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Abstract

Deterministic parsing guided by treebank-
induced classifiers has emerged as a
simple and efficient alternative to more
complex models for data-driven parsing.
We present a systematic comparison of
memory-based learning (MBL) and sup-
port vector machines (SVM) for inducing
classifiers for deterministic dependency
parsing, using data from Chinese, English
and Swedish, together with a variety of
different feature models. The comparison
shows that SVM gives higher accuracy for
richly articulated feature models across all
languages, albeit with considerably longer
training times. The results also confirm
that classifier-based deterministic parsing
can achieve parsing accuracy very close to
the best results reported for more complex
parsing models.

Introduction

parsing algorithm that approximates a globally op-
timal solution by making a sequence of locally
optimal choices, guided by a classifier trained on
gold standard derivations from a treebank. This
methodology has emerged as an alternative to
more complex models, especially in dependency-
based parsing. It was first used for unlabeled de-
pendency parsing by Kudo and Matsumoto (2002)
(for Japanese) and Yamada and Matsumoto (2003)
(for English). It was extended to labeled depen-
dency parsing by Nivre et al. (2004) (for Swedish)
and Nivre and Scholz (2004) (for English). More
recently, it has been applied with good results to
lexicalized phrase structure parsing by Sagae and
Lavie (2005).

The machine learning methods used to induce
classifiers for deterministic parsing are dominated
by two approaches. Support vector machines
(SVM), which combine the maximum margin
strategy introduced by Vapnik (1995) with the use
of kernel functions to map the original feature
space to a higher-dimensional space, have been

Mainstream approaches in statistical parsing arésed by Kudo and Matsumoto (2002), Yamada and
based on nondeterministic parsing techniquedylatsumoto (2003), and Sagae and Lavie (2005),
usually employing some kind of dynamic pro- among others. Memory-based learning (MBL),
gramming, in combination with generative prob-WhiCh is based on the idea that learning is the
abilistic models that provide am-best ranking of ~simple storage of experiences in memory and that
the set of candidate analyses derived by the parséplving a new problem is achieved by reusing so-
(Collins, 1997; Collins, 1999; Charniak, 2000). lutions from similar previously solved problems
These parsers can be enhanced by using a discriffPaelemans and Van den Bosch, 2005), has been
inative model, which reranks the analyses outused primarily by Nivre et al. (2004), Nivre and
put by the parser (Johnson et al., 1999; CollinsScholz (2004), and Sagae and Lavie (2005).
and Duffy, 2005; Charniak and Johnson, 2005). Comparative studies of learning algorithms are
Alternatively, discriminative models can be usedrelatively rare. Cheng et al. (2005b) report that
to search the complete space of possible pars&VvM outperforms MaxEnt models in Chinese de-
(Taskar et al., 2004; McDonald et al., 2005). pendency parsing, using the algorithms of Yamada
A radically different approach is to perform and Matsumoto (2003) and Nivre (2003), while
disambiguation deterministically, using a greedySagae and Lavie (2005) find that SVM gives better
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performance than MBL in a constituency-basedefinition 1 Given a setR of dependency types

shift-reduce parser for English. (arc labels), adependency grapfor a sentence
In this paper, we present a detailed comparisor = (wi,...,wy,) is a labeled directed graph

of SVM and MBL for dependency parsing using G = (V, E, L), where:

the deterministic algorithm of Nivre (2003). The 1V_7

comparison is based on data from three different ™ ntl

languages — Chinese, English, and Swedish — and2- ECVxV

on five different feature models of varying com- 3. L: E — R

plexity, with a separate optimization of learning .

algorithm parameters for each combination of Ian—The set” of nodes(orve+rt|c§$ s the se, 1 =

guage and feature model. The central importancéo’ 1’_2’ ' '."n} (n € Z7), €., the S.Et of non-

of feature selection and parameter optimization i egative integers up tq ahd including Th!s

machine leaming research has been shown ve eans that every token indéxf the sentence is a

clearly in recent research (Daelemans and Host 010d(;_(1 hgdl = n) ?nd that the(;e; IS a Sl?elf'al n]?f[jhe
2002; Daelemans et al., 2003). ' V\f[ Ic oecsj noh_ Cﬁ”?ﬁp?n 0 Sny 0 e? (; the
The rest of the paper is structured as follows SENtENCE and which will always be a root of he

Section 2 presents the parsing framework, includgependency graph (normally the only roof). We

+ .
ing the deterministic parsing algorithm and theusi"‘f( o Qen‘c;j[f tEeVset ognodesdcorrespo?hdlng
history-based feature models. Section 3 discuss%g Otel?s (I.e.c’jé = g { })ﬂa/i” we use the
the two learning algorithms used in the experi- ermtoken nhodeor memuers ol .

ments, and section 4 describes the experimental The setl of arcs (or edge} is a set of ordered

setup, including data sets, feature models, IearrPa'rS(Z’])’ where; andy are nodes. Since arcs are

ing algorithm parameters, and evaluation metricsl.Jsed to represent dependency relations, we will

Experimental results are presented and discussc%ﬁy that? ',S‘ thAe head "’Indj |s'|t|he detphende?t?[f
in section 5, and conclusions in section 6. e arc(i, j). As usual, we will use the notation

i — j to mean that there is an arc connecting

2 Inductive Dependency Parsing andj (i.e., (i,j) € E) and we will use the nota-

. tion¢ —* j for the reflexive and transitive closure
The system we use for the experiments uses N9 the arc relation® (.e.,i —* j if and only if

grammar but relies completely on inductive learn-, _ j or there is a path of arcs connectin ).

ing from treebank data. The methodology is based The functionZ assigns a dependency type (arc
on three essential components: label)r € R to every are: € E.

1. Deterministic parsing algorithms for building
dependency graphs (Kudo and Matsumoto
2002; Yamada and Matsumoto, 2003; Nivre,
2003) 1. The node O is a root.

2. History-based models for predicting the next 2. Every node has in-degree at most 1.
parser action (Black et al., 1992; Magerman, 3. (7 is connected.

1995; Ratnaparkhi, 1997; Collins, 1999) . .
L . o 4. G is acyclic.

3. Discriminative learning to map histories to _ o

parser actions (Kudo and Matsumoto, 2002; - G'1S projective?

Yamada and Matsumoto, 2003; Nivre et al"Conditions 1-4, which are more or less standard in

2004) dependency parsing, together entail that the graph
In this section we will define dependency graphsjs a rooted tree. The condition of projectivity, by
describe the parsing algorithm used in the experieontrast, is somewhat controversial, since the anal-
ments and finally explain the extraction of featuresysis of certain linguistic constructions appears to
for the history-based models.

Definition 2 A dependency graphi is well-
formedif and only if:

To be more exact, we requif to beweakly connected
21 D d G h which entails that the corresponding undirected graphris co
: ependency raphs nected, whereas strongly connectegjraph has alirected

A dependency graph is a labeled directed grapiPath between any pair of nodes. _ ,
. N . An arc (i, j) is projective iff there is a path from to
the nodes of which are indices corresponding tQery node: such that < j < kori > j > k. A graphG

the tokens of a sentence. Formally: is projective if all its arcs are projective.
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OBJ PMOD
NMOD SBJ NMOD NMOD‘ NMOD
JJ NN VB JJ NN IN JJ NN

Economic news had little effect on financial markets .

Figure 1: Dependency graph for an English sentence from t8@ ¥éction of the Penn Treebank

require non-projective dependency arcs. For thall the token nodes in the input sequence, and with
purpose of this paper, however, this assumption iall token nodes attached to the special root node
unproblematic, given that all the treebanks used i® with a special dependency typg. The parser
the experiments are restricted to projective deperterminates in any configuration, = (o, ¢, h,d)
dency graphs. where the input sequence is empty, which happens
Figure 1 shows a well-formed dependencyafter one left-to-right pass over the input.
graph for an English sentence, where each word There are four possible parser transitions, two
of the sentence is tagged with its part-of-speeclof which are parameterized for a dependency type
and each arc labeled with a dependency type. r € R.

2.2 Parsing Algorithm 1. LEFT-ARC(r) makes the top tokena (left)
dependent of the next tokenwith depen-
dency typer, i.e., j — i, and immediately
pops the stack.

2. RIGHT-ARC(r) makes the next token a

We begin by defining parser configurations and the
abstract data structures needed for the definition of
history-based feature models.

Definition 3 Given a setR = {ro,1,...7m} (right) dependent of the top tokerwith de-
of dependency types and a sentence = pendency type, i.e.,i = j, and immediately
(wy,...,wy), aparser configurationfor x is a

pusheg onto the stack.
3. REDUCEpoOps the stack.

1. o is a stack of tokens nodes. 4. SHIFT pushes the next tokeronto the stack.
2. 7 is a sequence of token nodes.

3. h: V& — Vis a function from token nodes
to nodes.

4. d: V] — Ris a function from token nodes
to dependency types.
5. For every token node € V', h(i) = 0if 2.3 Feature Models
and only ifd(i) = ro. The task of the classifier is to predict the next
transition given the current parser configuration,
where the configuration is represented by a fea-

quadruple: = (o, 7, h, d), where:

The choice between different transitions is nonde-
terministic in the general case and is resolved by a
classifier induced from a treebank, using features
extracted from the parser configuration.

The idea is that the sequencaepresents the re-
maining input tokens in a left-to-right pass over
ture vector®; ;) = (¢1, ..., ¢p). Each feature;

the input sentence; the stacks contains partially ” ) ; ?
ds a function of the current configuration, defined

processed nodes that are still candidates for d ) S )
pendency arcs, either as heads or dependents; alfgiérMs of amddress functiom, , which identi-

the functions: andd represent a (dynamically de- €S @ SPecific token in the current parser configu-
fined) dependency graph for the input sentence ration, and_ _arattrl_bute functionf,,, which picks
We refer to the token node on top of the stack aQUt @ SPecific attribute of the token.
thetop tokenand the first token node of the input Definition 4 Let ¢ = (o, 7, h,d) be the current
sequence as theext token parser configuration.

When parsing a sentenee = (wq, ..., wy,),
the parser is initialized to a configuratiep =
(e,(1,...,n), ho,dp) with an empty stack, with

1. For everyi (i > 0), o; and7; are address
functions identifying theith token ofs and
T, respectively (with indexing starting at 0).
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2. If ais an address function, thér{«), (o), 3.2 SVM
andr(«) are address functions, identifying
the head k), the leftmost child {), and the
rightmost child ¢), of the token identified by
« (according to the functioh).

SVM in its simplest form is a binary classifier
that tries to separate positive and negative cases in
training data by a hyperplane using a linear kernel
function. The goal is to find the hyperplane that
separates the training data into two classes with
the largest margin. By using other kernel func-
tions, such as polynomial or radial basis function
(RBF), feature vectors are mapped into a higher
dimensional space (Vapnik, 1998; Kudo and Mat-
sumoto, 2001). Multi-class classification with

A feature model is defined by specifying a vector” classes can be handled by the one-versus-all
of feature functions. In section 4.2 we will define Method, withn classifiers that each separate one

3. If a is an address function, theria), w(«)
and d(«) are feature functions, identifying
the part-of-speechp}, word form () and de-
pendency typed) of the token identified by
«o. We callp, w andd attribute functions.

the feature models used in the experiments. class from the rest, or the one-versus-one method,
with n(n — 1)/2 classifiers, one for each pair of
3 Learning Algorithms classes (Vural and Dy, 2004). SVM requires all

features to be numerical, which means that sym-
The learning problem for inductive dependencybolic features have to be converted, normally by
parsing, defined in the preceding section, is a purintroducing one binary feature for each value of
classification problem, where the input instanceshe symbolic feature.

are parser configurations, represented by feature For the experiments reported in this paper
vectors, and the output classes are parser transire use the LIBSVM library (Wu et al., 2004;
tions. In this section, we introduce the two ma-Chang and Lin, 2005) with the polynomial kernel
chine learning methods used to solve this problemy (y; . zj) = (yalz;+7)%~ > 0, whered, v and
in the experiments. r are kernel parameters. Other parameters that are
varied in experiments are the penalty paraméter
3.1 MBL which defines the tradeoff between training error
MBL is a lazy learning method, based on the idea@nd the magnitude of the margin, and the termina-
that learning is the simple storage of experienceﬂon criterione, which determines the tolerance of
in memory and that solving a new problem istraining errors.
achieved by reusing solutions from similar previ- We adopt the standard method for converting
ously solved problems (Daelemans and Van desymbolic features to numerical features by bina-
Bosch, 2005). In essence, this i& aearest neigh- rization, and we use the one-versus-one strategy
bor approach to classification, although a vari-for multi-class classification. However, to reduce
ety of sophisticated techniques, including differentraining times, we divide the training data into
distance metrics and feature weighting schemesmaller sets, according to the part-of-speech of
can be used to improve classification accuracy. the next token in the current parser configuration,
For the experiments reported in this paper weand train one set of classifiers for each smaller
use the TMBL software package for memory- set. Similar techniques have previously been used
based learning and classification (Daelemans any Yamada and Matsumoto (2003), among others,
Van den Bosch, 2005), which directly handleswithout significant loss of accuracy. In order to
multi-valued symbolic features. Based on resultsivoid too small training sets, we pool together all
from previous optimization experiments (Nivre et parts-of-speech that have a frequency below a cer-
al., 2004), we use the modified value differencetain threshold (set to 1000 in all the experiments).
metric (MVDM) to determine distances between
instances, and distance-weighted class voting fo4 Experimental Setup
determining the class of a new instance. The para-
meters varied during experiments are the numbeln this section, we describe the experimental setup,
k of nearest neighbors and the frequency thresholhcluding data sets, feature models, parameter op-
[ below which MVDM is replaced by the simple timization, and evaluation metrics. Experimental
Overlap metric. results are presented in section 5.
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4.1 Data Sets Feature | @1 | @3 | @3 | Oy | 5
. p(00) + + + + +
The data set used for Swedish comes from Tal- (7o) +l+ 1+ |+ 4
banken (Einarsson, 1976), which contains both PAT0 + + + + +
written and spoken Swedish. In the experiments, p(n) + | 4
the professional prose section is used, consisting p(72)
p(73) |+
of about 100k words taken from newspapers, text- (o) +
books and information brochures. The data has Z(Ul) N I R A
been manually annotated with a combination of d(l(oao)) N N N I
constituent structure, dependency structure, and d(r(c0)) A N N I
topological fields (Teleman, 1974). This annota- d(1(ro)) N I R
tion has been converted to dependency graphs and w(0) + 1+ |+
the original fine-grained classification of gram- w(To) + |+ |+
matical functions has been reduced to 17 depen- w(m) +
dency types. We use a pseudo-randomized data w(h(c0)) +

split, dividing the data into 10 sections by allocat-
ing sentence to section mod 10. Sections 1-9 Table 1: Feature models
are used for 9-fold cross-validation during devel-
opment anq section 0 for final evaluation. 42 Feature Models

The English data are from the Wall Street Jour-
nal section of the Penn Treebank Il (Marcus et al..Jable 1 describes the five feature modeéls-5
1994). We use sections 2—21 for training, secused in the experiments, with features specified
tion O for development, and section 23 for theil’] column 1 using the functional notation defined
final evaluation. The head percolation table ofin section 2.3. Thusp(co) refers to the part-of-
Yamada and Matsumoto (2003) has been usegPeech of the top token, whilé((r)) picks out
to convert constituent structures to dependencihe dependency type of the leftmost child of the
graphs, and a variation of the scheme employe@€xt token. It is worth noting that models,—®
by Collins (1999) has been used to construct arére unlexicalized, since they do not contain any

labels that can be mapped to a set of 12 deperfeatures of the formu(a), while models®3;—®s5
dency types. are all lexicalized to different degrees.

The Chinese data are taken from the Penn Chi- o
nese Treebank (CTB) version 5.1 (Xue et al.,4'3 Optimization
2005), consisting of about 500k words mostlyAs already noted, optimization of learning algo-
from Xinhua newswire, Sinorama news magazingithm parameters is a prerequisite for meaningful
and Hong Kong News. CTB is annotated withcomparison of different algorithms, although an
a combination of constituent structure and gramexhaustive search of the parameter space is usu-
matical functions in the Penn Treebank style, anally impossible in practice.
has been converted to dependency graphs using es-For MBL we have used the modified value
sentially the same method as for the English datajifference metric (MVDM) and class voting
although with a different head percolation tableweighted by inverse distance (ID) in all experi-
and mapping scheme. We use the same kind ahents, and performed a grid search for the op-
pseudo-randomized data split as for Swedish, buimal values of the numbek of nearest neigh-
we use section 9 as the development test set (traifvors and the frequency threshdldor switching
ing on section 1-8) and section 0 as the final tesrom MVDM to the simple Overlap metric (cf.
set (training on section 1-9). section 3.1). The best values are different for dif-
A standard HMM part-of-speech tagger with ferent combinations of data sets and models but
suffix smoothing has been used to tag the test datre generally found in the range 3-10 foand in
with an accuracy of 96.5% for English and 95.1%the range 1-8 for.
for Swedish. For the Chinese experiments we have The polynomial kernel of degree 2 has been
used the original (gold standard) tags from theused for all the SVM experiments, but the kernel
treebank, to facilitate comparison with results preparameters andr have been optimized together
viously reported in the literature. with the penalty parametér and the termination
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Swedish English Chinese

FM | LM AS EM AS EM AS EM

U L U L U L U L U L U L
®; | MBL 753| 68.7| 16.0| 114 *765| 73.7 9.8 77| 66.4] 636 143| 121
SVM 75.4| 689| 16.3| 121| 76.4| 736 9.8 77| 664| 636 142 | 121
®, | MBL 819| 744| 314| 198| 812 | 782| 198| 149| 73.0| 70.7| 22.6| 18.8
SVM | *83.1 | *76.3 | *34.3 | *24.0 | 81.3| 783| 194 | 149| *73.2 | *71.0 | 22.1| 186
®3 | MBL 859| 814| 379| 289| 855| 83.7| 265| 23.7| 779| 76.3| 26.3| 234
SVM 86.2 | *82.6 | 38.7| *32.5 | *86.4 | *84.8 | *28.5 | *25.9 | *79.7 | *78.3 | *30.1 | *25.9
P, | MBL 86.1| 821| 37.6| 30.1| 87.0| 852| 298| 26.0| 79.4| 77.7| 28.0| 247
SVM 86.0| 822| 379| 31.2| *88.4 | *86.8 | *33.2 | *30.3 | *81.7 | *80.1 | *31.0 | *27.0
®5 | MBL 86.6| 823| 39.9| 299| 880| 86.2| 328| 284 | 81.1| 79.2| 30.2| 259
SVM 86.9 | *83.2 | 40.7 | *33.7 | *89.4 | *87.9 | *36.4 | *33.1 | *84.3 | *82.7 | *34.5 | *30.5

Table 2: Parsing accuracy; FM: feature model; LM: learnirgthnd; AS: attachment score, EM: exact
match; U: unlabeled, L: labeled

criterione. The intervals for the parameters are:surprisingly, the lowest accuracy is obtained with
~: 0.16-0.40y: 0-0.6;C" 0.5-1.04: 0.1-1.0. the simplest feature model,. By and large, more
complex feature models give higher accuracy,
with one exception for Swedish and the feature
The evaluation metrics used for parsing accuracynodels®; and®,. It is significant in this context
are theunlabeled attachment scoAS;;, which is  that the Swedish data set is the smallest of the
the proportion of tokens that are assigned the corthree (about 20% of the Chinese data set and
rect head (regardless of dependency type), and thgbout 10% of the English one).

labeled attachment sco®S;,, which is the pro- If we compare MBL and SVM, we see that
portion of tokens that are assigned the correct heagdyM outperforms MBL for the three most com-
and the correct dependency type. We also considgjlex modelsds, ®, and®s, both for English and
theunlabeled exact matd&My;, which is the pro- Chinese. The results for Swedish are less clear,
portion of sentences that are assigned a completepithough the labeled accuracy fég and & are
correct dependency graph without considering desijgnificantly better. For thé; model there is no
pendency type labels, and tlebeled exact match significant improvement using SVM. In fact, the
EM_, which also takes dependency type labelsmall differences found in the ASscores are to
into account. Attachment scores are presented afe advantage of MBL. By contrast, there is a large
mean scores per token, and punctuation tokens agap between MBL and SVM for the modé}, and
excluded from all counts. For all experiments wethe languages Chinese and English. For Swedish,
have performed a McNemar test of significance athe differences are much smaller (except for the
a = 0.01 for differences between the two learning EM;, score), which may be due to the smaller size
methods. We also compare learning and parsingf the Swedish data set in combination with the
times, as measured on an AMD 64-bit processofechnique of dividing the training data for SVM
running Linux. (cf. section 3.2).

Another important factor when comparing two
learning methods is the efficiency in terms of time.
Table 2 shows the parsing accuracy for the comTable 3 reports learning and parsing time for the
bination of three languages (Swedish, English andhree languages and the five feature models. The
Chinese), two learning methods (MBL and SVM) learning time correlates very well with the com-
and five feature modelsb(—®5), with algorithm  plexity of the feature model and MBL, being a lazy
parameters optimized as described in section 4.3earning method, is much faster than SVM. For the
For each combination, we measure #ttachment unlexicalized feature modefs; and®,, the pars-
score (AS) and theexact match EM). A signif-  ing time is also considerably lower for MBL, espe-
icant improvement for one learning method overcially for the large data sets (English and Chinese).
the other is marked by an asterisk (*). But as model complexity grows, especially with

Independently of language and learningthe addition of lexical features, SVM gradually
method, the most complex feature modef gainsan advantage over MBL with respect to pars-
gives the highest accuracy across all metrics. Noihg time. This is especially striking for Swedish,

4.4 Evaluation Metrics

5 Results and Discussion
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Method | Model Swedish English Chinese
LT PT LT PT LT PT
D, MBL 1s 2s 16s 26s 7s 8s
SVM 40s 14s 1.5h| 14 min 1.5h| 17 min
[o2 MBL 3s 5s 35s 32s 13s 14 s
SVM 40 s 13s 1h| 11 min 1.5h | 15 min
[ MBL 6s| 1min| 1.5min| 9.5min 46s | 10 min
SVM 1 min 15s 1h 9 min 2h | 16 min
Dy MBL 8s | 2min | 1.5 min 9 min 45s | 12 min
SVM 2 min 18 s 2h| 12 min 25h | 14 min
D MBL 10s | 7 min 3min| 41min| 1.5min | 46 min
SVM 2 min 25s 1.5h| 10 min 6h | 24 min

Table 3: Time efficiency; LT: learning time, PT: parsing time

where the training data set is considerably smallesharing their head percolation tables for English

than for the other languages. and Chinese, respectively, and to three anonymous
Compared to the state of the art in dependencyeviewers for helpful comments and suggestions.

parsing, the unlabeled attachment scores obtained

for Swedish with modelp;, for both MBL and

SVM, are about 1 percentage point higher than th&t€ferences

results reported for MBL by Nivre et al. (2004). Ezra Black, Frederick Jelinek, John D. Lafferty,
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and reported by Yamada and Matsumoto (2003). Language Workshopages 31-37.

For Chlngse, finally, the accuracy fqr SVM with Chih-Chung Chang and Chih-Jen Lin. 2005. LIB-

model®s is about one percentage point lower than™ gy A library for support vector machines.

the best reported results, achieved with a deter- _

ministic classifier-based approach using SVM andrugene Charniak and Mark Johnson. 2005. Coarse-
. to-fine n-best parsing and MaxEnt discriminative

preprocessing to detect root nodes (Cheng et al., reranking. InProceedings of the 43rd Annual Meet-

2005a), although these results are not based on jng of the Association for Computational Linguistics

exactly the same dependency conversion and data (ACL), pages 173-180.
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