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Abstract and Smith (2005)) and thus learn to favor parses with
shorter dependencies.
We examine the problem of choosing word In this paper we attempt to measure the extent to

order for a set of dependency trees so as which basic English word order chooses to minimize
to minimize total dependency length. We  dependency length, as compared to average depen-
present an algorithm for computing the op-  dency lengths under other possible grammars. We
timal layout of a single tree as well as a first present a linear-time algorithm for finding the
numerical method for optimizing a gram-  ordering of a single dependency tree with shortest
mar of orderings over a set of dependency total dependency length. Then, given that word or-
types. A grammar generated by minimizing  der must also be determined by grammatical rela-
dependency length in unordered trees from tjons, we turn to the problem of specifying a gram-
the Penn Treebank is found to agree surpris-  mar in terms of constraints over such relations. We
ingly well with English word order, suggest-  wish to find the set of ordering constraints on depen-
ing that dependency length minimizationhas  dency types that minimizes a corpus’s total depen-

influenced the evolution of English. dency length. Even assuming that dependency trees
) must be projective, this problem is NP-compléte,
1 Introduction but we find that numerical optimization techniques

\9_rk well in practice. We reorder unordered depen-

Dependency approaches to language assumethaté/ ; tracted f q h
ery word in a sentence is the dependent of one oth prcy trees extracted irom corpora and compare the

word (except for one word, which is the global hea(gesults to English in terms of both the resulting de-

of the sentence), so that the words of a sentence foﬁnder}cy_ler;gthdand thetstrlrlgs rt}hat arﬁ_ phrodduced.
an acyclic directed graph. An important principle of € optimized order constraints show a nigh degree

language, supported by a wide range of evidence, % similarity to English, suggesting that dependency

that there is preference for dependencies to be shoI _ngth minimization has influenced the word order

This has been offered as an explanation for numef-'0!¢€S of basic English grammar.

ous psycholinguistic phenomena, such as the greatgr The pependency Length Principle

processing difficulty of object relative clauses ver-

sus subject relative clauses (Gibson, 1998). Depehlis idea that dependency length minimization may
dency length minimization is also a factor in ambiQ€ @ general principle in language has been dis-
guity resolution: listeners prefer the interpretatiorfussed by many authors. One example concerns the

with shorter dependencies. Statistical parsers make ‘English has crossing (non-projective) dependencies, but

use of features that capture dependency length (etgy are believed to be very infrequent. McDonald et al. (2005)
port that even in Czech, commonly viewed as a hon-projective

an adjacency fe_ature in Collins (1999), more eXP”Cifanguage, fewer than 2% of dependencies violate the projectiv-
length features in McDonald et al. (2005) and Eisnéity constraint.
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well-known principle that languages tend to be pre- |
dominantly “head-first” (in which the head of each
dependency is on the left) or “head-last” (where itvg™ ! w4 ws wi we W W s
'S on the right). Fraz_ler (1985) _suggests that th'f—‘igure 1. Separating a dependency link into two
might serve the function of keeping heads and de-.
pendents close together. In a situation where eaa%eces ata subtree boundary.
word has exactly one dependent, it can be seen that
a “head-first” arrangement achieves minimal deperstrongly: While almost all phrasal dependents are
dency length, as each link has a length of one.  right-branching (prepositional phrases, objects of
We will call a head-first dependency ‘“right- prepositions and verbs, relative clauses, etc.), some
branching” and a head-last dependency “lefti-word categories are left-branching, notably deter-
branching”; a language in which most or all de-miners, noun modifiers, adverbs (sometimes), and
pendencies have the same branching direction isaatributive adjectives.
“same-branching” language. This linguistic evidence strongly suggests that
Another example of dependency length minifanguages have been shaped by principles of de-
mization concerns situations where a head has mLﬁendency length minimization. One might won-
tiple dependents. In such cases, dependency lengfr how close natural languages are to being op-
will be minimized if the shorter dependent is placedimal in this regard. To address this question, we
closer to the head. Hawkins (1994) has shown thaitract unordered dependency graphs from English
this principle is reflected in grammatical rules acrosand consider different algorithms, which we call De-
many languages. It is also reflected in situations gendency Linearization Algorithms (DLAs), for or-
choice; for example, in cases where a verb is foldering the words; our goal is to find the algorithm
lowed by a prepositional phrase and a direct objeghat is optimal with regard to dependency length
NP, the direct object NP will usually be placed firstminimization. We begin with an “unlabeled” DLA,
(closer to the verb) but if it is longer than the PP, ityhich simply minimizes dependency length without
is often placed second. requiring consistent ordering of syntactic relations.
While one might suppose that a “sameive then consider the more realistic case of a “la-
branching” language is optimal for dependencypeled” DLA, which is required to have syntactically
length minimization, this is not in fact the case. Ifconsistent ordering.
a word has several dependents, placing them all once we find the optimal DLA, two questions can
on the same side causes them to get in the way g asked. First, how close is dependency length in
each other, so that a more 'balanced” configuratiognglish to that of this optimal DLA? Secondly, how

— with some dependents on each side — has lowgjmilar is the optimal DLA to English in terms of the
total dependency length. It is particularly desirablgyctual rules that arise?

for one or more one-word dependent phrases to be

“opposite-branching” (in relation to the prevailing3 The Optimal Unlabeled DLA

branching direction of the language); opposite-

branching of a long phrase tends to cause a lorfginding linear arrangements of graphs that minimize

dependency from the head of the phrase to thHetal edge length is a classic problem, NP-complete

external head. for general graphs but with an(n!-%) algorithm for
Exactly this pattern has been observed by Drydrees (Chung, 1984). However, the traditional prob-

(1992) in natural languages. Dryer argues thatem description does not take into account the pro-

while most languages have a predominant branckectivity constraint of dependency grammar. This

ing direction, phrasal (multi-word) dependents tendonstraint simplifies the problem; in this section we

to adhere to this prevailing direction much moreshow that a simple linear-time algorithm is guaran-

consistently than one-word dependents, which fréeed to find an optimal result.

qguently branch opposite to the prevailing direction A natural strategy would be to apply dynamic pro-

of the language. English reflects this pattern quitgramming over the tree structure, observing that to-
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tal dependency length of a linearization can be brdse computed from the bottom up using just one dy-
ken into the sum of links below any nodein the namic programming state for each node in the tree.
tree, and the sum of links outside the node, by which We now go on to show that, in computing the or-
we mean all links not connected to dependents of tréering of thed; children of a given node, not ad};!
node. These two quantities interact only through thpossibilities need be considered. In fact, one can
position ofw relative to the rest of its descendantssimply order the children by adding them in increas-
meaning that we can use this position as our dying order of size, going from the head outwards,
namic programming state, compute the optimal layand alternating between adding to the left and right
out of each subtree given each position of the heagtiges of the constituent.

within the subtree, and combine subtrees bottom-up The first part of this proof is the observation that,
to compute the optimal linearization for the entireas we progress from the head outward, to either the
sentence. left or the right, the head’s child subtrees must be

This can be further improved by observing thaplaced in increasing order of size. If any two ad-

the total length of the outside links depends on th@cent children appear with the smaller one further
position of w only because it affects the length offrom the head, we can swap the positions of these
the link connectingy to its parent. All other outside two children, reducing the total dependency length
links either cross above all words under and de- of the tree. No links crossing over the two chil-
pend only on the total size af’s subtree, or are en- dren will change in length, and no links within ei-
tirely on one side ofv’s subtree. The link fromw to  ther child will change. Thus only the length of the
its parent is divided into two pieces, whose lengthBnks from the two children will change, and as the
add up to the total length of the link, by slicing thelink connecting the outside child now crosses over a
link where it crosses the boundary framis subtree shorter intermediate constituent, the total length will
to the rest of the sentence. In the example in Figdecrease.
ure 1, the dependency fromy to wg has total length ~ Next, we show that the two longest children must
five, and is divided in to two components of lengthappear on opposite sides of the head in the optimal
2.5 at the boundary ofi;'s subtree. The length of linearization. To see this, consider the case where
the piece ovew’s subtree depends an's position both child: (the longest child) and child— 1 (the
within that subtree, while the other piece does naecond longest child) appear on the same side of the
depend on the internal layout afs subtree. Thus head. From the previous result, we know that 1
the total dependency length for the entire senten@nd: must be the outermost children on their side.
can be divided into: If there are no children on the other side of the head,
the tree can be improved by moving eithiesr i —

1. the length of all links withinw’s subtree plus 1 to the other side. If there is a child on the other
the length of the first piece af’s link to its side of the head, it must be smaller than botnd
parent, i.e. the piece that is above descendants- 1, and the tree can be improved by swapping the
of w. position of the child from the other side and child

1 — 1.
2. the length of the remaining pieceofs link to Given that the two largest children are outermost
its parent plus the length of all links outside and on opposite sides of the head, we observe that
the sum of the two links connecting these children
where the second quantity can be optimized into the head does not depend on the arrangement of
dependently of the internal layout af’'s subtree. the firsti — 2 children. Any rearrangement that de-
While the link fromw to its parent may point either creases the length of the link to the left of the head
to the right or left, the optimal layout far’s subtree must increase the length of the link to the right of
given thatw attaches to its left must be the mirrorthe head by the same amount. Thus, the optimal lay-
image of the optimal layout given thatattaches to out of all children can be found by placing the two
its right. Thus, only one case need be consideretjrgest children outermost and on opposite sides, the
and the optimal layout for the entire sentence canext two largest children next outermost and on op-
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DLA | Length
Optimal | 33.7
Random | 76.1
Observed 47.9

Figure 2. Placing dependents on alternating sides

from inside outin order of increasing length. Table 1: Dependency lengths for unlabeled DLAs.

posite sides, and so on until only one or zero chil- . . .
) achievable given the unordered dependencies and
dren are left. If there are an odd number of children . )
. . . ... the length we would find given a random order-
the side of the final (smallest) child makes no differ - .
. ing, and are much closer to the minimum. This al-

ence, because the other children are evenly balance

on the two sides so the last child will have the :~7amrﬁt:"ady suggests tha? minimizing dependency Ier_lgth
.Nas been a factor in the development of English.

dependency-lengthening effect whichever side it |I§|owever the optimal “language” to which English
° Our pairwise approach implies that there ar's being compared has little connection to linguis-
P P P Sic reality. Essentially, this model represents a free

many optimal linearization!*/2) in fact, but one _ - )

. ) . : word-order language: Head-modifier relations are
simple and optimal approach is to alternate sides Btiented without regard to the grammatical relation
in Figure 2, putting the smallest child next to th 9 g

head, the next smallest next to the head on the o etween the two words. In fact, however, word order
' i English is relatively rigid, and a more realistic ex-

gszlfosé?]e’ the next outside the first on the first S'd%eriment would be to find the optimal algorithm that

So far we have not considered the piece of the IinLeflects consistent syntactic word order rules. We
P call this a “labeled” DLA, as opposed to the “unla-

from the head to its parent that is over the head’ "

: eled” DLA presented above.
subtree. The argument above can be generalized by
considering this I|n_k as a spec!al child, Ionger thary L abeled DLAS
the longest real child. By making the special child
the longest child, we will be guaranteed that it willln this section, we consider linearization algorithms
be placed on the outside, as is necessary for a projgbat assume fixed word order for a given grammat-
tive tree. As before, the special child and the longestal relation, but choose the order such as to mini-
real child must be placed outermost and on oppanize dependency length over a large number of sen-
site sides, the next two longest children immediatel{ences. We represent grammatical relations simply
within the first two, and so on. by using the syntactic categories of the highest con-

Using the algorithm from the previous section, itstituent headed by (maximal projection of) the two
is possible to efficiently compute the optimal dewords in the dependency relation. Due to sparse
pendency length from English sentences. We takdata concerns, we removed all function tags such as
sentences from the Wall Street Journal section afMP (temporal), LOC (locative), and CLR (closely
the Penn Treebank, extract the dependency trees uglated) from the treebank. We made an exception
ing the head-word rules of Collins (1999), considefor the SBJ (subject) tag, as we thought it important
them to be unordered dependency trees, and lite distinguish a verb’s subject and object for the pur-
earize them to minimize dependency length. Auposes of choosing word order. Looking at a head and
tomatically extracting dependencies from the Treeits set of dependents, the complete ordering of all de-
bank can lead to some errors, in particular withpendents can be modeled as a context-free grammar
complex compound nouns. Fortunately, compoundile over a nonterminal alphabet of maximal projec-
nouns tend to occur at the leaves of the tree, and thien categories. A fixed word-order language will
head rules are reliable for the vast majority of struchave only one rule for each set of nonterminals ap-
tures. pearing in the right-hand side.

Results in Table 1 show that observed depen- Searching over all such DLAs would be exponen-
dency lengths in English are between the minimurtially expensive, but a simple approximation of the
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Dep. len. / If we model a DLA as a set of context-free gram-
DLA % correct order mar rules over dependency types, specifying a fixed
random 76.1/40.5 ordering for any set of dependency types attaching
extracted from optimal 61.6/55.4 to a given head, the space of DLAs is enormous, and
weights from English 50.9/82.2 the problem of finding the optimal DLA is a diffi-
optimized weights 42.5/64.9 cult one. One way to break the problem down is

to model the DLA as a set of weights for each type
Table 2: Results for different methods of lineariz-of dependency relation. Under this model the word
ing unordered trees from section 0 of the Wall Streedrder is determined by placing all dependents of a
Journal corpus. Each result is given as average deord in order of increasing weight from left to right.
pendency length in words, followed by the percentThis reduces the number of parameters of the model
age of heads (with at least one dependent) having all T', if there areT dependency types, from”* if
dependents correctly ordered. a word may have up t& dependents. It also al-
lows us to naturally capture statements such as “a
optimal labeled DLA can found using the following noun phrase_conssts of a determiner, then (possi-
procedure: b_Iy) some adjectlve_s_, the head no”un, and then (pos-
sibly) some prepositional phrases”, by, for example,
1. Compute the optimal layout of all sentences ig€tting the weight for NP.DT to -2, NP-JJ to -
the corpus using the unlabeled DLA. 1, and N_I%PP to 1. We e}ssume the head_ltself
has a weight of zero, meaning negatively weighted
2. For each combination of a head type and a sépendents appear to the head's left, and positively
of child types, count the occurrences of eachveighted dependents to the head's right.
ordering. 411 A DLA Extracted from English
3. Take the most frequent ordering for each set as As a test of whether this model is adequate to
the order in the new DLA. represent English word order, we extracted weights
for the Wall Street Journal corpus, used them to re-
In the first step we used the alternating procedurgrder the same set of sentences, and tested how often
from the previous section, with a modification forwords with at least one dependent were assigned the
the fixed word-order scenario. In order to make:orrect order. We extracted the Weights by assign-
the order of a subtree independent of the directiomg, for each dependency relation in the corpus, an
in which it attaches to its parent, dependents weli@teger according to its position relative to the head,
placed in order of length on alternating sides of thej for the first dependent to the left, -2 for the sec-
head from the inside out, always Starting with th)nd to the |eft’ and so on. We averaged these num-
shortest dependent immediately to the left of thgers across all occurrences of each dependency type.
head. The dependency types consisted of the syntactic cat-
Results in Table 2 (first two lines) show that aegories of the maximal projections of the two words
DLA using rules extracted from the optimal layoutin the dependency relation.
matches English significantly better than a random Reconstructing the word order of each sentence
DLA, indicating that dependency length can be useflom this weighted DLA, we find that 82% of all
as a general principle to predict word order. words with at least one dependent have all depen-
. dents ordered correctly (third line of Table 2). This
4.1 AnOptimized L abeled DLA is significantly higher than the heuristic discussed in
While the DLA presented above is a good deal bethe previous section, and probably as good as can be
ter than random (in terms of minimizing dependencgxpected from such a simple model, particularly in
length), there is no reason to suppose that it is optiight of the fact that there is some choice in the word
mal. In this section we address the issue of findingrder for most sentences (among adjuncts for exam-
the optimal labeled DLA. ple) and that this model does not take the lengths of
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the individual constituents into account at all. Test Data
We now wish to find the set of weights that min- ~_Training Data| ~ WSJ Swhd
imize the dependency length of the corpus. While ~ WSJ 42.5/64.9 12.5/63.6
the size of the search space is still too large to search ~ Swhd 43.9/59.8 12.2/58.7
exhaustively, numerical optimization techniques can
be applied to find an approximate solution. Table 3: Domain effects on dependency length min-
imization: each result is formatted as in Table 2.

4.1.2 NP-Completeness

DI_TAh(fa problt:n} .Of fltntdlng the (t))ptln;um Vgefhﬁgas the dependency being optimized. We build a ta-
Iortase odmpu frees fﬁn eljl ownf;_) d? ble of interacting dependencies as a preprocessing
complete by reducing from the probiem otincing a tep on the data, and then when optimizing a weight,

glraphs m|rl1)||mum Ffe:zdbacl;sgrzc Sith one Of[ tthethzionsider the sequence of values between consecu-
classic problems of Karp ( )- € Input 1o &, interacting weights. When computing the total

Feedback Arc Set problem is a directed graph, fog d d | :
th at ht val
which we wish to find an ordering of vertices such orpus dependency Ihgth at a new weight vaue, we

that th llest ber of ed it f lat tcan further speed up computation by reordering only

aI. € sn{\_a s rlﬁm e(; ore gg_s poin |_ron*t1 ateThose sentences in which a dependency type is used,
earlier vertices In Ine ordering. "iven an instance y building an index of where dependency types oc-
this problem, we can create a set of dependency tre

Gr as another preprocessing step.
such that each feedback arc in the original grapﬁl ) o p. P g ) P
causes total dependency length to increase by one, NS Optimization process is not guaranteed to
if we identify each dependency type with a Verte)Ilnd the global maximum (for this reason we call

in the original problem, and choose weights for thdn€ ”resulting DLA “optimized” rather than “opti-
dependency types according to the vertex ofder. mal”). The procedure is guaranteed to converge sim-
ply from the fact that there are a finite number of

413 Local Search objective function values, and the objective function

Our search procedure is to optimize one weight arPUSt increase at each step at which weights are ad-

atime, holding all others fixed, and iterating througHUSted' _ L .

the set of weights to be set. The objective function e ran this optimization procedure on section 2
describing the total dependency length of the corpy§rough 21 of the Wall Street Journal portion of the
is piecewise constant, as the dependency length wiiENN Treebank, initializing all weights to random
not change until one weight crosses another, cay8YMbers between zero and one. This initialization
ing two dependents to reverse order, at which poidf@kes all phrases head-initial to begin with, and has
the total length will discontinuously jump. Non- the 'effect of imposing a dlr'ecjuon.al bias on the re-
differentiability implies that methods based on graSulting grammar. When optimization converges, we
dient ascent will not apply. This setting is reminis-CPt&in a set of weights which achieves an average
cent of the problem of optimizing feature weightsd€pendency length of 40.4 on the training data, and
for reranking of candidate machine translation out#2-5 on held-out data from section 0 (fourth line
puts, and we employ an optimization technique Sime_ Table 2). While the procedure is unsupervised
ilar to that used by Och (2003) for machine transWith respect to the English word order (other than
lation. Because the objective function only change€ head-initial bias), itis supervised with respect to
at points where one weight crosses another’s valug€Pendency length minimization; for this reason we
the set of segments of weight values with differentePortall subsequent results on held-out data. While
values of the objective function can be exhaustivel{2dom initializations lead to an initial average de-
enumerated. In fact, the only significant points ar@&ndency length varying from 60 to 73 with an aver-
the values of other weights for dependency type9€ Of 66 over ten runs, all runs were within5 of

which occur in the corpus attached to the same he &€ another upon convergence. When the order of
words’ dependents was compared to the real word

2\We omit details due to space. order on held-out data, we find that 64.9% of words
189



Training Sents| Dep. len. / % correct order Label Interpretation Weight
100 13.70/54.38 S—NP verb - object NP 0.037
500 12.81/57.75 S—NP-SBJ verb - subject NP -0.022
1000 12.59/58.01 S—PP verb - PP 0.193
5000 12.34/55.33 NP—DT object noun - determiner -0.070
10000 12.27/55.92 NP-SB3-DT subject noun - determiner  -0.052
50000 12.17/58.73 NP—PP obj noun - PP 0.625
NP-SB3-PP subj noun - PP 0.254
NP—SBAR obj noun - rel. clause 0.858
Table 4. Average dependency length and rule accu- \p_spj.sBAR qubject noun - rel. clause  -0.110
racy as a function of training data size, on Switch- NP—JJ obj noun - adjective 0.198
board data. NP-SB3-JJ subj noun - adjective -0.052

_ Table 5: Sample weights from optimized DLA. Neg-
with at least one dependent have the correct Order-atively weighted dependents appear to the left of

4.2 Domain Variation their head.

Written and spoken language differ significantly inyg1q_o,t test data slowly decreases with more data,
their structure, and one of the most striking d|ffer—the percentage of correctly ordered dependents is

ences is the much greater average sentence lengills'\yell-pehaved. It turns out that even 100 sen-
of formal written language. The Wall Street Journa{ences are enough to learmn a DLA that is nearly as

is not representative of typical language use. Larg,qq a5 one derived from a much larger dataset.
guage was not written until relatively recently in its

development, and the Wall Street Journal in particu4.4 Comparing the Optimized DLA to English

lar represents a formal style with much longer senpe haye seen that the optimized DLA matches En-
tences than are used in conversational speech. T&ﬁ‘sh text much better than a random DLA and that

change in the lengths of sentences and their cofj-5chieves only a slightly lower dependency length
stituents could make the optimized DLA in terms 0,5 gnglish. It is also of interest to compare the

dependency length very different for the two genresyytimized DLA to English in more detail. First
~ Inorder to test this effect, we performed experye examine the DLA's tendency towards “opposite-
iments using both the Wall Street Journal (W”ttenbranching 1-word phrases”. English reflects this

and Switchboard (conversational speech) portions %frinciple to a striking degree: on the WSJ test set,

the Penn Treebank, and compared results with difrg 4 percent of left-branching phrases are 1-word,

ferent training and test data. For Switchboard, Weompared to only 19.4 percent of right-branching
used the first 50,000 sentences of sections 2 and 3[5”1*?'rases. The optimized DLA also reflects this pat-
the training data, and all of section 4 as the test datgp, though somewhat less strongly: 75.5 percent of
We find relatively little difference in dependency|eft_branchmg phrases are 1-word, versus 36.7 per-
length as we vary training data between written angent of right-branching phrases.
spoken English, as shown in Table 3. For the ac- \\e can also compare the optimized DLA to En-
curacy of the resulting word order, however, traing|ish with regard to specific rules. As explained ear-
ing on Wall Street Journal outperforms Switchboargier, the optimal DLAS rules are expressed in the
even when testing on Switchboard, perhaps becaugm of weights assigned to each relation, with pos-
the longer sentences in WSJ provide more informative weights indicating right-branching placement.
tion for the optimization procedure to work with.  Taple 5 shows some important rules. The middle
column shows the syntactic situation in which the
relation normally occurs. We see, first of all, that
How many sentences are necessary to learn a gooldject NPs are to the right of the verb and subject
set of dependency weights? Table 4 shows resuldPs are to the left, just like in English. PPs are also
for Switchboard as we increase the number of serthe right of verbs; the fact that the weight is greater
tences provided as input to the weight optimizatiothan for NPs indicates that they are placed further to
procedure. While the average dependency length ahe right, as they normally are in English. Turning
190
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to the internal structure of noun phrases, we see thfie-grained choices than English. For example, the
determiners are to the left of both object and subsptimized DLA treats NP and NP-SBJ as different;
ject nouns; PPs are to the right of both object anthis allows it to have different syntactic rules for the
subject nouns. We also find some differences wittwo cases — a possibility that it sometimes exploits,
English, however. Clause modifiers of nouns (thesas seen above. No doubt this partly explains why the
are mostly relative clauses) are to the right of objeaiptimized DLA achieves lower dependency length
nouns, as in English, but to the left of subject nounghan English.

adjectives are to the left of subject nouns, as in En; .
glish, but to the right of object nouns. Of courseACknOWIeOIgmentS This work was supported by
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