In coAe have introduced two novel methods to under-
trast, in Hebrew, 59% are Nouns, Numbers or Propatand the inner structure of SVM-learned models.
Names. Moreover, in English the ratio of unique firsiWe have applied these techniques to Hebrew NP
words to number of adjacent NPs is 0.068, while ichunking, and demonstrated that the learned model
Hebrew it is 0.47. That is, in Hebrew, almost everyis robust in the presence of noise in the PoS tags, and
second such NP starts with a different word. relies on only a few lexical features. We have iden-
These figures explain why surrounding lexical intified corpus errors, better understood the nature of
formation is needed by the learner in order to claghe task in Hebrew — and compared it quantitatively
sify such cases. They also suggest that this learning the task in English.
is mostly superficial, that is, the learner just mem- The methods provide general insight in the way
orizes some examples, but these will not generaliZ8VM classification works for chunking.
well on test data. Indeed, the most common class of
errors reported in Goldbergt al., 2006 are of the References
splimerge type. These are followed by conjunctio’; apney, R. Schapire, and Y. Singer. 1999. Boosting
related errors, which suffer from the same problem. applied to tagging and PP attachmeBMNLP-1999
Morphological features aimixuiand agreement can M. Adler and M. Elhadad. 2006. An unsupervised

help to some extent, but this is still a limited solu- morpheme-based hmm for hebrew morphological dis-
tion. It seems that deciding the [NP][NP] case is ambiguation. I"COLING/ACL2006

bey(;nd the Calpabllltlesaof chun:<|rl':1)g Iv;nth local cr?n- 4 Cardie and D. Pierce. 1998. Error-driven pruning of
text features alone, and more global features should yeepank grammars for base noun phrase identification.

be sought. In ACL-1998

Y. Goldberg, M. Adler, and M. Elhadad. 2006. Noun
phrase chunking in hebrew: Influence of lexical and
This section presents preliminary results using An- morphological features. IBOLING/ACL2006
chored Learning for better NP chunking. We present kudo and Y. Matsumoto. 2000. Use of support vector
a setting (English Base NP chunking) in which learning for chunk identification. IEoNLL-2000
selec.ted featureg coupled together Wlt.h anChoreI[.j Kudo and Y. Matsumoto. 2003. Fast methods for
learning show an improvement over previous results. \arnel-based text analysis. ACL-2003
Section 3.6 hinted that SVM based chunkin%/l

might be hurt by using too many lexical features. ing Transformation-Based Learning. Rroc. of the

Specifically, the features)_s,w,o were shown to 3rd ACL Workshop on Very Large Corpora

cause the chunker to overfit in English chunking. .
Learning without these features, however, yieldd: Nakagawa and Y. Matsumoto. 2002. Detecting er-
rors in corpora using support vector machines. In

lower results. This can be overcome by introduc- COLING-2002
ing anchors as a substitute. Anchors play the same))
ik F. Tjong Kim Sang and S. Buchholz. 2000. Intro-

role as rare feat.ures vyhen Iearnlng_, while Iowerm& duction to the conll-2000 shared task: chunking. In
the chance of misleading the classifier on test data. - ni|-2000

The results of the experiment using 5-fold cross =~)])
validation on ENG indicate that the F-score im- K- Simaan, A. ltai, Y. Winter, A. Altman, and N. Natv.
f h . 2001. Building a tree-bank of modern hebrew text.
proves on average from 93.95 to _94..10 when using traitement Automatique des Langudg(2).
anchors instead a5 (+0.15), while just ignoring
thew., features drops the F-score by 0.10. The i
provement is minor but consistent. Its implication

231

Conclusion

4.2 Facilitating Better Learning

Marcus and L. Ramshaw. 1995. Text Chunking Us-

mV- Vapnik. 1995. The nature of statistical learning the-
ory. Springer-Verlag New York, Inc.

