
Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pages 707–714,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Translating HPSG-style Outputs of a Robust Parser
into Typed Dynamic Logic

Manabu Sato† Daisuke Bekki‡ Yusuke Miyao† Jun’ichi Tsujii†∗
† Department of Computer Science, University of Tokyo

Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
‡ Center for Evolutionary Cognitive Sciences, University of Tokyo

Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
∗School of Informatics, University of Manchester

PO Box 88, Sackville St, Manchester M60 1QD, UK
∗SORST, JST (Japan Science and Technology Corporation)
Honcho 4-1-8, Kawaguchi-shi, Saitama 332-0012, Japan
† {sa-ma, yusuke, tsujii}@is.s.u-tokyo.ac.jp

‡ bekki@ecs.c.u-tokyo.ac.jp
Abstract

The present paper proposes a method
by which to translate outputs of a ro-
bust HPSG parser into semantic rep-
resentations of Typed Dynamic Logic
(TDL), a dynamic plural semantics de-
fined in typed lambda calculus. With
its higher-order representations of con-
texts, TDL analyzes and describes
the inherently inter-sentential nature of
quantification and anaphora in a strictly
lexicalized and compositional manner.
The present study shows that the pro-
posed translation method successfully
combines robustness and descriptive ad-
equacy of contemporary semantics. The
present implementation achieves high
coverage, approximately 90%, for the
real text of the Penn Treebank corpus.

1 Introduction

Robust parsing technology is one result of the
recent fusion between symbolic and statistical
approaches in natural language processing and
has been applied to tasks such as information
extraction, information retrieval and machine
translation (Hockenmaier and Steedman, 2002;
Miyao et al., 2005). However, reflecting the
field boundary and unestablished interfaces be-
tween syntax and semantics in formal theory
of grammar, this fusion has achieved less in
semantics than in syntax.
For example, a system that translates the

output of a robust CCG parser into seman-
tic representations has been developed (Bos et
al., 2004). While its corpus-oriented parser at-
tained high coverage with respect to real text,

the expressive power of the resulting semantic
representations is confined to first-order predi-
cate logic.
The more elaborate tasks tied to discourse

information and plurality, such as resolution
of anaphora antecedent, scope ambiguity, pre-
supposition, topic and focus, are required to
refer to ‘deeper’ semantic structures, such as
dynamic semantics (Groenendijk and Stokhof,
1991).
However, most dynamic semantic theories

are not equipped with large-scale syntax that
covers more than a small fragment of target
languages. One of a few exceptions is Min-
imal Recursion Semantics (MRS) (Copestake
et al., 1999), which is compatible with large-
scale HPSG syntax (Pollard and Sag, 1994)
and has affinities with UDRS (Reyle, 1993).
For real text, however, its implementation, as
in the case of the ERG parser (Copestake
and Flickinger, 2000), restricts its target to the
static fragment of MRS and yet has a lower
coverage than corpus-oriented parsers (Baldwin,
to appear).
The lack of transparency between syntax and

discourse semantics appears to have created a
tension between the robustness of syntax and
the descriptive adequacy of semantics.
In the present paper, we will introduce

a robust method to obtain dynamic seman-
tic representations based on Typed Dynamic
Logic (TDL) (Bekki, 2000) from real text
by translating the outputs of a robust HPSG
parser (Miyao et al., 2005). Typed Dy-
namic Logic is a dynamic plural seman-
tics that formalizes the structure underlying
the semantic interactions between quantifica-
tion, plurality, bound variable/E-type anaphora

707

re×···×e7→t xi1 · · ·xin ≡ λG(i7→e)7→t .λ gi7→e.g ∈ G∧ r­gx1, . . . ,gxm®
∼ φ prop ≡ λG(i7→e)7→t .λ gi7→e.g ∈ G∧¬∃hi7→e.h ∈ φG⎡⎣ φ prop

...
ϕ prop

⎤⎦ ≡ λG(i7→e)7→t .(ϕ · · ·(φG))

re f
¡
xi
¢
[φ prop] [ϕ prop] ≡ λG(i7→e)7→t .

⎧⎨⎩ i f
G±x= φG±x

then λ gi 7→e.g ∈ ϕG∧ G±x= ϕG±x
otherwise unde f ined

⎫⎬⎭⎛⎜⎝ where prop ≡ ((i 7→ e) 7→ t) 7→ (i 7→ e) 7→ t
gα ∈ Gα 7→t ≡ Gg
G(i7→e) 7→t

.
xi ≡ λ de.∃gi7→e.g ∈ G∧gx= d

⎞⎟⎠

Figure 1: Propositions of TDL (Bekki, 2005)

and presuppositions. All of this complex
discourse/plurality-related information is encap-
sulated within higher-order structures in TDL,
and the analysis remains strictly lexical and
compositional, which makes its interface with
syntax transparent and straightforward. This is
a significant advantage for achieving robustness
in natural language processing.

2 Background

2.1 Typed Dynamic Logic
Figure 1 shows a number of propositions de-
fined in (Bekki, 2005), including atomic pred-
icate, negation, conjunction, and anaphoric ex-
pression. Typed Dynamic Logic is described in
typed lambda calculus (Gödel’s System T) with
four ground types: e(entity), i(index), n(natural
number), and t(truth). While assignment func-
tions in static logic are functions in meta-
language from type e variables (in the case of
first-order logic) to objects in the domain De,
assignment functions in TDL are functions in
object-language from indices to entities. Typed
Dynamic Logic defines the notion context as
a set of assignment functions (an object of
type (i 7→ e) 7→ t) and a proposition as a func-
tion from context to context (an object of type
((i 7→ e) 7→ t) 7→ (i 7→ e) 7→ t). The conjunctions
of two propositions are then defined as com-
posite functions thereof. This setting conforms
to the view of “propositions as information
flow”, which is widely accepted in dynamic
semantics.
Since all of these higher-order notions are

described in lambda terms, the path for compo-
sitional type-theoretic semantics based on func-
tional application, functional composition and

type raising is clarified. The derivations of
TDL semantic representations for the sentences
“A boy ran. He tumbled.” are exemplified in
Figure 2 and Figure 3. With some instantia-
tion of variables, the semantic representations
of these two sentences are simply conjoined
and yield a single representation, as shown in
(1). ⎡⎢⎢⎢⎣

boy0x1s1
run0e1s1
agent 0e1x1
re f (x2) []

∙
tumble0e2s2
agent 0e2x2

¸
⎤⎥⎥⎥⎦(1)

The propositions boy0x1s1, run0e1s1 and
agent 0e1x1 roughly mean “the entity referred
to by x1 is a boy in the situation s1”, “the
event referred to by e1 is a running event in
the situation s1”, and “the agent of event e1
is x1”, respectively.
The former part of (1) that corresponds to

the first sentence, filtering and testing the input
context, returns the updated context schema-
tized in (2). The updated context is then
passed to the latter part, which corresponds to
the second sentence as its input.

· · · x1 s1 e1 · · ·
john situation1 running1
john situation2 running2
...

...
...

(2)

This mechanism makes anaphoric expressions,
such as “He” in “He tumbles”, accessible to its
preceding context; namely, the descriptions of
their presuppositions can refer to the preceding
context compositionally. Moreover, the refer-
ents of the anaphoric expressions are correctly
calculated as a result of previous filtering and
testing.

708

“a”
λ ni7→i7→p7→p.λwi 7→i7→i7→p7→p.
λ ei.λ si.λ φ p.nx1s

£
wx1esφ

¤ “boy”

λ xi.λ si.λ φ p.
∙
boy0xs
φ

¸
λwi7→i7→i7→p7→p.λ ei.λ si.λ φ p.

∙
boy0x1s
wx1esφ

¸
“ran”

λ sb j(i7→i 7→i7→p7→p)7→i 7→i7→p7→p.

sb j

Ã
λ xi.λ ei.λ si.λ φ p.

"
run0es
agent 0ex
φ

#!

λ ei.λ si.λ φ p.

⎡⎢⎣ boy
0x1s1

run0es
agent 0ex1
φ

⎤⎥⎦

Figure 2: Derivation of a TDL semantic representation of “A boy ran”.

“he”
λwi7→i7→i7→p7→p.
λ ei.λ si.λ φ p.re f

¡
x2
¢
[]
£
wx2esφ

¤
“tumbled”

λ sb j(i7→i7→i7→p7→p)7→i7→i7→p7→p.

sb j

Ã
λ xi.λ ei.λ si.λ φ p.

"
tumble0es
agent 0ex
φ

#!
λ ei.λ si.λ φ p.re f

¡
x2
¢
[]

∙
tumble0e2s2
agent 0e2x2

¸

Figure 3: Derivation of TDL semantic representation of “He tumbled”.

Although the antecedent for x2 is not de-
termined in this structure, the possible candi-
dates can be enumerated: x1, s1 and e1, which
precede x2. Since TDL seamlessly represents
linguistic notions such as “entity”, “event” and
“situation”, by indices, the anaphoric expres-
sions, such as “the event” and “that case”, can
be treated in the same manner.

2.2 Head-driven Phrase Structure
Grammar

Head-driven Phrase Structure Grammar (Pollard
and Sag, 1994) is a kind of lexicalized gram-
mar that consists of lexical items and a small
number of composition rules called schema.
Schemata and lexical items are all described
in typed feature structures and the unification
operation defined thereon.⎡⎢⎢⎢⎢⎣

PHON “boy”

SYN
SEM

⎡⎢⎢⎢⎢⎢⎣
HEAD

∙
noun
MOD h i

¸
VAL

" SUBJ h i
COMPS h i
SPR hdeti

#
SLASH h i

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦(3)

Figure 4 is an example of a parse tree,
where the feature structures marked with the
same boxed numbers have a shared struc-
ture. In the first stage of the derivation of
this tree, lexical items are assigned to each
of the strings, “John” and “runs.” Next, the
mother node, which dominates the two items,

⎡⎢⎣
PHON “John runs”
HEAD 1
SUBJ h i
COMPS h i

⎤⎥⎦
⎡⎢⎣ PHON “John”
HEAD noun
SUBJ h i
COMPS h i

⎤⎥⎦ : 2
⎡⎢⎢⎣
PHON “runs”
HEAD verb : 1
SUBJ h 2 i
COMPS h i

⎤⎥⎥⎦
John runs

Figure 4: An HPSG parse tree

is generated by the application of Subject-Head
Schema. The recursive application of these op-
erations derives the entire tree.

3 Method

In this section, we present a method to de-
rive TDL semantic representations from HPSG
parse trees, adopting, in part, a previous
method (Bos et al., 2004). Basically, we first
assign TDL representations to lexical items that
are terminal nodes of a parse tree, and then
compose the TDL representation for the en-
tire tree according to the tree structure (Figure
5). One problematic aspect of this approach is
that the composition process of TDL semantic
representations and that of HPSG parse trees
are not identical. For example, in the HPSG

709

⎡⎣ PHON “John runs”
HEAD 1
SUBJ h i
COMPS h i

⎤⎦
Subject-Head Schema

* λ e.λ s.λ φ .

re f (x1) [John0x1s1]

" run0es
agent 0ex1
φ

#
∗run

empty

+
Composition Rules

normal composition
word formation
nonlocal application
unary derivation

⎡⎣ PHON “John”
HEAD noun
SUBJ h i
COMPS h i

⎤⎦ : 2
⎡⎢⎣ PHON “runs”
HEAD verb : 1
SUBJ h 2 i
COMPS h i

⎤⎥⎦

Assignment Rules

¿ λw.λ e.λ s.λ φ .
re f (x1) [John0x1s1] [wx1esφ]∗John

empty

À* λ sb j.sb jÃ
λ x.λ e.λ s.λ φ .

" run0es
agent 0ex
φ

#!
∗run

empty

+

John runs John runs

Figure 5: Example of the application of the rules

parser, a compound noun is regarded as two
distinct words, whereas in TDL, a compound
noun is regarded as one word. Long-distance
dependency is also treated differently in the
two systems. Furthermore, TDL has an opera-
tion called unary derivation to deal with empty
categories, whereas the HPSG parser does not
have such an operation.
In order to overcome these differences and

realize a straightforward composition of TDL
representations according to the HPSG parse
tree, we defined two extended composition
rules, word formation rule and non-local
application rule, and redefined TDL unary
derivation rules for the use in the HPSG
parser. At each step of the composition, one
composition rule is chosen from the set of
rules, based on the information of the schemata
applied to the HPSG tree and TDL represen-
tations of the constituents. In addition, we de-
fined extended TDL semantic representations,
referred to as TDL Extended Structures (TD-
LESs), to be paired with the extended compo-
sition rules.
In summary, the proposed method is com-

prised of TDLESs, assignment rules, composi-
tion rules, and unary derivation rules, as will
be elucidated in subsequent sections.

3.1 Data Structure

A TDLES is a tuple hT, p,ni, where T is an
extended TDL term, which can be either a
TDL term or a special value ω . Here, ω
is a value used by the word formation rule,
which indicates that the word is a word modi-
fier (See Section 3.3). In addition, p and n are
the necessary information for extended compo-

sition rules, where p is a matrix predicate in T
and is used by the word formation rule, and
n is a nonlocal argument, which takes either
a variable occurring in T or an empty value.
This element corresponds to the SLASH fea-
ture in HPSG and is used by the nonlocal
application rule.
The TDLES of the common noun “boy” is

given in (4). The contents of the structure
are T , p and n, beginning at the top. In
(4), T corresponds to the TDL term of “boy”
in Figure 2, p is the predicate boy, which is
identical to a predicate in the TDL term (the
identity relation between the two is indicated
by “∗”). If either T or p is changed, the other
will be changed accordingly. This mechanism
is a part of the word formation rule, which
offers advantages in creating a new predicate
from multiple words. Finally, n is an empty
value.*

λ x.λ s.λ φ .
∙
∗boy0xs
φ

¸
∗boy

empty

+
(4)

3.2 Assignment Rules
We define assignment rules to associate HPSG
lexical items with corresponding TDLESs. For
closed class words, such as “a”, “the” or
“not”, assignment rules are given in the form
of a template for each word as exemplified
below. " PHON “a”

HEAD det
SPEC hnouni

#
⇓*

λ x.λ s.λ φ .
∙
λ n.λw.λ e.λ s.λ φ .
nx1s

£
wx1esφ

¤ ¸
empty
empty

+(5)

710

Shown in (5) is an assignment rule for the
indefinite determiner “a”. The upper half of
(5) shows a template of an HPSG lexical item
that specifies its phonetic form as “a”, where
POS is a determiner and specifies a noun. A
TDLES is shown in the lower half of the fig-
ure. The TDL term slot of this structure is
identical to that of “a” in Figure 2, while slots
for the matrix predicate and nonlocal argument
are empty.
For open class words, such as nouns, verbs,

adjectives, adverbs and others, assignment rules
are defined for each syntactic category.

⎡⎢⎢⎢⎢⎣
PHON P
HEAD noun
MOD hi
SUBJ hi
COMPS hi
SPR hdeti

⎤⎥⎥⎥⎥⎦
⇓*

λ x.λ s.λ φ .
∙
∗P0xs
φ

¸
∗P

empty

+(6)

The assignment rule (6) is for common nouns.
The HPSG lexical item in the upper half of (6)
specifies that the phonetic form of this item is
a variable, P, that takes no arguments, does
not modify other words and takes a specifier.
Here, POS is a noun. In the TDLES assigned
to this item, an actual input word will be sub-
stituted for the variable P, from which the ma-
trix predicate P0 is produced. Note that we can
obtain the TDLES (4) by applying the rule of
(6) to the HPSG lexical item of (3).
As for verbs, a base TDL semantic represen-

tation is first assigned to a verb root, and the
representation is then modified by lexical rules
to reflect an inflected form of the verb. This
process corresponds to HPSG lexical rules for
verbs. Details are not presented herein due to
space limitations.

3.3 Composition Rules

We define three composition rules: the func-
tion application rule, the word formation
rule, and the nonlocal application rule.
Hereinafter, let SL = hTL, pL,nLi and SR =
hTR, pR,nRi be TDLESs of the left and the
right daughter nodes, respectively. In addition,
let SM be TDLESs of the mother node.
Function application rule: The composition

of TDL terms in the TDLESs is performed by

function application, in the same manner as in
the original TDL, as explained in Section 2.1.
Definition 3.1 (function application rule). If
Type

¡
TL
¢
= α and Type

¡
TR
¢
= α 7→ β then

SM =

* TRTL
pR

union
¡
nL,nR

¢
+

Else if Type
¡
TL
¢
= α 7→ β and Type

¡
TR
¢
= α then

SM =

* TLTR
pL

union
¡
nL,nR

¢
+

In Definition 3.1, Type(T) is a function
that returns the type of TDL term T , and
union(nL,nR) is defined as:

union
¡
nL,nR

¢
=⎧⎪⎨⎪⎩

empty i f nL = nR = _empty_
n i f nL = n, nR = _empty_
n i f nL = _empty_, nR = n
unde f ined i f nL 6= _empty_, nR 6= _empty_

This function corresponds to the behavior of
the union of SLASH in HPSG. The composi-
tion in the right-hand side of Figure 5 is an
example of the application of this rule.
Word formation rule: In natural language,

it is often the case that a new word is cre-
ated by combining multiple words, for exam-
ple, “orange juice”. This phenomenon is called
word formation. Typed Dynamic Logic and
the HPSG parser handle this phenomenon in
different ways. Typed Dynamic Logic does
not have any rule for word formation and re-
gards “orange juice” as a single word, whereas
most parsers treat “orange juice” as the sepa-
rate words “orange” and “juice”. This requires
a special composition rule for word formation
to be defined. Among the constituent words of
a compound word, we consider those that are
not HPSG heads as word modifiers and define
their value for T as ω . In addition, we apply
the word formation rule defined below.
Definition 3.2 (word formation rule). If
Type

¡
TL
¢
= ω then

SM =

* TR
concat

¡
pL, pR

¢
nR

+

Else if Type
¡
TR
¢
= ω then

SM =

* TL
concat

¡
pL, pR

¢
nL

+

711

concat (pL, pR) in Definition 3.2 is a func-
tion that returns a concatenation of pL and pR.
For example, the composition of a word mod-
ifier “orange” (7) and and a common noun
“juice” (8) will generate the TDLES (9).¿ ω

orange
empty

À
(7) *

λ x.λ s.λ φ .
∙
∗ juice0xs
φ

¸
∗ juice
empty

+
(8)

*
λ x.λ s.λ φ .

∙
∗orange_ juice0xs
φ

¸
∗orange_ juice
empty

+
(9)

Nonlocal application rule: Typed Dynamic
Logic and HPSG also handle the phenomenon
of wh-movement differently. In HPSG, a wh-
phrase is treated as a value of SLASH, and
the value is kept until the Filler-Head Schema
are applied. In TDL, however, wh-movement
is handled by the functional composition rule.
In order to resolve the difference between

these two approaches, we define the nonlocal
application rule, a special rule that introduces
a slot relating to HPSG SLASH to TDLESs.
This slot becomes the third element of TD-
LESs. This rule is applied when the Filler-
Head Schema are applied in HPSG parse trees.
Definition 3.3 (nonlocal application rule).
If Type

¡
TL
¢
= (α 7→ β) 7→ γ , Type

¡
TR
¢
= β ,

Type
¡
nR
¢
= α and the Filler-Head Schema are applied

in HPSG, then

SM =

*
TL
¡
λ nR.TR

¢
pL

empty

+

3.4 Unary Derivation Rules

In TDL, type-shifting of a word or a phrase is
performed by composition with an empty cat-
egory (a category that has no phonetic form,
but has syntactic/semantic functions). For ex-
ample, the phrase “this year” is a noun phrase
at the first stage and can be changed into a
verb modifier when combined with an empty
category. Since many of the type-shifting rules
are not available in HPSG, we defined unary
derivation rules in order to provide an equiva-
lent function to the type-shifting rules of TDL.
These unary rules are applied independently
with HPSG parse trees. (10) and (11) illus-
trate the unary derivation of “this year”. (11)

Table 1: Number of implemented rules
assignment rules
HPSG-TDL template 51
for closed words 16
for open words 35

verb lexical rules 27

composition rules
binary composition rules 3
function application rule
word formation rule
nonlocal application rule

unary derivation rules 12

is derived from (10) using a unary derivation
rule.

¿
λw.λ e.λ s.λ φ .re f

¡
x1
¢£∗year0x1s1¤£wx1esφ ¤∗year

empty

À(10)

* λ v.λ e.λ s.λ φ .

re f
¡
x1
¢£∗year0x1s1¤∙ves∙ mod 0ex1φ

¸¸
∗year
empty

+(11)

4 Experiment

The number of rules we have implemented is
shown in Table 1. We used the Penn Treebank
(Marcus, 1994) Section 22 (1,527 sentences) to
develop and evaluate the proposed method and
Section 23 (2,144 sentences) as the final test
set.
We measured the coverage of the construc-

tion of TDL semantic representations, in the
manner described in a previous study (Bos
et al., 2004). Although the best method for
strictly evaluating the proposed method is to
measure the agreement between the obtained
semantic representations and the intuitions of
the speaker/writer of the texts, this type of
evaluation could not be performed because of
insufficient resources. Instead, we measured
the rate of successful derivations as an indica-
tor of the coverage of the proposed system.
The sentences in the test set were parsed by

a robust HPSG parser (Miyao et al., 2005),
and HPSG parse trees were successfully gen-
erated for 2,122 (98.9%) sentences. The pro-
posed method was then applied to these parse
trees. Table 2 shows that 88.3% of the un-

712

Table 2: Coverage with respect to the test set
covered sentences 88.3 %
uncovered sentences 11.7 %
assignment failures 6.2 %
composition failures 5.5 %

word coverage 99.6 %

Table 3: Error analysis: the development set

assignment failures 103
unimplemented words 61
TDL unsupporting words 17
nonlinguistic HPSG lexical items 25

composition failures 72
unsupported compositions 20
invalid assignments 36
nonlinguistic parse trees 16

seen sentences are assigned TDL semantic rep-
resentations. Although this number is slightly
less than 92.3%, as reported by Bos et al.,
(2004), it seems reasonable to say that the pro-
posed method attained a relatively high cover-
age, given the expressive power of TDL.
The construction of TDL semantic represen-

tations failed for 11.7% of the sentences. We
classified the causes of the failure into two
types. One of which is application failure of
the assignment rules (assignment failure); that
is, no assignment rules are applied to a num-
ber of HPSG lexical items, and so no TD-
LESs are assigned to these items. The other
is application failure of the composition rules
(composition failure). In this case, a type mis-
match occurred in the composition, and so a
TDLES was not derived.
Table 3 shows further classification of the

causes categorized into the two classes. We
manually investigated all of the failures in the
development set.
Assignment failures are caused by three fac-

tors. Most assignment failures occurred due to
the limitation in the number of the assignment
rules (as indicated by “unimplemented words”
in the table). In this experiment, we did not
implement rules for infrequent HPSG lexical
items. We believe that this type of failure
will be resolved by increasing the number of

ref($1)[]
[lecture($2,$3) &
past($3) &
agent($2,$1) &
content($2,$4) &
ref($5)[]

[every($6)[ball($6,$4)]
[see($7,$4) &
present($4) &
agent($7,$5) &
theme($7,$6) &
tremendously($7,$4) &
ref($8)[]

[ref($9)[groove($9,$10)]
[be($11,$4) &
present($4) &
agent($11,$8) &
in($11,$9) &
when($11,$7)]]]]]

Figure 6: Output for the sentence: “When
you’re in the groove, you see every ball
tremendously,” he lectured.

assignment rules. The second factor in the
table, “TDL unsupported words”, refers to ex-
pressions that are not covered by the current
theory of TDL. In order to resolve this type of
failure, the development of TDL is required.
The third factor, “nonlinguistic HPSG lexical
items” includes a small number of cases in
which TDLESs are not assigned to the words
that are categorized as nonlinguistic syntactic
categories by the HPSG parser. This problem
is caused by ill-formed outputs of the parser.
The composition failures can be further clas-

sified into three classes according to their
causative factors. The first factor is the ex-
istence of HPSG schemata for which we have
not yet implemented composition rules. These
failures will be fixed by extending of the def-
inition of our composition rules. The sec-
ond factor is type mismatches due to the un-
intended assignments of TDLESs to lexical
items. We need to further elaborate the as-
signment rules in order to deal with this prob-
lem. The third factor is parse trees that are
linguistically invalid.
The error analysis given above indicates that

we can further increase the coverage through
the improvement of the assignment/composition
rules.
Figure 6 shows an example of the output

for a sentence in the development set. The
variables $1, . . . ,$11 are indices that

713

represent entities, events and situations. For
example, $3 represents a situation and $2
represents the lecturing event that exists
in $3. past($3) requires that the sit-
uation is past. agent($2,$1) requires
that the entity $1 is the agent of $2.
content($2,$4) requires that $4 (as a
set of possible worlds) is the content of
$2. be($11,$4) refers to $4. Finally,
every($6)[ball($6,$4)][see($7,$4)
...] represents a generalized quantifier
“every ball”. The index $6 serves as an
antecedent both for bound-variable anaphora
within its scope and for E-type anaphora out-
side its scope. The entities that correspond to
the two occurrences of “you” are represented
by $8 and $5. Their unification is left as
an anaphora resolution task that can be easily
solved by existing statistical or rule-based
methods, given the structural information of
the TDL semantic representation.

5 Conclusion

The present paper proposed a method by which
to translate HPSG-style outputs of a robust
parser (Miyao et al., 2005) into dynamic se-
mantic representations of TDL (Bekki, 2000).
We showed that our implementation achieved
high coverage, approximately 90%, for real
text of the Penn Treebank corpus and that the
resulting representations have sufficient expres-
sive power of contemporary semantic theory
involving quantification, plurality, inter/intra-
sentential anaphora and presupposition.
In the present study, we investigated the

possibility of achieving robustness and descrip-
tive adequacy of semantics. Although previ-
ously thought to have a trade-off relationship,
the present study proved that robustness and
descriptive adequacy of semantics are not in-
trinsically incompatible, given the transparency
between syntax and discourse semantics.
If the notion of robustness serves as a cri-

terion not only for the practical usefulness of
natural language processing but also for the
validity of linguistic theories, then the compo-
sitional transparency that penetrates all levels
of syntax, sentential semantics, and discourse
semantics, beyond the superficial difference be-
tween the laws that govern each of the levels,
might be reconsidered as an essential principle

of linguistic theories.

References
Timothy Baldwin, John Beavers, Emily M. Bender,
Dan Flickinger, Ara Kim and Stephan Oepen (to
appear) Beauty and the Beast: What running a
broad-coverage precision grammar over the BNC
taught us about the grammar ? and the cor-
pus, In Linguistic Evidence: Empirical, Theoreti-
cal, and Computational Perspectives, Mouton de
Gruyter.

Daisuke Bekki. 2000. Typed Dynamic Logic for
Compositional Grammar, Doctoral Dissertation,
University of Tokyo.

Daisuke Bekki. 2005. Typed Dynamic Logic and
Grammar: the Introduction, manuscript, Univer-
sity of Tokyo,

Johan Bos, Stephen Clark, Mark Steedman, James
R. Curran and Julia Hockenmaier. 2004. Wide-
Coverage Semantic Representations from a CCG
Parser, In Proc. COLING ’04, Geneva.

Ann Copestake, Dan Flickinger, Ivan A. Sag and
Carl Pollard. 1999. Minimal Recursion Seman-
tics: An introduction, manuscript.

Ann Copestake and Dan Flickinger. 2000.
An open-source grammar development environ-
ment and broad-coverage English grammar using
HPSG In Proc. LREC-2000, Athens.

Jeroen Groenendijk and Martin Stokhof. 1991. Dy-
namic Predicate Logic, In Linguistics and Philos-
ophy 14, pp.39-100.

Julia Hockenmaier and Mark Steedman. 2002. Ac-
quiring Compact Lexicalized Grammars from a
Cleaner Treebank, In Proc. LREC-2002, Las Pal-
mas.

Mitch Marcus. 1994. The Penn Treebank: A
revised corpus design for extracting predicate-
argument structure. In Proceedings of the ARPA
Human Language Technolog Workshop, Prince-
ton, NJ.

Yusuke Miyao, Takashi Ninomiya and Jun’ichi Tsu-
jii. 2005. Corpus-oriented Grammar Develop-
ment for Acquiring a Head-driven Phrase Struc-
ture Grammar from the Penn Treebank, in IJC-
NLP 2004, LNAI3248, pp.684-693. Springer-
Verlag.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar, Studies in Contem-
porary Linguistics. University of Chicago Press,
Chicago, London.

Uwe Reyle. 1993. Dealing with Ambiguities by
Underspecification: Construction, Representation
and Deduction, In Journal of Semantics 10,
pp.123-179.

714

