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Abstract 

Most information extraction systems ei-
ther use hand written extraction patterns 
or use a machine learning algorithm that 
is trained on a manually annotated cor-
pus. Both of these approaches require 
massive human effort and hence prevent 
information extraction from becoming 
more widely applicable. In this paper we 
present URES (Unsupervised Relation 
Extraction System), which extracts rela-
tions from the Web in a totally unsuper-
vised way. It takes as input the 
descriptions of the target relations, which 
include the names of the predicates, the 
types of their attributes, and several seed 
instances of the relations. Then the sys-
tem downloads from the Web a large col-
lection of pages that are likely to contain 
instances of the target relations. From 
those pages, utilizing the known seed in-
stances, the system learns the relation 
patterns, which are then used for extrac-
tion. We present several experiments in 
which we learn patterns and extract in-
stances of a set of several common IE re-
lations, comparing several pattern 
learning and filtering setups. We demon-
strate that using simple noun phrase tag-
ger is sufficient as a base for accurate 
patterns. However, having a named en-
tity recognizer, which is able to recog-
nize the types of the relation attributes 
significantly, enhances the extraction 
performance. We also compare our ap-
proach with KnowItAll’s fixed generic 
patterns. 

1 Introduction 

The most common preprocessing technique for 
text mining is information extraction (IE). It is 
defined as the task of extracting knowledge out 
of textual documents. In general, IE is divided 
into two main types of extraction tasks – Entity 
tagging and Relation extraction. 

The main approaches used by most informa-
tion extraction systems are the knowledge engi-
neering approach and the machine learning 
approach. The knowledge engineering (mostly 
rule based) systems traditionally were the top 
performers in most IE benchmarks, such as 
MUC (Chinchor, Hirschman et al. 1994), ACE 
and the KDD CUP (Yeh and Hirschman 2002). 
Recently though, the machine learning systems 
became state-of-the-art, especially for simpler 
tagging problems, such as named entity recogni-
tion (Bikel, Miller et al. 1997), or field extrac-
tion (McCallum, Freitag et al. 2000). The 
general idea is that a domain expert labels the 
target concepts in a set of documents. The sys-
tem then learns a model of the extraction task, 
which can be applied to new documents auto-
matically. 

Both of these approaches require massive hu-
man effort and hence prevent information extrac-
tion from becoming more widely applicable. In 
order to minimize the huge manual effort in-
volved with building information extraction sys-
tems, we have designed and developed URES 
(Unsupervised Relation Extraction System) 
which learns a set of patterns to extract relations 
from the web in a totally unsupervised way. The 
system takes as input the names of the target re-
lations, the types of its arguments, and a small 
set of seed instances of the relations. It then uses 
a large set of unlabeled documents downloaded 
from the Web in order to build extraction pat-
terns. URES patterns currently have two modes 
of operation. One is based upon a generic shal-
low parser, able to extract noun phrases and their 
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heads. Another mode builds patterns for use by 
TEG (Rosenfeld, Feldman et al. 2004). TEG is a 
hybrid rule-based and statistical IE system. It 
utilizes a trained labeled corpus in order to com-
plement and enhance the performance of a rela-
tively small set of manually-built extraction 
rules. When it is used with URES, the relation 
extraction rules and training data are not built 
manually but are created automatically from the 
URES-learned patterns. However, URES does 
not built rules and training data for entity extrac-
tion. For those, we use the grammar and training 
data we developed separately. 

It is important to note that URES is not a clas-
sic IE system. Its purpose is to extract as many 
as possible different instances of the given rela-
tions while maintaining a high precision. Since 
the goal is to extract instances and not mentions, 
we are quite willing to miss a particular sentence 
containing an instance of a target relation – if the 
instance can be found elsewhere. In contrast, the 
classical IE systems extract mentions of entities 
and relations from the input documents. This 
difference in goals leads to different ways of 
measuring the performance of the systems. 

The rest of the paper is organized as follows: 
in Section 2 we present the related work. In Sec-
tion 3 we outline the general design principles of 
URES and the architecture of the system and 
then describe the different components of URES 
in details while giving examples to the input and 
output of each component. In Section 4 we pre-
sent our experimental evaluation and then wrap 
up with conclusions and suggestions for future 
work. 

2 Related Work 

Information Extraction (IE) is a sub-field of 
NLP, aims at aiding people to sift through large 
volume of documents by automatically identify-
ing and tagging key entities, facts and events 
mentioned in the text.  

Over the years, much effort has been invested 
in developing accurate and efficient IE systems. 
Some of the systems are rule-based (Fisher, So-
derland et al. 1995; Soderland 1999), some are 
statistical (Bikel, Miller et al. 1997; Collins and 
Miller 1998; Manning and Schutze 1999; Miller, 
Schwartz et al. 1999) and some are based on in-
ductive-logic-based (Zelle and Mooney. 1996; 
Califf and Mooney 1998). Recent IE research 
with bootstrap learning  (Brin 1998; Riloff and 
Jones 1999; Phillips and Riloff 2002; Thelen and 
Riloff 2002) or learning from documents tagged 

as relevant (Riloff 1996; Sudo, Sekine et al. 
2001) has decreased, but not eliminated hand-
tagged training. 

Snowball (Agichtein and Gravano 2000) is an 
unsupervised system for learning relations from 
document collections. The system takes as input 
a set of seed examples for each relation, and uses 
a clustering technique to learn patterns from the 
seed examples. It does rely on a full fledges 
Named Entity Recognition system. Snowball 
achieved fairly low precision figures (30-50%) 
on relations such as merger and acquisition on 
the same dataset used in our experiments. 

KnowItAll system is a direct predecessor of 
URES. It is developed at University of Washing-
ton by Oren Etzioni and colleagues (Etzioni, 
Cafarella et al. 2005). KnowItAll is an autono-
mous, domain-independent system that extracts 
facts from the Web.  The primary focus of the 
system is on extracting entities (unary predi-
cates).  The input to KnowItAll is a set of entity 
classes to be extracted, such as “city”, “scien-
tist”, “movie”, etc., and the output is a list of 
entities extracted from the Web. KnowItAll uses 
a set of manually-built generic rules, which are 
instantiated with the target predicate names, pro-
ducing queries, patterns and discriminator 
phrases. The queries are passed to a search en-
gine, the suggested pages are downloaded and 
processed with patterns. Every time a pattern is 
matched, the extraction is generated and evalu-
ated using Web statistics – the number of search 
engine hits of the extraction alone and the ex-
traction together with discriminator phrases. 
KnowItAll has also a pattern learning module 
(PL) that is able to learn patterns for extracting 
entities. However, it is unsuitable for learning 
patterns for relations. Hence, for extracting rela-
tions KnowItAll currently uses only the generic 
hand written patterns. 

3 Description of URES 

The goal of URES is extracting instances of rela-
tions from the Web without human supervision. 
Accordingly, the input of the system is limited to 
(reasonably short) definition of the target rela-
tions. The output of the system is a large list of 
relation instances, ordered by confidence. The 
system consists of several largely independent 
components. The Sentence Gatherer generates 
(e.g., downloads from the Web) a large set of 
sentences that may contain target instances. The 
Pattern Learner uses a small number of known 
seed instances to learn likely patterns of relation 
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occurrences. The Sentence Classifier filters the 
set of sentences, removing those that are unlikely 
to contain instances of the target relations. The 
Instance Extractor extracts the attributes of the 
instances from the sentences, and generates the 
output of the system.  

3.1 Sentence Gatherer 
The Sentence Gatherer is currently implemented 
in a very simple way. It gets a set of keywords as 
input, and proceeds to download all documents 
that contain one of those keywords. From the 
documents, it extracts all sentences that contain 
at least one of the keywords. 

The keywords for a relation are the words that 
are indicative of instances of the relation. The 
keywords are given to the system as part of the 
relation definition. Their number is usually 
small. For instance, the set of keywords for Ac-
quisition in our experiments contains two words 
– “acquired” and “acquisition”. Additional key-
words (such as “acquire”, “purchased”, and 
“hostile takeover”) can be added automatically 
by using WordNet (Miller 1995).  

3.2 Pattern Learner 
The task of the Pattern Learner is to learn the 
patterns of occurrence of relation instances. This 
is an inherently supervised task, because at least 
some occurrences must be known in order to be 
able to find patterns among them. Consequently, 
the input to the Pattern Learner includes a small 
set (10-15 instances) of known instances for 
each target relation. Our system assumes that the 
seeds are a part of the target relation definition. 
However, the seeds need not be created manu-
ally. Instead, they can be taken from the top-
scoring results of a high-precision low-recall 
unsupervised extraction system, such as 
KnowItAll. The seeds for our experiments were 
produced in exactly this way. 

The Pattern Learner proceeds as follows: first, 
the gathered sentences that contain the seed in-
stances are used to generate the positive and 
negative sets. From those sets the pattern are 
learned. Then, the patterns are post-processed 
and filtered. We shall now describe those steps 
in detail. 

Preparing the positive and negative sets 
The positive set of a predicate (the terms predi-
cate and relation are interchangeable in our 
work) consists of sentences that contain a known 
instance of the predicate, with the instance at-

tributes changed to “<AttrN>”, where N is the 
attribute index. For example, assuming there is a 
seed instance Acquisition(Oracle, PeopleSoft), 
the sentence 

The Antitrust Division of the U.S. De-
partment of Justice evaluated the likely 
competitive effects of Oracle's proposed 
acquisition of PeopleSoft. 

will be changed to 

The Antitrust Division… …of <Attr1>'s 
proposed acquisition of <Attr2>. 

The positive set of a predicate P is generated 
straightforwardly, using substring search. 

The negative set of a predicate consists of 
similarly modified sentences with known false 
instances of the predicate. We build the negative 
set as a union of two subsets. The first subset is 
generated from the sentences in the positive set 
by changing the assignment of one or both at-
tributes to some other suitable entity. In the first 
mode of operation, when only a shallow parser is 
available, any suitable noun phrase can be as-
signed to an attribute. Continuing the example 
above, the following sentences will be included 
in the negative set:  

<Attr1> of <Attr2> evaluated the likely… 
<Attr2> of the U.S. … …acquisition of 
<Attr1>. 
etc. 

In the second mode of operation, when the 
NER is available, only entities of the correct 
type get assigned to an attribute. 

The other subset of the negative set contains 
all sentences produced in a similar way from the 
positive sentences of all other target predicates. 
We assume without loss of generality that the 
predicates that are being extracted simultane-
ously are all disjoint. In addition, the definition 
of each predicate indicates whether the predicate 
is symmetric (like “merger”) or antisymmetric 
(like “acquisition”). In the former case, the sen-
tences produced by exchanging the attributes in 
positive sentences are placed into the positive 
set, and in the later case – into the negative set of 
the predicate. 

The following pseudo code shows the process 
of generating the positive and negative sets in 
detail: 
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Let S be the set of gathered sentences.  
For each predicate P 
    For each s∈S containing a word from Keywords(P) 
        For each known seed P(A1, A2) of the predicate P 
            If A1 and A2 are each found exactly once inside s 
                For all entities e1, e2 ∈ s, such that e2 ≠ e1, and 
                            Type(e1) = type of Attr1 of P, and 
                            Type(e2) = type of Attr2 of P 
                    Let s' := s  with eN changed to “<AttrN>”. 
                    If e1 = A1 and e2 = A2 
                        Add  s'  to the PositiveSet(P). 
                    Elseif e1 = A2 and e2 = A1 and symmetric(P) 
                        Add s' to the PositiveSet(P). 
                    Else 
                        Add s' to the NegativeSet(P). 
For each predicate P 
    For each predicate P2 ≠ P 
        For each sentence s ∈ PositiveSet(P2) 
            Put s into the NegativeSet(P). 

Generating the patterns 
The patterns for predicate P are generalizations 
of pairs of sentences from the positive set of P. 
The function Generalize(S1, S2)  is applied to 
each pair of sentences S1 and S2 from the positive 
set of the predicate. The function generates a 
pattern that is the best (according to the objective 
function defined below) generalization of its two 
arguments. The following pseudo code shows 
the process of generating the patterns: 

For each predicate P 
    For each pair S1, S2 from PositiveSet(P) 
        Let Pattern := Generalize(S1, S2). 
        Add Pattern to PatternsSet(P). 

The patterns are sequences of tokens, skips 
(denoted *), limited skips (denoted *?) and slots. 
The tokens can match only themselves, the skips 
match zero or more arbitrary tokens, and slots 
match instance attributes.  The limited skips 
match zero or more arbitrary tokens, which must 
not belong to entities of the types equal to the 
types of the predicate attributes. The General-
ize(s1, s2) function takes two patterns (note, that 
sentences in the positive and negative sets are 
patterns without skips) and generates the least 
(most specific) common generalization of both. 
The function does a dynamical programming 
search for the best match between the two pat-
terns (Optimal String Alignment algorithm), 
with the cost of the match defined as the sum of 
costs of matches for all elements. We use the 
following numbers:  two identical elements 
match at cost 0, a token matches a skip or an 
empty space at cost 10, a skip matches an empty 
space at cost 2, and different kinds of skip match 
at cost 3. All other combinations have infinite 
cost. After the best match is found, it is con-

verted into a pattern by copying matched identi-
cal elements and adding skips where non-
identical elements are matched. For example, 
assume the sentences are 

Toward this end, <Attr1> in July acquired 
<Attr2> 
Earlier this year, <Attr1> acquired <Attr2> 
from X 

After the dynamical programming-based 
search, the following match will be found: 
 

Table 1 - Best Match between Sentences 
Toward (cost 10)

Earlier   (cost 10)
this this (cost 0)
end (cost 10)

year (cost 10)
, , (cost 0)
<Attr1 > <Attr1 > (cost 0)
in  July (cost 20)
acquired acquired (cost 0)
<Attr2 > <Attr2 > (cost 0)

from (cost 10)
X (cost 10)  

 
at total cost = 80. The match will be converted to 
the pattern (assuming the NER mode, so the only 
entity belonging to the same type as one of the 
attributes is “X”): 

*? *? this *? *? , <Attr1> *? acquired <Attr2> *? * 

which becomes, after combining adjacent skips, 
*?  this  *?  ,  <Attr1>  *?  acquired  <Attr2>   * 

Note, that the generalization algorithm allows 
patterns with any kind of elements beside skips, 
such as CapitalWord, Number, CapitalizedSe-
quence, etc. As long as the costs and results of 
matches are properly defined, the Generalize 
function is able to find the best generalization of 
any two patterns. However, in the present work 
we stick with the simplest pattern definition as 
described above. 

Post-processing, filtering, and scoring 
The number of patterns generated at the previous 
step is very large. Post-processing and filtering 
tries to reduce this number, keeping the most 
useful patterns and removing the too specific and 
irrelevant ones. 

First, we remove from patterns all “stop 
words” surrounded by skips from both sides, 

670



such as the word “this” in the last pattern in the 
previous subsection. Such words do not add to 
the discriminative power of patterns, and only 
needlessly reduce the pattern recall. The list of 
stop words includes all functional and very 
common English words, as well as puncuation 
marks. Note, that the stop words are removed 
only if they are surrounded by skips, because 
when they are adjacent to slots or non-stop 
words they often convey valuable information. 
After this step, the pattern above becomes 

       *?  ,  <Attr1>  *?  acquired  <Attr2>   * 

In the next step of filtering, we remove all pat-
terns that do not contain relevant words. For 
each predicate, the list of relevant words is 
automatically generated from WordNet by fol-
lowing all links to depth at most 2 starting from 
the predicate keywords. For example, the pattern 

       *   <Attr1>  *  by  <Attr2>   *   

will be removed, while the pattern 

       *   <Attr1>  *  purchased  <Attr2>  *   

will be kept, because the word “purchased” can 
be reached from “acquisition” via synonym and 
derivation links. 

The final (optional) filtering step removes all 
patterns, that contain slots surrounded by skips 
on both sides, keeping only the patterns, whose 
slots are adjacent to tokens or to sentence 
boundaries. Since both the shallow parser and 
the NER system that we use are far from perfect, 
they often place the entity boundaries incor-
rectly. Using only patterns with anchored slots 
significantly improves the precision of the whole 
system. In our experiments we compare the per-
formance of anchored and unanchored patterns. 

The filtered patterns are then scored by their 
performance on the positive and negative sets.  
Currently we use a simple scoring method – the 
score of a pattern is the number of positive 
matches divided by the number of negative 
matches plus one: 

| { : matches } |( )
|{ : matches } | 1

S PositiveSet Pattern SScore Pattern
S NegativeSet Pattern S

∈
=

∈ +  
This formula is purely empirical and produces 

reasonable results. The threshold is applied to 
the set of patterns, and all patterns scoring less 
than the threshold (currently, it is set to 6) are 
discarded. 

3.3 Sentence Classifier 
The task of the Sentence Classifier is to filter out 
from the large pool of sentences produced by the 
Sentence Gatherer the sentences that do not con-
tain the target predicate instances. In the current 
version of our system, this is only done in order 
to reduce the number of sentences that need to 
be processed by the Slot Extractor. Therefore, in 
this stage we just remove the sentences that do 
not match any of the regular expressions gener-
ated from the patterns. Regular expressions are 
generated from patterns by replacing slots with 
skips. 

3.4 Instance Extractor 
The task of the Instance Extractor is to use the 
patterns generated by the Pattern Learner on the 
sentences that were passed through by the Sen-
tence Classifier. However, the patterns cannot be 
directly matched to the sentences, because the 
patterns only define the placeholders for instance 
attributes and cannot by themselves extract the 
values of the attributes. 

We currently have two different ways to solve 
this problem – using a general-purpose shallow 
parser, which is able to recognize noun phrases 
and their heads, and using an information extrac-
tion system called TEG (Rosenfeld, Feldman et 
al. 2004), together with a trained grammar able 
to recognize the entities of the types of the 
predicates’ attributes. We shall briefly describe 
the two modes of operation. 

Shallow Parser mode 
In the first mode of operation, the predicates 
may define attributes of two different types: 
ProperName and CommonNP. We assume that 
the values of the ProperName type are always 
heads of proper noun phrases. And the values of 
the 
CommonNP type are simple common noun 
phrases (with possible proper noun modifiers, 
e.g. “the Kodak camera”). 

We use a Java-written shallow parser from the 
OpenNLP (http://opennlp.sourceforge.net/) 
package. Each sentence is tokenized, tagged with 
part-of-speech, and tagged with noun phrase 
boundaries. The pattern matching and extraction 
is straightforward. 

TEG mode 
TEG (Trainable Extraction Grammars) 
(Rosenfeld, Feldman et al. 2004) is general-
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purpose hybrid rule-based and statistical IE sys-
tem, able to extract entities and relations at the 
sentence level. It is adapted to any domain by 
writing a suitable set of rules, and training them 
using an annotated corpus. The TEG rule lan-
guage is a straightforward extension of a con-
text-free grammar syntax. A complete set of 
rules is compiled into a PCFG (Probabilistic 
Context Free Grammar), which is then trained 
upon the training corpus. 

Some of the nonterminals inside the TEG 
grammar can be marked as target concepts. 
Wherever such nonterminal occurs in a final 
parse of a sentence, TEG generates an output 
label. The target concept rules may specify some 
of their parts as attributes. Then the concept is 
considered to be a relation, with the values of the 
attributes determined by the concept parse. Con-
cepts without attributes are entities.  

For the TEG-based instance extractor we util-
ize the NER ruleset of TEG and an internal train-
ing corpus called INC, as described in 
(Rosenfeld, Feldman et al. 2004). The ruleset 
defines a grammar with a set of concepts for 
Person, Location, and Organization entities. In 
addition, the grammar defines a generic Noun-
Phrase concept, which can be used for capturing 
the entities that do not belong to any of the entity 
types above. 

 
In order to do the extraction, the patterns gener-
ated by the Pattern Learner are converted to the 
TEG syntax and added to the pre-built NER 
grammar. This produces a grammar, which is 
able to extract relations. This grammar is trained 
upon the automatically labeled positive set from 
the Pattern Learning. The resulting trained 
model is applied to the sets of sentences pro-
duced by the Sentence Classifier. 

 
4 Experimental Evaluation 

In order to evaluate URES, we used five predi-
cates 

Acquisition(BuyerCompany, BoughtCom-
pany), 
Merger(Company1, Company2), 
CEO_Of(Company, Name), 
MayorOf(City, Name), 
InventorOf(InventorName, Invention). 

Merger is symmetric predicate, in the sense that 
the order of its attributes does not matter. Acqui-
sition is antisymmetric, and the other three are 
tested as bound in the first attribute. For the 

bound predicates, we are only interested in the 
instances with particular prespecified values of 
the first attribute. 

 We test both modes of operation – using shal-
low parser and using TEG. In the shallow parser 
mode, the Invention attribute of the InventorOf 
predicate is of type CommonNP, and all other 
attributes are of type ProperName. In the TEG 
mode, the “Company” attributes are of type Or-
ganization, the “Name” attributes are of type 
Person, the “City” attribute is of type Location, 
and the “Invention” attribute is of type Noun-
Phrase. 

We evaluate our system by running it over a 
large set of sentences, counting the number of 
extracted instances, and manually checking a 
random sample of the instances to estimate pre-
cision. In order to be able to compare our results 
with KnowItAll-produced results, we used the 
set of sentences collected by the KnowItAll’s 
crawler as if they were produced by the Sentence 
Gatherer.  

The set of sentences for the Acquisition and 
Merger predicates contained around 900,000 
sentences each. For the other three predicates, 
each of the sentences contained one of the 100 
predefined values for the first attribute. The val-
ues (100 companies for CEO_Of, 100 cities for 
MayorOf, and 100 inventors for InventorOf) are 
entities collected by KnowItAll, half of them are 
frequent entities (>100,000 hits), and another 
half are rare (<10,000 hits). 

In all of the experiments, we use ten top 
predicate instances extracted by KnowItAll for 
the relation seeds needed by the Pattern Learner. 

The results of our experiments are summa-
rized in the Table 2. The table displays the num-
ber of extracted instances and estimated 
precision for three different URES setups, and 
for the KnowItAll manually built patterns. Three 
results are shown for each setup and each rela-
tion – extractions supported by at least one, at 
least two, and at least three different sentences, 
respectively. 

Several conclusions can be drawn from the re-
sults. First, both modes of URES significantly 
outperform KnowItAll in recall (number of ex-
tractions), while maintaining the same level of 
precision or improving it. This demonstrates util-
ity of our pattern learning component. Second, it 
is immediately apparent, that using only an-
chored patterns significantly improves precision 
of NP Tagger-based URES, though at a high cost 
in recall. The NP tagger-based URES with an-
chored patterns performs somewhat worse than 
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Table 2 - Experimental results. 

 
   Acquisition CEO_Of InventorOf MayorOf Merger 
  support Count Prec Count Prec Count Prec Count Prec Count Prec

≥ 1 10587 0.74 545 0.7 1233 0.84 2815 0.6 25071 0.71
≥ 2 815 0.87 221 0.92 333 0.92 717 0.74 2981 0.8 

NP Tagger 
All patterns 

 ≥ 3 234 0.9 133 0.94 185 0.96 442 0.84 1245 0.88
≥ 1 5803 0.84 447 0.8 1035 0.86 2462 0.65 17107 0.8 
≥ 2 465 0.96 186 0.94 284 0.92 652 0.78 2481 0.83

NP Tagger 
Anchored  
patterns ≥ 3 148 0.98 123 0.96 159 0.96 411 0.88 1084 0.9 

≥ 1 8926 0.82 618 0.83 2322 0.65 2434 0.85 15002 0.8 
≥ 2 1261 0.94 244 0.94 592 0.85 779 0.93 2932 0.86

TEG 
All patterns 

 ≥ 3 467 0.98 158 0.98 334 0.88 482 0.98 1443 0.9 
≥ 1 2235 0.84 421 0.81 604 0.8 725 0.76 3233 0.82KnowItAll 

 ≥ 2 257 0.98 190 0.98 168 0.92 308 0.92 352 0.92
 

 
 
 
TEG-based URES on all predicates except In-
ventorOf, as expected. For the InventorOf, TEG 
performs worse, because of overly simplistic 
implementation of the NounPhrase concept in-
side the TEG grammar – it is defined as a se-
quence of zero or more adjectives followed by a 
sequence of nouns. Such definition often leads to 
only part of a correct invention name being ex-
tracted. 

5 Conclusions and Future Work 

We have presented the URES system for autono-
mously extracting relations from the Web. 
URES bypasses the bottleneck created by classic 
information extraction systems that either relies 
on manually developed extraction patterns or on 
manually tagged training corpus. Instead, the 
system relies upon learning patterns from a large 
unlabeled set of sentences downloaded from 
Web. 

One of the topics we would like to further ex-
plore is the complexity of the patterns that we 
learn. Currently we use a very simple pattern 
language that just has 4 types of elements, slots, 
constants and two types of skips. We want to see 
if we can achieve higher precision with more 
complex patterns. In addition we would like to 
test URES on n-ary predicates, and to extend the 
system to handle predicates that are allowed to 
lack some of the attributes. 
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