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Abstract

We show that we can automatically clas-
sify semantically related phrases into 10
classes. Classification robustness is im-
proved by training with multiple sources
of evidence, including within-document
cooccurrence, HTML markup, syntactic
relationships in sentences, substitutability
in query logs, and string similarity. Our
work provides a benchmark for automatic
n-way classification into WordNet’s se-
mantic classes, both on a TREC news cor-
pus and on a corpus of substitutable search
query phrases.

1 Introduction

Identifying semantically related phrases has been
demonstrated to be useful in information retrieval
(Anick, 2003; Terra and Clarke, 2004) and spon-
sored search (Jones et al., 2006). Work on seman-
tic entailment often includes lexical entailment as
a subtask (Dagan et al., 2005).

We draw a distinction between the task of iden-
tifying terms which are topically related and iden-
tifying the specific semantic class. For example,
the terms “dog”, “puppy”, “canine”, “schnauzer”,
“cat” and “pet” are highly related terms, which
can be identified using techniques that include
distributional similarity (Lee, 1999) and within-
document cooccurrence measures such as point-
wise mutual information (Turney et al., 2003).
These techniques, however, do not allow us to dis-
tinguish the more specific relationships:

• hypernym(dog,puppy)

∗This work was carried out while these authors were at
Yahoo! Research.

• hyponym(dog,canine)
• coordinate(dog,cat)

Lexical resources such as WordNet (Miller,
1995) are extremely useful, but are limited by be-
ing manually constructed. They do not contain se-
mantic class relationships for the many new terms
we encounter in text such as web documents, for
example “mp3 player” or “ipod”. We can use
WordNet as training data for such classification to
the extent that the training on pairs found in Word-
Net and testing on pairs found outside WordNet
provides accurate generalization.

We describe a set of features used to trainn-
way supervised machine-learned classification of
semantic classes for arbitrary pairs of phrases. Re-
dundancy in the sources of our feature informa-
tion means that we are able to provide coverage
over an extremely large vocabulary of phrases. We
contrast this with techniques that require parsing
of natural language sentences (Snow et al., 2005)
which, while providing reasonable performance,
can only be applied to a restricted vocabulary of
phrases cooccuring in sentences.

Our contributions are:

• Demonstration that binary classification re-
moves the difficult cases of classification into
closely related semantic classes

• Demonstration that dependency parser paths
are inadequate for semantic classification into
7 WordNet classes on TREC news corpora

• A benchmark of 10-class semantic classifica-
tion over highly substitutable query phrases

• Demonstration that training a classifier us-
ing WordNet for labeling does not generalize
well to query pairs

• Demonstration that much of the performance
in classification can be attained using only
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syntactic features
• A learning curve for classification of query

phrase pairs that suggests the primary bottle-
neck is manually labeled training instances:
we expect our benchmark to be surpassed.

2 Relation to Previous Work

Snow et al. (2005) demonstrated binary classi-
fication of hypernyms and non-hypernyms using
WordNet (Miller, 1995) as a source of training la-
bels. Using dependency parse tree paths as fea-
tures, they were able to generalize from WordNet
labelings to human labelings.

Turney et al. (2003) combined features to an-
swer multiple-choice synonym questions from the
TOEFL test and verbal analogy questions from
the SAT college entrance exam. The multiple-
choice questions typically do not consist of mul-
tiple closely related terms. A typical example is
given by Turney:

• hidden:: (a) laughable (c) ancient
(b) veiled (d) revealed

Note that only (b) and (d) are at all related to the
term, so the algorithm only needs to distinguish
antonyms from synonyms, not synonyms from say
hypernyms.

We use as input phrase pairs recorded in query
logs that web searchers substitute during search
sessions. We find much more closely related
phrases:

• hidden::
(a) secret (e) hiden
(b) hidden camera (f) voyeur
(c) hidden cam (g) hide
(d) spy

This set contains a context-dependent synonym,
topically related verbs and nouns, and a spelling
correction. All of these could cooccur on web
pages, so simple cooccurrence statistics may not
be sufficient to classify each according to the se-
mantic type.

We show that the techniques used to perform
binary semantic classification do not work as well
when extended to a fulln-way semantic classifi-
cation. We show that using a variety of features
performs better than any feature alone.

3 Identifying Candidate Phrases for
Classification

In this section we introduce the two data sources
we use to extract sets of candidate related phrases

for classification: a TREC-WordNet intersection
and query logs.

3.1 Noun-Phrase Pairs Cooccuring inTREC
News Sentences

The first is a data-set derived from TREC news
corpora and WordNet used in previous work for
binary semantic class classification (Snow et al.,
2005). We extract two sets of candidate-related
pairs from these corpora, one restricted and one
more complete set.

Snow et al. obtained training data from the inter-
section of noun-phrases cooccuring in sentences in
a TREC news corpus and those that can be labeled
unambiguously as hypernyms or non-hypernyms
using WordNet. We use a restricted set since in-
stances selected in the previous work are a subset
of the instances one is likely to encounter in text.
The pairs are generally either related in one type
of relationship, or completely unrelated.

In general we may be able to identify related
phrases (for example with distributional similarity
(Lee, 1999)), but would like to be able to automat-
ically classify the related phrases by the type of
the relationship. For this task we identify a larger
set of candidate-related phrases.

3.2 Query Log Data

To find phrases that are similar or substitutable for
web searchers, we turn to logs of user search ses-
sions. We look atquery reformulations: a pair
of successive queries issued by a single user on
a single day. We collapse repeated searches for
the same terms, as well as query pair sequences
repeated by the same user on the same day.

3.2.1 Substitutable Query Segments

Whole queries tend to consist of several con-
cepts together, for example “new york| maps” or
“britney spears| mp3s”. We identify segments or
phrases using a measure over adjacent terms sim-
ilar to mutual information. Substitutions occur at
the level of segments. For example, a user may
initially search for “britney spears| mp3s”, then
search for “britney spears| music”. By aligning
query pairs with a single substituted segment, we
generate pairs of phrases which a user has substi-
tuted. In this example, the phrase “mp3s” was sub-
stituted by the phrase “music”.

Aggregating substitutable pairs over millions of
users and millions of search sessions, we can cal-
culate the probability of each such rewrite, then
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test each pair for statistical significance to elim-
inate phrase rewrites which occurred in a small
number of sessions, perhaps by chance. To test
for statistical significance we use the pair inde-
pendence likelihood ratio, or log-likelihood ratio,
test. This metric tests the hypothesis that the prob-
ability of phraseβ is the same whether phraseα

has been seen or not by calculating the likelihood
of the observed data under a binomial distribution
using probabilities derived using each hypothesis
(Dunning, 1993).

logλ = log
L (P (β|α) = P (β|¬α))

L (P (β|α) 6= P (β|¬α))

A high negative value forλ suggests a strong
dependence between queryα and queryβ.

4 Labeling Phrase Pairs for Supervised
Learning

We took a random sample of query segment sub-
stitutions from our query logs to be labeled. The
sampling was limited to pairs that were frequent
substitutions for each other to ensure a high prob-
ability of the segments having some relationship.

4.1 WordNet Labeling

WordNet is a large lexical database of English
words. In addition to defining several hun-
dred thousand words, it definessynonym sets, or
synsets, of words that represent some underly-
ing lexical concept, plus relationships between
synsets. The most frequent relationships between
noun-phrases aresynonym, hyponym, hypernym,
andcoordinate, defined in Table 1. We also may
usemeronymandholonym, defined as thePART-OF

relationship.
We used WordNet to automatically label the

subset of our sample for which both phrases occur
in WordNet. Any sense of the first segment having
a relationship to any sense of the second would re-
sult in the pair being labeled. Since WordNet con-
tains many other relationships in addition to those
listed above, we group the rest into theothercate-
gory. If the segments had no relationship in Word-
Net, they were labeledno relationship.

4.2 Segment Pair Labels

Phrase pairs passing a statistical test are com-
mon reformulations, but can be of many seman-
tic types. Rieh and Xie (2001) categorized types
of query reformulations, defining 10 general cat-
egories: specification, generalization, synonym,

parallel movement, term variations, operator us-
age, error correction, general resource, special re-
source,andsite URLs. We redefine these slightly
to apply to query segments. The summary of the
definitions is shown in Table 1, along with the dis-
tribution in the data of pairs passing the statistical
test.

4.2.1 Hand Labeling

More than90% of phrases in query logs do not
appear in WordNet due to being spelling errors,
web site URLs, proper nouns of a temporal nature,
etc. Six annotators labeled2, 463 segment pairs
selected randomly from our sample. Annotators
agreed on the label of78% of pairs, with a Kappa
statistic of.74.

5 Automatic Classification

We wish to perform supervised classification of
pairs of phrases into semantic classes. To do this,
we will assign features to each pair of phrases,
which may be predictive of their semantic rela-
tionship, then use a machine-learned classifier to
assign weights to these features. In Section 7 we
will look at the learned weights and discuss which
features are most significant for identifying which
semantic classes.

5.1 Features

Features for query substitution pairs are extracted
from query logs and web pages.

5.1.1 Web Page / Document Features

We submit the two segments to a web search
engine as a conjunctive query and download the
top 50 results. Each result is converted into an
HTML Document Object Model (DOM) tree and
segmented into sentences.

Dependency Tree PathsThe path from the first
segment to the second in a dependency parse
tree generated by MINIPAR (Lin, 1998)
from sentences in which both segments ap-
pear. These were previously used by Snow
et al. (2005). These features were extracted
from web pages in all experiments, except
where we identify that we used TREC news
stories (the same data as used by Snow et al.).

HTML Paths The paths from DOM tree nodes
the first segment appears in to nodes the sec-
ond segment appears in. The value is the
number of times the path occurs with the pair.
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Class Description Example %

synonym one phrase can be used in place of the other without loss in meaning low cost; cheap 4.2
hypernym X is a hypernym ofY if and only if Y is aX muscle car; mustang 2.0
hyponym X is a hyponym ofY if and only if X is aY (inverse of hypernymy) lotus; flowers 2.0
coordinate there is someZ such thatX andY are bothZs aquarius; gemini 13.9
generalization X is a generalization ofY if X contains less information about the topiclyrics; santana lyrics 4.8
specialization X is a specification ofY if X contains more information about the topiccredit card; card 4.7
spelling change spelling errors, typos, punctuation changes, spacing changes peopl; people 14.9
stemmed form X andY have the same lemmas ant; ants 3.4
URL change X andY are related andX or Y is a URL alliance; alliance.com 29.8
other relationship X andY are related in some other way flagpoles; flags 9.8
no relationship X andY are not related in any obvious way crypt; tree 10.4

Table 1: Semantic relationships between phrases rewrittenin query reformulation sessions, along with their prevalence in our
data.

Lexico-syntactic Patterns (Hearst, 1992) A sub-
string occurring between the two segments
extracted from text in nodes in which both
segments appear. In the example fragment
“authors such as Shakespeare”, the feature
is “such as” and the value is the number of
times the substring appears between “author”
and “Shakespeare”.

5.1.2 Query Pair Features

Table 2 summarizes features that are induced
from the query strings themselves or calculated
from query log data.

5.2 Additional Training Pairs

We can double our training set by adding for each
pairu1, u2 a new pairu2, u1. The class of the new
pair is the same as the old in all cases buthyper-
nym, hyponym, specification,andgeneralization,
which are inverted. Features are reversed from
f(u1, u2) to f(u2, u1).

A pair and its inverse have different sets of fea-
tures, so splitting the set randomly into training
and testing sets should not result in resubstitution
error. Nonetheless, we ensure that a pair and its
inverse are not separated for training and testing.

5.3 Classifier

For each class we train a binary one-vs.-all linear-
kernel support vector machine (SVM) using the
optimization algorithm of Keerthi and DeCoste
(2005).

5.3.1 Meta-Classifier

For n-class classification, we calibrate SVM
scores to probabilities using the method described
by Platt (2000). This gives usP (class|pair) for
each pair. The final classification for a pair is
argmaxclassP (class|pair).

Source Snow (NIPS 2005) Experiment
Task binary hypernym binary hypernym
Data WordNet-TREC WordNet-TREC
Instance Count 752,311 752,311
Features minipar paths minipar paths
Feature Count 69,592 69,592
Classifier logistic Regression linear SVM
maxF 0.348 0.453

Table 3: Snow et al’s (2005) reported performance using lin-
ear regression, and our reproduction of the same experiment,
using a support vector machine (SVM).

5.3.2 Evaluation

Binary classifiers are evaluated by ranking in-
stances by classification score and finding the Max
F1 (the harmonic mean of precision and recall;
ranges from 0 to 1) and area under the ROC curve
(AUC; ranges from 0.5 to 1 with at least 0.8 being
“good”). The meta-classifier is evaluated by pre-
cision and recall of each class and classification
accuracy of all instances.

6 Experiments

6.1 Baseline Comparison to Snow et al.’s
Previous Hypernym Classification on
WordNet-TREC data

Snow et al. (2005) evaluated binary classifi-
cation of noun-phrase pairs ashypernymsor
non-hypernyms. When training and testing on
WordNet-labeled pairs from TREC sentences,
they report classifier Max F of 0.348, using de-
pendency path features and logistic regression. To
justify our choice of an SVM for classification, we
replicated their work. Snow et al. provided us with
their data. With our SVM we achieved a Max F of
0.453, 30% higher than they reported.

6.2 Extending Snow et al.’s WordNet-TREC
Binary Classification to N Classes

Snow et al. select pairs that are “Known Hyper-
nyms” (the first sense of the first word is a hy-
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Feature Description
Levenshtein Distance # character insertions/deletions/substitutions to change queryα to queryβ (Levenshtein, 1966).
Word Overlap Percent # words the two queries have in common, divided by num. words in the longer query.
Possible Stem 1 if the two segments stem to the same root using the Porter stemmer.
Substring Containment 1 if the first segment is a substring of the second.
Is URL 1 if either segment matches a handmade URL regexp.
Query Pair Frequency # times the pair was seen in the entire unlabeled corpus of query pairs.
Log Likelihood Ratio The Log Likelihood Ratio described in Section 3.2.1 Formula3.2.1
Dice and Jaccard CoefficientsMeasures of the similarity of substitutes for and by the two phrases.

Table 2: Syntactic and statistical features over pairs of phrases.

ponym of the first sense of the second and both
have no more than one tagged sense in the Brown
corpus) and “Known Non-Hypernyms” (no sense
of the first word is a hyponym of any sense of the
second). We wished to test whether making the
classes less cleanly separable would affect the re-
sults, and also whether we could use these features
for n-way classification.

From the same TREC corpus we extracted
known synonym, known hyponym, known coordi-
nate, known meronym,andknown holonympairs.
Each of these classes is defined analogously to the
known hypernymclass; we selected these six rela-
tionships because they are the six most common.
A pair is labeledknown no-relationshipif no sense
of the first word has any relationship to any sense
of the second word. The class distribution was se-
lected to match as closely as possible that observed
in query logs. We labeled 50,000 pairs total.

Results are shown in Table 4(a). Although AUC
is fairly high for all classes, MaxF is low for all
but two. MaxF has degraded quite a bit for hyper-
nyms from Table 3. Removing all instances except
hypernym and no relationship brings MaxF up to
0.45, suggesting that the additional classes make it
harder to separate hypernyms.

Metaclassifier accuracy is very good, but this is
due to high recall ofno relationshipand coordi-
natepairs: more than 80% of instances with some
relationship are predicted to be coordinates, and
most of the rest are predicted no relationship. It
seems that we are only distinguishing betweenno
vs. somerelationship.

The size of theno relationshipclass may be bi-
asing the results. We removed those instances, but
performance of the n-class classifier did not im-
prove (Table 4(b)). MaxF of binary classifiers did
improve, even though AUC is much worse.

6.3 N-Class Classification of Query Pairs

We now use query pairs rather than TREC pairs.

6.3.1 Classification Using Only Dependency
Paths

We first limit features to dependency paths in
order to compare to the prior results. Dependency
paths cannot be obtained for all query phrase pairs,
since the two phrases must appear in the same sen-
tence together. We used only the pairs for which
we could get path features, about 32% of the total.

Table 5(a) shows results of binary classification
and metaclassification on those instances using de-
pendency path features only. We can see that de-
pendency paths do not perform very well on their
own: most instances are assigned to the “coordi-
nate” class that comprises a plurality of instances.

A comparison of Tables 5(a) and 4(a) suggests
that classifying query substitution pairs is harder
than classifying TREC phrases.

Table 5(b) shows the results of binary clas-
sification and metaclassification on the same in-
stances using all features. Using all features im-
proves performance dramatically on each individ-
ual binary classifier as well as the metaclassifier.

6.3.2 Classification on All Query Pairs Using
All Features

We now expand to all of our hand-labeled pairs.
Table 6(a) shows results of binary and meta classi-
fication; Figure 1 shows precision-recall curves for
10 binary classifiers (excluding URLs). Our clas-
sifier does quite well on every class but hypernym
and hyponym. These two make up a very small
percentage of the data, so it is not surprising that
performance would be so poor.

The metaclassifier achieved 71% accuracy. This
is significantly better than random or majority-
class baselines, and close to our 78% interanno-
tator agreement. Thresholding the metaclassifier
to pairs with greater than .5 max class probability
(68% of instances) gives 85% accuracy.

Next we wish to see how much of the perfor-
mance can be maintained without using the com-
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binary n-way data
class maxF AUC prec rec %
no rel .980 .986 .979 .985 80.0
synonym .028 .856 0 0 0.3
hypernym .185 .888 .512 .019 2.1
hyponym .193 .890 .462 .016 2.1
coordinate .808 .971 .714 .931 14.8
meronym .158 .905 .615 .050 0.3
holonym .120 .883 .909 .062 0.3
metaclassifier accuracy .927

(a) All seven WordNet classes. The high accuracy is
mostly due to high recall ofno relandcoordinateclasses.

binary n-way data
maxF AUC prec rec %

– – – – 0
.086 .683 0 0 1.7
.337 .708 .563 .077 10.6
.341 .720 .527 .080 10.6
.857 .737 .757 .986 74.1
.251 .777 .500 .068 1.5
.277 .767 .522 .075 1.5

– .749

(b) Removing no relationship instances
improves MaxF and recall of all classes,
but performance is generally worse.

Table 4: Performance of 7 binary classifier and metaclassifiers on phrase-pairs cooccuring in TREC data labeled with WordNet
classes, using minipar dependency features. These features do not seem to be adequate for distinguishing classes otherthan
coordinateandno-relationship.

binary n-way
class maxf auc prec rec
no rel .281 .611 .067 .006
synonym .269 .656 .293 .167
hypernym .140 .626 0 0
hyponym .121 .610 0 0
coordinate .506 .760 .303 .888
spelling .288 .677 .121 .022
stemmed .571 .834 .769 .260
URL .742 .919 .767 .691
generalization .082 .547 0 0
specification .085 .528 0 0
other .393 .681 .384 .364
metaclassifier accuracy .385

(a) Dependency tree paths only.

binary n-way data
maxf auc prec rec % % full
.602 .883 .639 .497 10.6 3.5
.477 .851 .571 .278 4.5 1.5
.167 .686 .125 .017 3.7 1.2
.136 .660 0 0 3.7 1.2
.747 .935 .624 .862 21.0 6.9
.814 .970 .703 .916 11.0 3.6
.781 .972 .788 .675 4.8 1.6

1 1 1 1 16.2 5.3
.490 .883 .489 .393 3.5 1.1
.584 .854 .600 .589 3.5 1.1
.641 .895 .603 .661 17.5 5.7

– .692 —

(b) All features.

Table 5: Binary and metaclassifier performance on the 32% of hand-labeled instances with dependency path features. Adding
all our features significantly improves performance over just using dependency paths.

putationally expensive syntactic parsing of depen-
dency paths. To estimate the marginal gain of the
other features over the dependency paths, we ex-
cluded the latter features and retrained our clas-
sifiers. Results are shown in Table 6(b). Even
though binary and meta-classifier performance de-
creases on all classes but generalizations and spec-
ifications, much of the performance is maintained.

Because URL changes are easily identifiable by
the IsURL feature, we removed those instances
and retrained the classifiers. Results are shown in
Table 6(c). Although overall accuracy is worse,
individual class performance is still high, allow-
ing us to conclude our results are not only due to
the ease of classifying URLs.

We generated a learning curve by randomly
sampling instances, training the binary classifiers
on that subset, and training the metaclassifier on
the results of the binary classifiers. The curve is
shown in Figure 2. With 10% of the instances, we
have a metaclassifier accuracy of 59%; with 100%
of the data, accuracy is 71%. Accuracy shows no

sign of falling off with more instances.

6.4 Training on WordNet-Labeled Pairs Only

Figure 2 implies that more labeled instances will
lead to greater accuracy. However, manually la-
beled instances are generally expensive to obtain.
Here we look to other sources of labeled instances
for additional training pairs.

6.4.1 Training and Testing on WordNet

We trained and tested five classifiers using 10-
fold cross validation on our set of WordNet-
labeled query segment pairs. Results for each class
are shown in Table 7. We seem to have regressed
to predictingno vs. somerelationship.

Because these results are not as good as the
human-labeled results, we believe that some of our
performance must be due to peculiarities of our
data. That is not unexpected: since words that ap-
pear in WordNet are very common, features are
much noisier than features associated with query
entities that are often structured within web pages.
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binary n-way
class maxf auc prec rec
no rel .531 .878 .616 .643
synonym .355 .820 .506 .212
hypernym .173 .821 .100 .020
hyponym .173 .797 .059 .010
coordinate .635 .921 .590 .703
spelling .778 .960 .625 .904
stemmed .703 .973 .786 .589
URL 1 1 1 1
generalization .565 .916 .575 .483
specification .661 .926 .652 .506
other .539 .898 .575 .483
metaclassifier accuracy .714

(a) All features.

binary n-way data
maxf auc prec rec %
.466 .764 .549 .482 10.4
.351 .745 .493 .178 4.2
.133 .728 0 0 2.0
.163 .733 0 0 2.0
.539 .832 .565 .732 13.9
.723 .917 .628 .902 14.9
.656 .964 .797 .583 3.4

1 1 1 1 29.8
.492 .852 .604 .604 4.8
.578 .869 .670 .644 4.7
.436 .790 .550 .444 9.8

– .714

(b) Dependency path features removed.

binary n-way
maxf auc prec rec
.512 .808 .502 .486
.350 .759 .478 .212
.156 .710 .250 .020
.187 .739 .125 .020
.634 .885 .587 .706
.774 .939 .617 .906
.717 .967 .802 .601

– – – –
.581 .885 .598 .634
.665 .906 .657 .468
.529 .847 .559 .469

– .587

(c) URL class removed.

Table 6: Binary and metaclassifier performance on all classes and all hand-labeled instances. Table (a) provides a benchmark
for 10-class classification over highly substitutable query phrases. Table (b) shows that a lot of our performance can beachieved
without computationally-expensive parsing.

binary meta data
class maxf auc prec rec %
no rel .758 .719 .660 .882 57.8
synonym .431 .901 .617 .199 2.4
hypernym .284 .803 .367 .061 1.8
hyponym .212 .804 .415 .056 1.6
coordinate .588 .713 .615 .369 35.5
other .206 .739 .375 .019 0.8
metaclassifier accuracy .648

Table 7: Binary and metaclassifier performance on WordNet-
labeled instances with all features.

binary meta data
class maxf auc prec rec %
no rel .525 .671 .485 .354 31.9
synonym .381 .671 .684 .125 13.0
hypernym .211 .605 0 0 6.2
hyponym .125 .501 0 0 6.2
coordinate .623 .628 .485 .844 42.6
metaclassifier accuracy .490

Table 8: Training on WordNet-labeled pairs and testing on
hand-labeled pairs. Classifiers trained on WordNet do not
generalize well.

6.4.2 Training on WordNet, Testing on
WordNet and Hand-Labeled Pairs

We took the five classes for which human and
WordNet definitions agreed (synonyms, coordi-
nates, hypernyms, hyponyms,andno relationship)
and trained classifiers on all WordNet-labeled in-
stances. We tested the classifiers on human-
labeled instances from just those five classes. Re-
sults are shown in Table 8. Performance was
not very good, reinforcing the idea that while our
features can distinguish between query segments,
they cannot distinguish between common words.
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Figure 2: Meta-classifier accuracy as a function of number of
labeled instances for training.

7 Discussion

Almost all high-weighted features are either
HTML paths or query log features; these are the
ones that are easiest to obtain. Many of the
highest-weight HTML tree features are symmet-
ric, e.g. both words appear in cells of the same ta-
ble, or as items in the same list. Here we note a
selection of the more interesting predictors.

synonym —“X or Y” expressed as a dependency
path was a high-weight feature.

hyper/hyponym —“Y and other X” as a depen-
dency path has highest weight. An interesting
feature is X in a table cell and Y appearing in
text outside but nearby the table.

sibling —many symmetric HTML features. “X to
the Y” as in “80s to the 90s”. “X and Y”, “X,
Y, and Z” highly-weighted minipar paths.

general/specialization—the top three features
are substring containment, word subset dif-
ference count, and prefix overlap.

spelling change—many negative features, indi-

55



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

on

Recall

  F=0.531

  F=0.634

  F=0.354

F=0.172
  F=0.173

no relationship
sibling

synonym
hyponym
hypernym

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

on

Recall

  F=0.777

  F=0.538

  F=0.702

  F=0.565
  F=0.661

spelling change
related in some other way

stemmed form
generalization
specification

Figure 1: Precision-recall curves for 10 binary classifierson all hand-labeled instances with all features.

cating that two words that cooccur in a web
page arenot likely to be spelling differences.

other —many symmetric HTML features. Two
words emphasized in the same way (e.g. both
bolded) may indicate some relationship.

none —many asymmetric HTML features, e.g.
one word in a blockquote, the other bolded
in a different paragraph. Dice coefficient is a
good negative features.

8 Conclusion

We have provided the first benchmark forn-
class semantic classification of highly substi-
tutable query phrases. There is much room for im-
provement, and we expect that this baseline will
be surpassed.
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