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Abstract 

Spoken Language Understanding (SLU) 
addresses the problem of extracting semantic 
meaning conveyed in an utterance. The 
traditional knowledge-based approach to this 
problem is very expensive -- it requires joint 
expertise in natural language processing and 
speech recognition, and best practices in 
language engineering for every new domain. 
On the other hand, a statistical learning 
approach needs a large amount of annotated 
data for model training, which is seldom 
available in practical applications outside of 
large research labs. A generative HMM/CFG 
composite model, which integrates easy-to-
obtain domain knowledge into a data-driven 
statistical learning framework, has previously 
been introduced to reduce data requirement. 
The major contribution of this paper is the 
investigation of integrating prior knowledge 
and statistical learning in a conditional model 
framework. We also study and compare  
conditional random fields (CRFs) with 
perceptron learning for SLU. Experimental 
results show that the conditional models 
achieve more than 20% relative reduction in 
slot error rate over the HMM/CFG model, 
which had already achieved an SLU accuracy 
at the same level as the best results reported 
on the ATIS data. 

1 Introduction 

Spoken Language Understanding (SLU) 
addresses the problem of extracting meaning 
conveyed in an utterance. Traditionally, the 
problem is solved with a knowledge-based 
approach, which requires joint expertise in 
natural language processing and speech 
recognition, and best practices in language 
engineering for every new domain. In the past 
decade many statistical learning approaches have 
been proposed, most of which exploit generative 
models, as surveyed in (Wang, Deng et al., 
2005). While the data-driven approach addresses 

the difficulties in knowledge engineering, it 
requires a large amount of labeled data for model 
training, which is seldom available in practical 
applications outside of large research labs. To 
alleviate the problem, a generative HMM/CFG 
composite model has previously been introduced 
(Wang, Deng et al., 2005). It integrates a 
knowledge-based approach into a statistical 
learning framework, utilizing prior knowledge to 
compensate for the dearth of training data. In the 
ATIS evaluation (Price, 1990), this model 
achieves the same level of understanding 
accuracy (5.3% error rate on standard ATIS 
evaluation) as the best system (5.5% error rate), 
which is a semantic parsing system based on a 
manually developed grammar. 

Discriminative training has been widely used 
for acoustic modeling in speech recognition 
(Bahl, Brown et al., 1986; Juang, Chou et al., 
1997; Povey and Woodland, 2002). Most of the 
methods use the same generative model 
framework, exploit the same features, and apply 
discriminative training for parameter 
optimization. Along the same lines, we have 
recently exploited conditional models by directly 
porting the HMM/CFG model to Hidden 
Conditional Random Fields (HCRFs) 
(Gunawardana, Mahajan et al., 2005), but failed 
to obtain any improvement. This is mainly due to 
the vast parameter space, with the parameters 
settling at local optima. We then simplified the 
original model structure by removing the hidden 
variables, and introduced a number of important 
overlapping and non-homogeneous features. The 
resulting Conditional Random Fields (CRFs) 
(Lafferty, McCallum et al., 2001) yielded a 21% 
relative improvement in SLU accuracy. We also 
applied a much simpler perceptron learning 
algorithm on the conditional model and observed 
improved SLU accuracy as well.  

In this paper, we will first introduce the 
generative HMM/CFG composite model, then 
discuss the problem of directly porting the model 
to HCRFs, and finally introduce the CRFs and 
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the features that obtain the best SLU result on 
ATIS test data. We compare the CRF and 
perceptron training performances on the task. 

2 Generative Models 

The HMM/CFG composite model (Wang, Deng 
et al., 2005) adopts a pattern recognition 
approach to SLU. Given a word sequence W , an 
SLU component needs to find the semantic 
representation of the meaning M  that has the 
maximum a posteriori probability ( )Pr |M W :   

 
( )

( ) ( )

ˆ arg max Pr |

arg max Pr | Pr
M

M

M M W

W M M

=

= ⋅
 

The composite model integrates domain 
knowledge by setting the topology of the prior 
model, ( )Pr ,M according to the domain 
semantics; and by using PCFG rules as part of 
the lexicalization model ( )Pr |W M . 

The domain semantics define an application’s 
semantic structure with semantic frames. 
Figure 1 shows a simplified example of three 
semantic frames in the ATIS domain. The two 
frames with the “toplevel” attribute are also 
known as commands. The “filler” attribute of a 
slot specifies the semantic object that can fill it. 
Each slot may be associated with a CFG rule, 
and the filler semantic object must be 
instantiated by a word string that is covered by 
that rule. For example, the string “Seattle” is 
covered by the “City” rule in a CFG. It can 
therefore fill the ACity (ArrivalCity) or the 
DCity (DepartureCity) slot, and instantiate a 
Flight frame.  This frame can then fill the Flight 
slot of a ShowFlight frame. Figure 2 shows a 
semantic representation according to these 
frames.   
 
< frame name=“ShowFlight” toplevel=“1”>   
        <slot name=“Flight” filler=“Flight”/>   
< /frame>   
< frame name=“GroundTrans” toplevel=“1”>   
       < slot name=“City” filler=“City”/>   
< /frame>   
< frame name=“Flight”>   
        <slot name=“DCity” filler=“City”/>   
       < slot name=“ACity” filler=“City”/>   
< /frame>   
Figure 1. Simplified domain semantics for the ATIS 
domain.  

The semantic prior model comprises the 
HMM topology and state transition probabilities. 

The topology is determined by the domain 
semantics, and the transition probabilities can be 
estimated from training data. Figure 3 shows the 
topology of the underlying states in the statistical 
model for the semantic frames in Figure 1. On 
top is the transition network for the two top-level 
commands. At the bottom is a zoomed-in view 
for the “Flight” sub-network. State 1 and state 4 
are called precommands. State 3 and state 6 are 
called postcommands. States 2, 5, 8 and 9 
represent slots. A slot is actually a three-state 
sequence — the slot state is preceded by a 
preamble state and followed by a postamble 
state, both represented by black circles. They 
provide contextual clues for the slot’s identity. 
<ShowFlight>   
      < Flight>   
          < DCity filler=“City”>Seattle< /DCity>   
          <ACity filler=“City”>Boston< /ACity>   
      < /Flight>   
< /ShowFlight>   
Figure 2. The semantic representation for “Show me 
the flights departing from Seattle arriving at Boston” 
is an instantiation of the semantic frames in Figure 1. 
 

 
Figure 3. The HMM/CFG model’s state topology, as 
determined by the semantic frames in Figure 1.  

The lexicalization model, ( )Pr |W M , depicts 
the process of sentence generation from the 
topology by estimating the distribution of words 
emitted by a state. It uses state-dependent n-
grams to model the precommands, 
postcommands, preambles and postambles, and 
uses knowledge-based CFG rules to model the 
slot fillers. These rules help compensate for the 
dearth of domain-specific data.  In the remainder 
of this paper we will say a string is “covered by a 
CFG non-terminal (NT)”, or equivalently, is 
“CFG-covered for s” if the string can be parsed 
by the CFG rule corresponding to the slot s.  

 
Given the semantic representation in Figure 2, 

the state sequence through the model topology in 

883



Figure 3 is deterministic, as shown in Figure 4. 
However, the words are not aligned to the states 
in the shaded boxes. The parameters in their 
corresponding n-gram models can be estimated 
with an EM algorithm that treats the alignments 
as hidden variables. 

 

 
Figure 4. Word/state alignments. The segmentation 
of the word sequences in the shaded region is hidden. 

The HMM/CFG composite model was 
evaluated in the ATIS domain (Price, 1990). The 
model was trained with ATIS3 category A 
training data (~1700 annotated sentences) and 
tested with the 1993 ATIS3 category A test 
sentences (470 sentences with 1702 reference 
slots).  The slot insertion-deletion-substitution 
error rate (SER) of the test set is 5.0%, leading to 
a 5.3% semantic error rate in the standard end-to-
end ATIS evaluation, which is slightly better 
than the best manually developed system (5.5%). 
Moreover, a steep drop in the error rate is 
observed after training with only the first two 
hundred sentences.  This demonstrates that the 
inclusion of prior knowledge in the statistical 
model helps alleviate the data sparseness 
problem. 

3 Conditional Models 

We investigated the application of conditional 
models to SLU. The problem is formulated as 
assigning a label l  to each element in an 
observation .o  Here, o  consists of a word 
sequence 1oτ  and a list of CFG non-terminals 
(NT) that cover its subsequences, as illustrated in  
Figure 5. The task is to label “two” as the “Num-
of-tickets” slot of the “ShowFlight” command, 
and “Washington D.C.” as the ArrivalCity slot 
for the same command. To do so, the model must 
be able to resolve several kinds of ambiguities: 

 
1. Filler/non-filler ambiguity, e.g., “two” can 

either fill a Num-of-tickets slot, or its 
homonym “to” can form part of the preamble 
of an ArrivalCity slot. 

2. CFG ambiguity, e.g., “Washington” can be 
CFG-covered as either City or State. 

3. Segmentation ambiguity, e.g., [Washington] 
[D.C.] vs. [Washington D.C.]. 

4. Semantic label ambiguity, e.g., “Washington 
D.C.” can fill either an ArrivalCity or 
DepartureCity slot. 

 
Figure 5. The observation includes a word sequence 
and the subsequences covered by CFG non-terminals.  

3.1 CRFs and HCRFs 

Conditional Random Fields (CRFs) (Lafferty, 
McCallum et al., 2001) are undirected 
conditional graphical models that assign the 
conditional probability of a state (label) sequence 

1s
τ  with respect to a vector of features 1 1( )f osτ τ, . 

They are of the following form: 

( )1 1
1( ) exp ( )

( )
o f o

o
p s s

z
τ τλ λ

λ
| ; = ⋅ , .

;
 (1) 

Here ( )
1

1( ) exp ( )
s

z s
τ

τλ λ; = ⋅ ,∑o f o  normalizes 

the distribution over all possible state sequences. 
The parameter vector λ  is trained conditionally 
(discriminatively). If we assume that 1s

τ  is a 
Markov chain given o  and the feature functions 
only depend on two adjacent states, then  

1
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In some cases, it may be natural to exploit 
features on variables that are not directly 
observed. For example, a feature for the Flight 
preamble may be defined in terms of an observed 
word and an unobserved state in the shaded 
region in Figure 4: 

( 1) ( )
FlightInit,flights

( )

( )

1 if =FlightInit  = flights;
    =

0 otherwise                                 

o

o

t t

t t

f s s t

s

− , , ,

⎧ ∧
⎨
⎩

 (3) 

In this case, the state sequence 1s
τ  is only 

partially observed in the meaning representation 
5 8: ( ) "DCity" ( ) "ACity"M M s M s= ∧ = for the 

words “Seattle” and “Boston”. The states for the 
remaining words are hidden. Let ( )MΓ  represent 
the set of all state sequences that satisfy the 
constraints imposed by .M  To obtain the 
conditional probability of ,M we need to sum 
over all possible labels for the hidden states: 
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CRFs with features dependent on hidden state 
variables are called Hidden Conditional Random 
Fields (HCRFs). They have been applied to tasks 
such as phonetic classification (Gunawardana, 
Mahajan et al., 2005) and object recognition 
(Quattoni, Collins et al., 2004). 

3.2 Conditional Model Training 

We train CRFs and HCRFs with gradient-based 
optimization algorithms that maximize the log 
posterior. The gradient of the objective function 
is  

( ) ( )
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which is the difference between the conditional 
expectation of the feature vector given the 
observation sequence and label sequence, and the 
conditional expectation given the observation 
sequence alone. With the Markov assumption in 
Eq. (2), these expectations can be computed 
using a forward-backward-like dynamic 
programming algorithm. For CRFs, whose 
features do not depend on hidden state 
sequences, the first expectation is simply the 
feature counts given the observation and label 
sequences. In this work, we applied stochastic 
gradient descent (SGD) (Kushner and Yin, 1997) 
for parameter optimization. In our experiments 
on several different tasks, it is faster than L-
BFGS (Nocedal and Wright, 1999), a quasi-
Newton optimization algorithm. 

3.3 CRFs and Perceptron Learning 

Perceptron training for conditional models 
(Collins, 2002) is an approximation to the SGD 
algorithm, using feature counts from the Viterbi 
label sequence in lieu of expected feature counts. 
It eliminates the need of a forward-backward 
algorithm to collect the expected counts, hence 
greatly speeds up model training.  This algorithm 
can be viewed as using the minimum margin of a 
training example (i.e., the difference in the log 
conditional probability of the reference label 
sequence and the Viterbi label sequence) as the 
objective function instead of the conditional 
probability: 

( ) ( ) ( )
l

l o l o
'

' log | ; max log ' | ;L P Pλ λ λ= −  

Here again, o  is the observation and l  is its 
reference label sequence. In perceptron training, 
the parameter updating stops when the Viterbi 
label sequence is the same as the reference label 
sequence. In contrast, the optimization based on 
the log posterior probability objective function 
keeps pulling probability mass from all incorrect 
label sequences to the reference label sequence 
until convergence. 

In both perceptron and CRF training, we 
average the parameters over training iterations 
(Collins, 2002). 

4 Porting HMM/CFG Model to HCRFs 

In our first experiment, we would like to exploit 
the discriminative training capability of a 
conditional model without changing  the 
HMM/CFG model’s topology and feature set.  
Since the state sequence is only partially labeled, 
an HCRF is used to model the conditional 
distribution of the labels. 

4.1 Features 

We used the same state topology and features as 
those in the HMM/CFG composite model.  The 
following indicator features are included: 

Command prior features capture the a priori 
likelihood of different top-level commands:  

 

( 1) ( )

( )

( )

1 if =0 C( )
    = , CommandSet

0 otherwise              

oPR t t

t

cf s s t

t s c
c

− , , ,

⎧ ∧ =
∀ ∈⎨

⎩

 

Here C(s) stands for the name of the command 
that corresponds to the transition network 
containing state s. 

State Transition features capture the likelihood 
of transition from one state to another: 

( 1) ( )
( 1) ( ) 1 2

1 2

,1 2

1 if 
( ) ,   

0 otherwise              
where  is a legal transition according to the 
state topology.

o
t t

TR t t
s s

s s s s
f s s t

s s

−
− ⎧ = , =
, , , = ⎨

⎩
→

 

Unigram and Bigram features capture the 
likelihoods of words emitted by a state: 
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The condition 1isFiller( )s  restricts 1s  to be a slot 
state and not a pre- or postamble state. 

4.2 Experiments 

The model is trained with SGD with the 
parameters initialized in two ways. The flat start 
initialization sets all parameters to 0. The 
generative model initialization uses the 
parameters trained by the HMM/CFG model. 

Figure 6 shows the test set slot error rates 
(SER) at different training iterations. With the 
flat start initialization (top curve), the error rate 
never comes close to the 5% baseline error rate 
of the HMM/CFG model. With the generative 
model initialization, the error rate is reduced to 
4.8% at the second iteration, but the model 
quickly gets over-trained afterwards. 
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Figure 6. Test set slot error rates (in %) at different 
training iterations. The top curve is for the flat start 
initialization, the bottom for the generative model  
initialization. 

The failure of the direct porting of the 
generative model to the conditional model can be 
attributed to the following reasons: 

• The conditional log-likelihood function is 
no longer a convex function due to the 
summation over hidden variables. This 
makes the model highly likely to settle on 
a local optimum. The fact that the flat start 
initialization failed to achieve the accuracy 
of the generative model initialization is a 
clear indication of the problem. 

• In order to account for words in the test 
data, the n-grams in the generative model 
are properly smoothed with back-offs to 
the uniform distribution over the 
vocabulary. This results in a huge number 
of parameters, many of which cannot be 
estimated reliably in the conditional 
model, given that model regularization is 
not as well studied as in n-grams.  

• The hidden variables make parameter 
estimation less reliable, given only a small 
amount of training data. 

5 CRFs for SLU 

An important lesson we have learned from the 
previous experiment is that we should not think 
generatively when applying conditional models. 
While it is important to find cues that help 
identify the slots, there is no need to exhaustively 
model the generation of every word in a 
sentence. Hence, the distinctions between pre- 
and postcommands, and pre- and postambles are 
no longer necessary. Every word that appears 
between two slots is labeled as the preamble state 
of the second slot, as illustrated in Figure 7. This 
labeling scheme effectively removes the hidden 
variables and simplifies the model to a CRF. It 
not only expedites model training, but also 
prevents parameters from settling at a local 
optimum, because the log conditional probability 
is now a convex function. 

 
Figure 7.  Once the slots are marked in the 
simplified model topology, the state sequence is fully 
marked, leaving no hidden variables and resulting in a 
CRF. Here, PAC stands for “preamble for arrival 
city,” and PDC for “preamble for departure city.”  

The command prior and state transition 
features (with fewer states) are the same as in the 
HCRF model. For unigrams and bigrams, only 
those that occur in front of a CFG-covered string 
are considered.  If the string is CFG-covered for 
slot s, then the unigram and bigram features for 
the preamble state of s are included. Suppose the 
words “that departs” occur at positions 

1 and t t−  in front of the word “Seattle,” which 
is CFG-covered by the non-terminal City.  Since 
City can fill a DepartureCity or ArrivalCity slot, 
the four following features are introduced:  
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5.1 Additional Features 

One advantage of CRFs over generative models 
is the ease with which overlapping features can 
be incorporated. In this section, we describe 
three additional feature sets. 
 
The first set addresses a side effect of not 
modeling the generation of every word in a 
sentence. Suppose a preamble state has never 
occurred in a position that is confusable with a 
slot state s, and a word that is CFG-covered for s 
has never occurred as part of the preamble state 
in the training data. Then, the unigram feature of 
the word for that preamble state has weight 0, 
and there is thus no penalty for mislabeling the 
word as the preamble. This is one of the most 
common errors observed in the development set. 
The chunk coverage for preamble words feature 
introduced to model the likelihood of a CFG-
covered word being labeled as a preamble: 

( 1) ( )

( ) ( )

,
( )

1 if  C( ) covers( , )  isPre( )    
0 otherwise                                                   

t tCC

t tt

c NT
f s s t

s c NT s

−

⎧⎪
⎨
⎪⎩

, , ,

= ∧ ∧=

o

o

 

where isPre( )s  indicates that s is a preamble 
state.  

Often, the identity of a slot depends on the 
preambles of the previous slot. For example, “at 
two PM” is a DepartureTime in “flight from 
Seattle to Boston at two PM”, but it is an 
ArrivalTime in “flight departing from Seattle 
arriving in Boston at two PM.” In both cases, the 

previous slot is ArrivalCity, so the state 
transition features are not helpful for 
disambiguation.  The identity of the time slot 
depends not on the ArrivalCity slot, but on its 
preamble. Our second feature set, previous-slot 
context, introduces this dependency to the model: 

( 1) ( )

( 1) ( )
1 2 1

1 1 2

, ,1 2
( )

1 if ( , , 1)
     =  isFiller( )  Slot( ) Slot( )

0 otherwise                                                

PC t t

t t

ws sf s s t

s s s s w s t
s s s

−
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, , ,

⎧ = ∧ = ∧ ∈Θ −
⎪

∧ ∧ ≠⎨
⎪
⎩

o

o  

Here Slot( )s  stands for the slot associated with 
the state ,s  which can be a filler state or a 
preamble state, as shown in Figure 7. 

1( , , 1)os tΘ −  is the set of k words (where k is an 
adjustable window size) in front of the longest 
sequence that ends at position 1t − and that is 
CFG-covered by 1Slot( )s . 

The third feature set is intended to penalize 
erroneous segmentation, such as segmenting 
“Washington D.C.” into two separate City slots. 
The chunk coverage for slot boundary feature is 
activated when a slot boundary is covered by a 
CFG non-terminal NT, i.e., when words in two 
consecutive slots (“Washington” and “D.C.”) can 
also be covered by one single slot: 

( 1) ( )

( )
1

( 1) ( )

( 1) ( )

,
( )

          if  C( ) covers( , )1
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0 otherwise                        
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o

o
 

This feature set shares its weights with the 
chunk coverage features for preamble words, 
and does not introduce any new parameters. 
 
Features # of Param. SER 
Command Prior 6   
+State Transition +1377 18.68%
+Unigrams +14433 7.29% 
+Bigrams +58191 7.23% 
+Chunk Cov Preamble Word +156 6.87% 
+Previous-Slot Context +290 5.46% 
+Chunk Cov Slot Boundaries +0 3.94% 
Table 1. Number of additional parameters and the 
slot error rate after each new feature set is introduced. 

5.2 Experiments 

Since the objective function is convex, the 
optimization algorithm does not make any 
significant difference on SLU accuracy. We 
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trained the model with SGD.  Other optimization 
algorithm like Stochastic Meta-Decent 
(Vishwanathan, Schraudolph et al., 2006) can be 
used to speed up the convergence. The training 
stopping criterion is cross-validated with the 
development set. 

Table 1 shows the number of new parameters 
and the slot error rate (SER) on the test data, 
after each new feature set is introduced. The new 
features improve the prediction of slot identities 
and reduce the SER by 21%, relative to the 
generative HMM/CFG composite model. 

The figures below show in detail the impact of 
the n-gram, previous-slot context and chunk 
coverage features.  The chunk coverage feature 
has three settings: 0 stands for no chunk 
coverage features; 1 for chunk coverage features 
for preamble words only; and 2 for both words 
and slot boundaries.  

Figure 8 shows the impact of the order of n-
gram features. Zero-order means no lexical 
features for preamble states are included. As the 
figure illustrates, the inclusion of CFG rules for 
slot filler states and domain-specific knowledge 
about command priors and slot transitions have 
already produced a reasonable SER under 15%. 
Unigram features for preamble states cut the 
error by more than 50%, while the impact of 
bigram features is not consistent -- it yields a 
small positive or negative difference depending 
on other experimental parameter settings. 
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Figure 8.  Effects of the order of n-grams on SER. 
The window size for the previous-slot context features 
is 2.  

Figure 9 shows the impact of the CFG chunk 
coverage feature.  Coverage for both preamble 
words and slot boundaries help improve the SLU 
accuracy. 

Figure 10 shows the impact of the window 
size for the previous-slot context feature. Here, 0 
means that the previous-slot context feature is 
not used. When the window size is k, the k words 
in front of the longest previous CFG-covered 
word sequence are included as the previous-slot 
unigram context features. As the figure 
illustrates, this feature significantly reduces SER, 
while the window size does not make any 
significant difference.  
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Figure 9. Effects of the chunk coverage feature. The 
window size for the previous-slot context feature is 2. 
The three lines correspond to different n-gram orders, 
where 0-gram indicates that no preamble lexical 
features are used.  

It is important to note that overlapping 
features like ,  and CC SB PCf f f  could not be easily 
incorporated into a generative model. 
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Figure 10. Effects of the window size of the 
previous-slot context feature. The three lines represent 
different orders of n-grams (0, 1, and 2). Chunk 
coverage features for both preamble words and slot 
boundaries are used. 

5.3 CRFs vs. Perceptrons 

Table 2 compares the perceptron and CRF 
training algorithms, using chunk coverage 
features for both preamble words and slot 
boundaries, with which the best accuracy results 
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are achieved. Both improve upon the 5% 
baseline SER from the generative HMM/CFG 
model. CRF training outperforms the perceptron 
in most settings, except for the one with unigram 
features for preamble states and with window 
size 1 -- the model with the fewest parameters. 
One possible explanation is as follows.  The 
objective function in CRFs is a convex function, 
and so SGD can find the single global optimum 
for it.  In contrast, the objective function for the 
perceptron, which is the difference between two 
convex functions, is not convex.  The gradient 
ascent approach in perceptron training is hence 
more likely to settle on a local optimum as the 
model becomes more complicated. 

 
  PSWSize=1 PSWSize=2 
  Perceptron CRFs Perceptron CRFs

n=1 3.76% 4.11% 4.23% 3.94%
n=2 4.76% 4.41% 4.58% 3.94%

Table 2. Perceptron vs. CRF training.  Chunk 
coverage features are used for both preamble words 
and slot boundaries. PSWSize stands for the window 
size of the previous-slot context feature. N is the order 
of the n-gram features. 

The biggest advantage of perceptron learning 
is its speed.  It directly counts the occurrence of 
features given an observation and its reference 
label sequence and Viterbi label sequence, with 
no need to collect expected feature counts with a 
forward-backward-like algorithm.  Not only is 
each iteration faster, but fewer iterations are 
required, when using SLU accuracy on a cross-
validation set as the stopping criterion. Overall, 
perceptron training is 5 to 8 times faster than 
CRF training. 

6 Conclusions 
This paper has introduced a conditional model 
framework that integrates statistical learning 
with a knowledge-based approach to SLU. We 
have shown that a conditional model reduces 
SLU slot error rate by more than 20% over the 
generative HMM/CFG composite model. The 
improvement was mostly due to the introduction 
of new overlapping features into the model. We 
have also discussed our experience in directly 
porting a generative model to a conditional 
model, and demonstrated that it may not be 
beneficial at all if we still think generatively in 
conditional modeling; more specifically, 
replicating the feature set of a generative model 
in a conditional model may not help much. The 
key benefit of conditional models is the ease with 

which they can incorporate overlapping and non-
homogeneous features. This is consistent with 
the finding in the application of conditional 
models for POS tagging (Lafferty, McCallum et 
al., 2001). The paper also compares different 
training algorithms for conditional models.  In 
most cases, CRF training is more accurate, 
however, perceptron training is much faster. 
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