
Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pages 977–982,
Sydney, July 2006.c©2006 Association for Computational Linguistics

 

An HMM-Based Approach to Automatic Phrasing for Mandarin Text-
to-Speech Synthesis 

 
Jing Zhu 

Department of Electronic Engineering 
Shanghai Jiao Tong University 
zhujing@sjtu.edu.cn 

Jian-Hua Li 
Department of Electronic Engineering 

Shanghai Jiao Tong University 
lijh888@sjtu.edu.cn 

 

 

Abstract 

Automatic phrasing is essential to Mandarin text-
to-speech synthesis. We select word format as 
target linguistic feature and propose an HMM-
based approach to this issue. Then we define four 
states of prosodic positions for each word when 
employing a discrete hidden Markov model.  The 
approach achieves high accuracy of roughly 82%, 
which is very close to that from manual labeling.  
Our experimental results also demonstrate that 
this approach has advantages over those part-of-
speech-based ones. 
 
  
1    Introduction 

Owing to the limitation of vital capacity and 
contextual information, breaks or pauses are 
always an important ingredient of human speech. 
They play a great role in signaling structural 
boundaries. Similarly, in the area of text-to-
speech (TTS) synthesis, assigning breaks is very 
crucial to naturalness and intelligibility, 
particularly in long sentences.   

The challenge in achieving naturalness mainly 
results from prosody generation in TTS synthesis. 
Generally speaking, prosody deals with phrasing, 
loudness, duration and speech intonation. Among 
these prosodic features, phrasing divides 
utterances into meaningful chunks of information, 
called hierarchic breaks. However, there is no 
unique solution to prosodic phrasing in most 
cases. Different solution in phrasing can result in 
different meaning that a listener could perceive. 
Considering its importance, recent TTS research 
has focused on automatic prediction of prosodic 
phrase based on the part-of-speech (POS) feature 
or syntactic structure(Black and Taylor, 1994; 
Klatt, 1987; Wightman, 1992; Hirschberg 1996; 
Wang,  1995; Taylor and Black, 1998).  

To our understanding, POS is a grammar-
based structure that can be extracted from text. 
There is no explicit relationship between POS 
and the prosodic structure. At least, in Mandarin 
speech synthesis, we cannot derive the prosodic 
structure from POS sequence directly. By 
contrast, a word carries rich information related 
to phonetic feature. For example, in Mandarin, a 
word can reveal many phonetic features such as 
pronunciation, syllable number, stress pattern, 
tone, light tone (if available) and retroflexion (if 
available) etc.  So we begin to explore the role of 
word in predicting prosodic phrase and propose a 
word-based statistical method for prosodic-
phrase grouping. This method chooses Hidden 
Markov Model (HMM) as the training and 
predicting model.  

 
2    Related Work 

Automatic prediction of prosodic phrase is a 
complex task. There are two reasons for this 
conclusion. One is that there is no explicit 
relationship between text and phonetic features. 
The other lies in the ambiguity of word 
segmentation, POS tagging and parsing in the 
Chinese natural language processing. As a result, 
the input information for the prediction of 
prosodic phrase is quite “noisy” . We can find 
that most of published methods, including (Chen 
et al., 1996; Chen et al., 2000; Chou et al., 1996; 
Chou et al., 1997; Gu et al., 2000; Hu et al., 2000; 
Lv et al., 2001; Qian et al., 2001; Ying and Shi, 
2001) do not make use of high-level syntactic 
features due to two reasons. Firstly, it is very 
challenging to parse Chinese sentence because 
no grammar is formal enough to be applied to 
Chinese parsing. In addition, lack of 
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morphologies also causes many problems in 
parsing.  Secondly, the syntactic structure is not 
isomorphic to the prosodic phrase structure. 
Prosodic phrasing remains an open task in the 
Chinese speech generation. In summary, all the 
known methods depend on POS features more or 
less.   
 
3    Word-based Prediction  

As noted previously, the prosodic phrasing is 
associated with words to some extent in 
Mandarin TTS synthesis. We observe that some 
function words (such as “

�
” ) never occur in 

phrase-initial position. Some prepositions seldom 
act as phrase-finals. These observations lead to 
investigating the role of words in prediction of 
prosodic phrase. In addition, large-scale training 
data is readily available, which enables us to 
apply data-driven models more conveniently 
than before. 
 
3.1    The Model 

The sentence length in real text can vary 
significantly.  A model with a fixed-dimension 
input does not fit the issue in prosodic breaking. 
Alternatively, the breaking prediction can be 
converted into an optimization problem that 
allows us to adopt the hidden Markov model 
(HMM). 

 An HMM for discrete symbol observations is 
characterized by the following: 
   - the state set Q ={qi}, where  1≤ i ≤ N, N  is the 
number of states  
   - the number of distinct observation symbol per 
state M 

-the state-transition probability distribution  
A={aij}, where 

                             aij=P[qt+1=j|qt=i] ,  1≤ i,j ≤  
N   
-the observation symbol probability 
distribution B={bj(k)}, where 
                             ]|[)( jqvoPkb tktj === ,  

1≤ i,j ≤  N   
   - the initial state distribution π={ πi} , where πi 

=P[ot=vk|qt=j]  , 1≤ i,j ≤  M . 

   The complete parameter set of the model is 
denoted as a compact notation λ=(A,B,π). 

Here, we define our prosodic positions for a 
word to apply the HMM as follows. 

 

0  phrase-initial  
1  phrase-medial 
2  phrase-final 
3  separate 

This means that Q can be represented as 
Q={0,1,2,3}, corresponding to the four prosodic 
positions.  The word itself is defined as a discrete 
symbol observation. 

 
3.2    The Corpus 

The text corpus is divided into two parts. One 
serves as training data. This part contains 17,535 
sentences, among which, 9,535 sentences have 
corresponding utterances.    The other is a test set, 
which includes 1,174 sentences selected from the 
Chinese People’s Daily.  The sentence length, 
namely the number of words in a sentence varies 
from 1 to 30. The distribution of word length, 
phrase length and sentence length(all in character 
number) is shown in Figure 1. 
 

 
  

 

In a real text, there may exist words that are 
difficult to enumerate in the system lexicon, 
called “non-standard”  words (NSW). Examples 
of NSW are proper names, digit strings, 
derivative words by adding prefix or suffix.  

Proper names include person name, place name, 
institution name and abbreviations, etc. 
Alternatively, some characters are usually 
viewed as prefix and suffix in Chinese text. For 
instance, the character �  (pseudo-) always 
serves as a prefix, while another character �  (-
like) serves as a suffix. There are 130 analogous 
Chinese characters have been collected roundly. 
A word segmentation module is designed to 
identify these non-standard words.  
 
3.3    Parameter estimation 

Parameter estimation of the model can be treated 
as an optimization problem. The parametric 
methods will be optimal if distribution derived 
from the training data is in the class of 
distributions being considered.  But there is no 

Figure 1.   Statistical results from the corpus 

Word length Phrase length Sentence length 
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known way so far for maximizing the probability 
of the observation sequence in a closed form. In 
the present approach, a straightforward, 
reasonable yet, method to re-estimate parameters 
of the HMM is applied. Firstly, statistics for the 
occurring times of word, prosodic position, 
prosodic-position pair are conducted. Secondly, 
the simple ratio of occurring times is used to 
calculate the probability distribution. The 
following expressions are used to implement 
calculations, 

  
State probability distribution 

  
,        Ni ≤≤1  

 
 

          Fi is the occurring times of state qi 

the state-transition probability 
distribution }{ jiaA = ,   

    
i

ij
ij F

F
a ≈  , Nji ≤≤ ,1 , Fij is the occurring 

times of state pair (qi,qj). 
 

Observation probability distribution   
)}({ kbB j=  ,   
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k
j qP

vojqF
kb

==∝
    

where � =====
t

ktk vojqFvojqF ),(),(  

is the concurring times of state qj and observation 
vk.        

  With respect to the proper names, all the person 
names are dealt with identically. This is based on 
an assumption that the proper names of 
individual category have the same usage. 
 
3.4    Parameter adjustment 

Note that the training corpus is discrete, finite set. 
The parameter set resulting from the limited 
samples cannot converge to the “ true” values 
with probability. In particular, some words may 
not be included in the corpus. In this case, the 
above expressions for training may result in zero 
valued observation-probability. This, of course, 
is unexpected. The parameters should be adjusted 
after the automatic model training. The way is to 
use a sufficiently small positive constant ε to 

represent the zero valued observation-
probabilities.  
 
3.5    The search procedure 

In this stage, an optimal state sequence that 
explains the given observations by the model is 
searched. That is to say, for the input sentence, 
an optimal prosodic-position sequence is 
predicted with the HHM. Instead of using the 
popular Viterbi algorithm, which is 
asymptotically optimal, we apply the Forward-
Backward procedure to conduct searching.   
 
Backward and forward search 

All the definitions described in (Rabiner, 1999) 
are followed in the present approach. 

The forward procedure  
 forward variable: )|,()( 21 λα iqoooPi ttt == �  

     initialization: N.i1         ),()( 11 ≤≤= obi iiπα       
     induction:   

Nj1    1,-Tt1      ),()()( 1

1
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�

�

�
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      termination: �
=
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N
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T iOP
1

)()|( αλ                  

where T is the number of observations. 
     

The backward procedure 
backward variable:  

),|()( 21 λβ iqoooPi tTttt == ++ �  
       initialization Ni1     ,1)( ≤≤=iTβ  
       induction: 

Ni1    1, 2,-T 1,-T     t)()()( 1

1

1 ≤≤== +
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The “ optimal”  state sequence 

        posteriori probability variable: )(itγ , this is 
the probability of being in state i at time t given 
the observation sequence O and the model λ. It 
can be expressed as follows:    
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Here comes a question. It is, whether the 
optimal state sequence means the optimal 
path. 
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Search based on dynamic programming 

The preceding search procedure targets the 
optimal state sequence satisfying one criterion.  
But it does not reflect the probability of 
occurrence of sequences of states. This issue is 
explored based on a dynamic programming (DP) 
like approach, as described below.  

For convenience, we illustrate the problem as 
shown in Figure 2. 
 

 
 
                            
 
 

  From Figure 2, it can be seen that the transition 
from state i to state j only occurs in the two 
consecutive stages, namely time synchronous. 
Totally, there are T stages, TN 2  arcs.  Therefore, 
the optimal-path issue is a multi-stage 
optimization problem, which is similar to the DP 
problem. The slight difference lies in that a node 
in the conventional DP problem does not contain 
any additional attribute, while a node in HMM 
carries the attribute of observation probability 
distribution.  Considering this difference, we 
modify the conventional DP approach in the 
following way.  

   In the trellis above, we add a virtual node 
(state), where the start node qs corresponding to 
time 0 before time 1.   All the transitions from qs 
to nodes in the first stage (time 1) equal to 1/N. 
Furthermore, all the observation probability 
distributions equal to 1/M.  Denoting the optimal 
path from qs to the node qi of time t as path(t,i), 
path(t,i) is a set of sequential states. Accordingly, 
we denote the score of path(t,i) as s(t,i). Then, 
s(t,i) is associated with the state-transition 
probability distribution and  observation 
probability distribution.  We describe the 
induction process as follows. 
 
 
 

initialization: 

                       Ni1      ,
1

),0( ≤≤
×

=
NM

is  

                      } .{),0( sqipath =  
 
induction: 
                    given 

   Tt1  ],)(),1([max),(   ,
1
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≤≤

ijti
Ni
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≤≤
,  then 

path(t,j)=path(t-1,k) ∪ { k} . 
                  

 
termination: 
                     at time ),(maxarg    ,

1
iTskT

Ni ≤≤
= . 

                     then path(T,k) - { qs}  is the 
optimal path. 
 

  Basically, the main idea of our approach lies in 
that if the final optimal path passes a node j at 
time t, it passes all the nodes in path(t,j) 
sequentially.  This idea is similar to the forward 
procedure of DP.  We can begin with the 
termination T and derive an alternative approach. 
As for time complexity, the above trellis can be 
viewed as a special DAG. The state transition 
from time t to time t+1 requires 2N2 calculations, 
resulting in the time complexity O(TN 2). 
  Intuitively, the optimal path differs from the 
optimal state sequence generated by the 
Forward-Backward procedure. The underlying 
idea of Forward-Backward procedure is that the 
target state sequence can explain the 
observations optimally.  To support our claim, 
we can give a simple example (T=2, N=2,π 
=[0.5,0.5] T ) as follows: 

 0.18 

0.0 

0.82 

1.0 

0.2 

0.8 

0.1 

0.9 

1                            2                                                         

1 
 
 
 
2 

 
 

   

 Apparently, the optimal state sequence is (1,1), 
while the optimal path is { 1,2} .   
 
4    Experimental Results 

Before reporting the experimental results, we 
first define the criterion of evaluation and the 
related issues.  

Figure 2.   Illustration of search procedure in trellis  
(quoted from [Rabiner, 1999]) 

 

Figure 3.   Optimal state sequence vs. optimal path 
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4.1    The evaluation method 

After analyzing the existing evaluation methods, 
we feel that the method proposed in (Taylor and 
Black, 1998) is appropriate for our application. 
By employing this method, we can examine each 
word pair in the test set. If the algorithm 
generated break fully matches the manually 
labeled break, it marks correct. Similarly, if there 
is no labeled break and the algorithm does not 
place a break, it also marks correct. Otherwise, 
an error arises.  To emphasize the effectiveness 
of break prediction, we define the adjusted score, 
Sa, as follows. 

B

BS
Sa −

−=
1

 

  where   
          S is the ratio of the number of correct word 
pairs to the total number of word pairs; 
          B is the ratio of non-breaks to the number 
of word-pairs.     
 
4.2    The test corpora 

From the perspective of perception, multiple 
predictions of prosodic phrasing may be 
acceptable in many cases. At the labeling stage, 
three experts (E1, E2, E3) were requested to 
label 1,174 sentences independently.  Experts 
first read the sentences silently. Then, they 
marked the breaks in sentences independently. 
Table 1 and 2 show their labeling differences in 
terms of S and Sa, respectively. 
 
 
 
 
 
 
 
 
 

 

Table 1 indicates that any two can achieve a 
consistency of roughly 87% among three experts.     
 
4.3    The results 

To evaluate the approaches mentioned above, we 
conducted a series of experiments.  In all our 
experiments, we assume that no breaking is 
necessary for those sentences that are shorter 
than the average phrase length and remove them 
in the statistic computation. For the approaches 

based on HMM path, we further define that the 
initial and final words of a sentence can only 
assume two state values, namely, (phrase initial, 
separate) and (phrase final, separate), 
respectively.  With this definition, we modify the 
approach HMM-Path to HMM-Path-I.  
Alternatively, to investigate acceptance, we also 
calculate the matching score between the 
approaches and any expert (We assume the 
prediction is acceptable if the predicted phrase 
sequence matches any of three phrase sequences 
labeled by the experts). By employing the 
preceding criterion, we achieve the results as 
shown in Table 3 and 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   A sentence consumes less than 0.3 ms on 
average for all the evaluated methods. So they 
are all computationally efficient.  Alternatively, 
we compared the HMM-based approach base on 
word format and some POS-based ones on the 
same training set and test set. Overall,  HMM-
path-I can achieve high accuracy by about 10%. 
 
5    Conclusions/Discussions 

We described an approach to automatic prosodic 
phrasing for Mandarin TTS synthesis based on 
word format and HMM and its variants. We also 
evaluated these methods through experiments 
and demonstrated promising results. According 
to the experimental results, we can conclude that 
word-based prediction is an effective approach 
and has advantages over the POS-based ones. It 
confirms that the syllable number of a word has 
substantial impact on prosodic phrasing.  
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