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Abstract

In a new approach to large-scale extrac-
tion of facts from unstructured text, dis-
tributional similarities become an integral
part of both the iterative acquisition of
high-coverage contextual extraction pat-
terns, and the validation and ranking of
candidate facts. The evaluation mea-
sures the quality and coverage of facts
extracted from one hundred million Web
documents, starting from ten seed facts
and using no additional knowledge, lexi-
cons or complex tools.

1 Introduction

1.1 Background

The potential impact of structured fact reposito-
ries containing billions of relations among named
entities on Web search is enormous. They en-
able the pursuit of new search paradigms, the pro-
cessing of database-like queries, and alternative
methods of presenting search results. The prepa-
ration of exhaustive lists of hand-written extrac-
tion rules is impractical given the need for domain-
independent extraction of many types of facts from
unstructured text. In contrast, the idea of boot-
strapping for relation and information extraction
was first proposed in (Riloff and Jones, 1999), and
successfully applied to the construction of seman-
tic lexicons (Thelen and Riloff, 2002), named en-
tity recognition (Collins and Singer, 1999), extrac-
tion of binary relations (Agichtein and Gravano,
2000), and acquisition of structured data for tasks
such as Question Answering (Lita and Carbonell,
2004; Fleischman et al., 2003). In the context of
fact extraction, the resulting iterative acquisition
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framework starts from a small set of seed facts,
finds contextual patterns that extract the seed facts
from the underlying text collection, identifies a
larger set of candidate facts that are extracted by
the patterns, and adds the best candidate facts to
the previous seed set.

1.2 Contributions

Figure 1 describes an architecture geared towards
large-scale fact extraction. The architecture is sim-
ilar to other instances of bootstrapping for infor-
mation extraction. The main processing stages are
the acquisition of contextual extraction patterns
given the seed facts, acquisition of candidate facts
given the extraction patterns, scoring and ranking
of the patterns, and scoring and ranking of the can-
didate facts, a subset of which is added to the seed
set of the next round.

Within the existing iterative acquisition frame-
work, our first contribution is a method for au-
tomatically generating generalized contextual ex-
traction patterns, based on dynamically-computed
classes of similar words. Traditionally, the ac-
quisition of contextual extraction patterns requires
hundreds or thousands of consecutive iterations
over the entire text collection (Lita and Carbonell,
2004), often using relatively expensive or restric-
tive tools such as shallow syntactic parsers (Riloff
and Jones, 1999; Thelen and Riloff, 2002) or
named entity recognizers (Agichtein and Gravano,
2000). Comparatively, generalized extraction pat-
terns achieve exponentially higher coverage in
early iterations. The extraction of large sets of can-
didate facts opens the possibility of fast-growth it-
erative extraction, as opposed to the de-facto strat-
egy of conservatively growing the seed set by as
few as five items (Thelen and Riloff, 2002) after
each iteration.
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The second contribution of the paper is a
method for domain-independent validation and
ranking of candidate facts, based on a similar-
ity measure of each candidate fact relative to the
set of seed facts. Whereas previous studies as-
sume clean text collections such as news cor-
pora (Thelen and Riloff, 2002; Agichtein and Gra-
vano, 2000; Hasegawa et al., 2004), the valida-
tion is essential for low-quality sets of candidate
facts collected from noisy Web documents. With-
out it, the addition of spurious candidate facts to
the seed set would result in a quick divergence of
the iterative acquisition towards irrelevant infor-
mation (Agichtein and Gravano, 2000). Further-
more, the finer-grained ranking induced by simi-
larities is necessary in fast-growth iterative acqui-
sition, whereas previously proposed ranking crite-
ria (Thelen and Riloff, 2002; Lita and Carbonell,
2004) are implicitly designed for slow growth of
the seed set.

2 Similarities for Pattern Acquisition

2.1 Generalization via Word Similarities

The extraction patterns are acquired by matching
the pairs of phrases from the seed set into docu-
ment sentences. The patterns consist of contigu-
ous sequences of sentence terms, but otherwise
differ from the types of patterns proposed in earlier
work in two respects. First, the terms of a pattern
are either regular words or, for higher generality,
any word from a class of similar words. Second,
the amount of textual context encoded in a pat-
tern is limited to the sequence of terms between
(i.e., infix) the pair of phrases from a seed fact that
could be matched in a document sentence, thus ex-
cluding any context to the left (i.e., prefix) and to
the right (i.e., postfix) of the seed.

The pattern shown at the top of Figure 2, which

1 (rving Berlin,1888) |
NNP NNP  CD

Seed fact

\ N/A]  CL1born CL200,
Infix-only pattern

Matching on sentences :
(S1) Infix RS

g

Aurelio de la Vega Was born November 28 , 1925 in Havana, Cuba .
FW  FWFW NNPVBD VBN NNP CD, CD ,IN NNP , NNP
not found < = fuund
(82) o Infix
;
The poet was born Jan. 13, several years after the revolution .
DT NN VBD VBN NNPCD, 1 NNS IN DT NN
not found <—| = not found

(S3) Infix

-1 British = native Glenn Cornick of Jethro Tull Was born April 23, 1947 .

NNP @ ) NNP NNP IN NNP NNP VBD VBN NNP CD, CD .
found <+ > found

(S4) Infix

The youngest child of three siblings , Mariah Carey Was born March 27 ,

DT JS NN IN CD NNS , NNP NNP VBD VBN NNP CD,
found <

1970 in Huntington , Long Island in New York .

CD IN NNP A NN IN NNP NNP .
> found
(S5) Infix

r-| Chester Burton Atkms was born June 20, 1924 on a farm near Luttrell .

NNP NNP NNP VBD VBN NNP CD, CD , INDT NN IN NNP
found <+ > found

.

Candidate facts !
»[ (3ethro Tull, 1947)‘(Mar|ah Carey, 1970) ‘(Chester Burton Atkins, 1924) ]‘

Figure 2: Extraction via infix-only patterns

contains the sequence [CL1 born CL2 00 .], illus-
trates the use of classes of distributionally similar
words within extraction patterns. The first word
class in the sequence, CL1, consists of words such
as {was, is, could}, whereas the second class in-
cludes {February, April, June, Aug., November}
and other similar words. The classes of words are
computed on the fly over all sequences of terms
in the extracted patterns, on top of a large set of
pairwise similarities among words (Lin, 1998) ex-
tracted in advance from around 50 million news
articles indexed by the Google search engine over
three years. All digits in both patterns and sen-
tences are replaced with a common marker, such
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that any two numerical values with the same num-
ber of digits will overlap during matching.

Many methods have been proposed to compute
distributional similarity between words, e.g., (Hin-
dle, 1990), (Pereira et al., 1993), (Grefenstette,
1994) and (Lin, 1998). Almost all of the methods
represent a word by a feature vector, where each
feature corresponds to a type of context in which
the word appeared. They differ in how the feature
vectors are constructed and how the similarity be-
tween two feature vectors is computed.

In our approach, we define the features of a
word w to be the set of words that occurred within
a small window of w in a large corpus. The context
window of an instance of w consists of the clos-
est non-stopword on each side of w and the stop-
words in between. The value of a feature w’ is de-
fined as the pointwise mutual information between
w' and w: PMI(w',w) = —log(poipty)- The
similarity between two different words w; and w,
S(wy,ws), is then computed as the cosine of the
angle between their feature vectors.

While the previous approaches to distributional
similarity have only applied to words, we applied
the same technique to proper names as well as
words. The following are some example similar
words and phrases with their similarities, as ob-
tained from the Google News corpus:

e Carey: Higgins 0.39, Lambert 0.39, Payne
0.38, Kelley 0.38, Hayes 0.38, Goodwin 0.38,
Griffin 0.38, Cummings 0.38, Hansen 0.38,
Williamson 0.38, Peters 0.38, Walsh 0.38, Burke
0.38, Boyd 0.38, Andrews 0.38, Cunningham
0.38, Freeman 0.37, Stephens 0.37, Flynn 0.37,
Ellis 0.37, Bowers 0.37, Bennett 0.37, Matthews
0.37, Johnston 0.37, Richards 0.37, Hoffman
0.37, Schultz 0.37, Steele 0.37, Dunn 0.37, Rowe
0.37, Swanson 0.37, Hawkins 0.37, Wheeler 0.37,
Porter 0.37, Watkins 0.37, Meyer 0.37 [..];

e Mariah Carey: Shania Twain 0.38, Christina
Aguilera 0.35, Sheryl Crow 0.35, Britney Spears
0.33, Celine Dion 0.33, Whitney Houston 0.32,
Justin Timberlake 0.32, Beyonce Knowles 0.32,
Bruce Springsteen 0.30, Faith Hill 0.30, LeAnn
Rimes 0.30, Missy Elliott 0.30, Aretha Franklin
0.29, Jennifer Lopez 0.29, Gloria Estefan 0.29,
Elton John 0.29, Norah Jones 0.29, Missy
Elliot 0.29, Alicia Keys 0.29, Avril Lavigne
0.29, Kid Rock 0.28, Janet Jackson 0.28, Kylie
Minogue 0.28, Beyonce 0.27, Enrique lglesias
0.27, Michelle Branch 0.27 [..];

e Jethro Tull: Motley Crue 0.28, Black Crowes
0.26, Pearl Jam 0.26, Silverchair 0.26, Black Sab-
bath 0.26, Doobie Brothers 0.26, Judas Priest 0.26,
Van Halen 0.25, Midnight Oil 0.25, Pere Ubu 0.24,
Black Flag 0.24, Godsmack 0.24, Grateful Dead
0.24, Grand Funk Railroad 0.24, Smashing Pump-
kins 0.24, Led Zeppelin 0.24, Aerosmith 0.24,
Limp Bizkit 0.24, Counting Crows 0.24, Echo
And The Bunnymen 0.24, Cold Chisel 0.24, Thin
Lizzy 0.24 [..].

To our knowledge, the only previous study that
embeds similarities into the acquisition of extrac-
tion patterns is (Stevenson and Greenwood, 2005).
The authors present a method for computing pair-
wise similarity scores among large sets of poten-
tial syntactic (subject-verb-object) patterns, to de-
tect centroids of mutually similar patterns. By as-
suming the syntactic parsing of the underlying text
collection to generate the potential patterns in the
first place, the method is impractical on Web-scale
collections. Two patterns, e.g. chairman-resign
and CEO-quit, are similar to each other if their
components are present in an external hand-built
ontology (i.e., WordNet), and the similarity among
the components is high over the ontology. Since
general-purpose ontologies, and WordNet in par-
ticular, contain many classes (e.g., chairman and
CEO) but very few instances such as Osasuna,
Crewe etc., the patterns containing an instance
rather than a class will not be found to be simi-
lar to one another. In comparison, the classes and
instances are equally useful in our method for gen-
eralizing patterns for fact extraction. We merge
basic patterns into generalized patterns, regardless
of whether the similar words belong, as classes or
instances, in any external ontology.

2.2 Generalization via Infix-Only Patterns

By giving up the contextual constraints imposed
by the prefix and postfix, infix-only patterns rep-
resent the most aggressive type of extraction pat-
terns that still use contiguous sequences of terms.
In the absence of the prefix and postfix, the outer
boundaries of the fact are computed separately for
the beginning of the first (left) and end of the sec-
ond (right) phrases of the candidate fact. For gen-
erality, the computation relies only on the part-
of-speech tags of the current seed set. Starting
forward from the right extremity of the infix, we
collect a growing sequence of terms whose part-
of-speech tags are [P1+ Po+ .. P,+], where the

811



notation P,;+ represents one or more consecutive
occurrences of the part-of-speech tag P;. The se-
quence [P P5 .. P,,] must be exactly the sequence
of part of speech tags from the right side of one of
the seed facts. The point where the sequence can-
not be grown anymore defines the boundary of the
fact. A similar procedure is applied backwards,
starting from the left extremity of the infix. An
infix-only pattern produces a candidate fact from
a sentence only if an acceptable sequence is found
to the left and also to the right of the infix.

Figure 2 illustrates the process on the infix-
only pattern mentioned earlier, and one seed fact.
The part-of-speech tags for the seed fact are [NNP
NNP] and [CD] for the left and right sides respec-
tively. The infix occurs in all sentences. How-
ever, the matching of the part-of-speech tags of the
sentence sequences to the left and right of the in-
fix, against the part-of-speech tags of the seed fact,
only succeeds for the last three sentences. It fails
for the first sentence S; to the left of the infix, be-
cause [.. NNP] (for Vega) does not match [NNP
NNP]. It also fails for the second sentence S, to
both the left and the right side of the infix, since [..
NN] (for poet) does not match [NNP NNP], and
[JJ ..] (for several) does not match [CD].

3 Similarities for Validation and Ranking

3.1 Revisiting Standard Ranking Criteria

Because some of the acquired extraction patterns
are too generic or wrong, all approaches to iter-
ative acquisition place a strong emphasis on the
choice of criteria for ranking. Previous literature
quasi-unanimously assesses the quality of each
candidate fact based on the number and qual-
ity of the patterns that extract the candidate fact
(more is better); and the number of seed facts ex-
tracted by the same patterns (again, more is bet-
ter) (Agichtein and Gravano, 2000; Thelen and
Riloff, 2002; Lita and Carbonell, 2004). However,
our experiments using many variations of previ-
ously proposed scoring functions suggest that they
have limited applicability in large-scale fact ex-
traction, for two main reasons. The first is that
it is impractical to perform hundreds of acquisi-
tion iterations on terabytes of text. Instead, one
needs to grow the seed set aggressively in each
iteration. Previous scoring functions were im-
plicitly designed for cautious acquisition strate-
gies (Collins and Singer, 1999), which expand the
seed set very slowly across consecutive iterations.

In that case, it makes sense to single out a small
number of best candidates, among the other avail-
able candidates. Comparatively, when 10,000 can-
didate facts or more need to be added to a seed set
of 10 seeds as early as after the first iteration, it
is difficult to distinguish the quality of extraction
patterns based, for instance, only on the percent-
age of the seed set that they extract. The second
reason is the noisy nature of the Web. A substan-
tial number of factors can and will concur towards
the worst-case extraction scenarios on the \Web.
Patterns of apparently high quality turn out to pro-
duce a large quantity of erroneous “facts” such as
(A-League, 1997), but also the more interesting
(Jethro Tull, 1947) as shown earlier in Figure 2, or
(Web Site David, 1960) or (New York, 1831). As
for extraction patterns of average or lower quality,
they will naturally lead to even more spurious ex-
tractions.

3.2 Ranking of Extraction Patterns

The intuition behind our criteria for ranking gen-
eralized pattern is that patterns of higher preci-
sion tend to contain words that are indicative of
the relation being mined. Thus, a pattern is more
likely to produce good candidate facts if its in-
fix contains the words language or spoken if ex-
tracting Language-SpokenIn-Country facts, or the
word capital if extracting City-CapitalOf-Country
relations. In each acquisition iteration, the scor-
ing of patterns is a two-pass procedure. The first
pass computes the normalized frequencies of all
words excluding stopwords, over the entire set of
extraction patterns. The computation applies sep-
arately to the prefix, infix and postfix of the pat-
terns. In the second pass, the score of an extraction
pattern is determined by the words with the high-
est frequency score in its prefix, infix and postfix,
as computed in the first pass and adjusted for the
relative distance to the start and end of the infix.

3.3 Ranking of Candidate Facts

Figure 3 introduces a new scheme for assessing the
quality of the candidate facts, based on the compu-
tation of similarity scores for each candidate rela-
tive to the set of seed facts. A candidate fact, e.qg.,
(Richard Steele, 1672), is similar to the seed set if
both its phrases, i.e., Richard Steele and 1672, are
similar to the corresponding phrases (John Lennon
or Stephen Foster in the case of Richard Steele)
from the seed facts. For a phrase of a candidate
fact to be assigned a non-default (non-minimum)
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Similar words Seed facts Similar words
for: John R R for: Lennon
John Lennon
Chiis Lembert
James ! | ! McNamara | (6)
Andrew Stephen Foster | 1826] Bateson
Mike : : : McFadden | (4)
Matt R PP PPPPPY SRS ‘ Costello
(3)| Brian . Cronin
. Candidate facts
Christopher Wool
oo ORI o
[Richard Steele [1672]|V
Stephen ) (4) Foster
(1)| Richard [Brian McFadden [1980]|V Hansen ©)]
(8)| Stan (5) (6) Hawkins
(5)| Robert [Robert S. McNamara [1916](V | Fisher
Michael () Baker
Peter [Barbara Steele [1937]|V  |Holloway
(7)| Barbara @ (9 Steele 2
William [ Stan Hansen [1949]|V | Sweeney
Similar words Similar words
for: Stephen [Jethro Tull [1047]] for: Foster

Figure 3: The role of similarities in estimating the
quality of candidate facts

similarity score, the words at its extremities must
be similar to one or more words situated at the
same positions in the seed facts. This is the case
for the first five candidate facts in Figure 3. For ex-
ample, the first word Richard from one of the can-
didate facts is similar to the first word John from
one of the seed facts. Concurrently, the last word
Steele from the same phrase is similar to Foster
from another seed fact. Therefore Robert Foster
is similar to the seed facts. The score of a phrase
containing N words is:

C1+ XN log(1 + Sim;) ,if Simy y >0

Cy , otherwise.
where Sim; is the similarity of the component
word at position ¢ in the phrase, and C; and Cs
are scaling constants such that Co<Cy. Thus,
the similarity score of a candidate fact aggregates
individual word-to-word similarity scores, for the
left side and then for the right side of a candidate
fact. In turn, the similarity score of a component
word Sim; is higher if: a) the computed word-to-
word similarity scores are higher relative to words
at the same position 7 in the seeds; and b) the com-
ponent word is similar to words from more than
one seed fact.

The similarity scores are one of a linear com-
bination of features that induce a ranking over the
candidate facts. Three other domain-independent
features contribute to the final ranking: a) a phrase
completeness score computed statistically over the
entire set of candidate facts, which demotes candi-
date facts if any of their two sides is likely to be
incomplete (e.g., Mary Lou vs. Mary Lou Retton,

or John F. vs. John F. Kennedy); b) the average
PageRank value over all documents from which
the candidate fact is extracted; and c) the pattern-
based scores of the candidate fact. The latter fea-
ture converts the scores of the patterns extracting
the candidate fact into a score for the candidate
fact. For this purpose, it considers a fixed-length
window of words around each match of a candi-
date fact in some sentence from the text collection.
This is equivalent to analyzing all sentence con-
texts from which a candidate fact can be extracted.
For each window, the word with the highest fre-
quency score, as computed in the first pass of the
procedure for scoring the patterns, determines the
score of the candidate fact in that context. The
overall pattern-based score of a candidate fact is
the sum of the scores over all its contexts of occur-
rence, normalized by the frequency of occurrence
of the candidate over all sentences.

Besides inducing a ranking over the candidate
facts, the similarity scores also serve as a valida-
tion filter over the candidate facts. Indeed, any
candidates that are not similar to the seed set can
be filtered out. For instance, the elimination of
(Jethro Tull, 1947) is a side effect of verifying that
Tull is not similar to any of the last-position words
from phrases in the seed set.

4 Evaluation

4,1 Data

The source text collection consists of three chunks
Wi, Wy, W3 of approximately 100 million doc-
uments each. The documents are part of a larger
snapshot of the Web taken in 2003 by the Google
search engine. All documents are in English.
The textual portion of the documents is cleaned
of Html, tokenized, split into sentences and part-
of-speech tagged using the TnT tagger (Brants,
2000).

The evaluation involves facts of type Person-
Bornin-Year. The reasons behind the choice of
this particular type are threefold. First, many
Person-Bornin-Year facts are probably available
on the Web (as opposed to, e.g., City-CapitalOf-
Country facts), to allow for a good stress test
for large-scale extraction. Second, either side of
the facts (Person and Year) may be involved in
many other types of facts, such that the extrac-
tion would easily divergence unless it performs
correctly. Third, the phrases from one side (Per-
son) have an utility in their own right, for lexicon
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Table 1: Set of seed Person-Bornin-Year facts

[ Name | Year ]| Name | Year |
Paul McCartney 1942 || John Lennon 1940
Vincenzo Bellini 1801 || Stephen Foster | 1826
Hoagy Carmichael 1899 || Irving Berlin 1888
Johann Sebastian Bach | 1685 || Bela Bartok 1881
Ludwig van Beethoven | 1770 || Bob Dylan 1941

construction or detection of person names.

The Person-Bornin-Year type is specified

through an initial set of 10 seed facts shown in Ta-
ble 1. Similarly to source documents, the facts are
also part-of-speech tagged.

4.2 System Settings

In each iteration, the case-insensitive matching of
the current set of seed facts onto the sentences pro-
duces basic patterns. The patterns are converted
into generalized patterns. The length of the infix
may vary between 1 and 6 words. Potential pat-
terns are discarded if the infix contains only stop-
words.

When a pattern is retained, it is used as an
infix-only pattern, and allowed to generate at most
600,000 candidate facts. At the end of an itera-
tion, approximately one third of the validated can-
didate facts are added to the current seed set. Con-
sequently, the acquisition expands the initial seed
set of 10 facts to 100,000 facts (after iteration 1)
and then to one million facts (after iteration 2) us-
ing chunk W;.

4.3 Precision

A separate baseline run extracts candidate facts
from the text collection following the traditional
iterative acquisition approach. Pattern general-
ization is disabled, and the ranking of patterns
and facts follows strictly the criteria and scoring
functions from (Thelen and Riloff, 2002), which
are also used in slightly different form in (Lita
and Carbonell, 2004) and (Agichtein and Gravano,
2000). The theoretical option of running thou-
sands of iterations over the text collection is not
viable, since it would imply a non-justifiable ex-
pense of our computational resources. As a more
realistic compromise over overly-cautious acqui-
sition, the baseline run retains as many of the top
candidate facts as the size of the current seed,
whereas (Thelen and Riloff, 2002) only add the
top five candidate facts to the seed set after each it-
eration. The evaluation considers all 80, a sample
of the 320, and another sample of the 10,240 facts

retained after iterations 3, 5 and 10 respectively.
The correctness assessment of each fact consists
in manually finding some Web page that contains
clear evidence that the fact is correct. If no such
page exists, the fact is marked as incorrect. The
corresponding precision values after the three iter-
ations are 91.2%, 83.8% and 72.9%.

For the purpose of evaluating the precision of
our system, we select a sample of facts from
the entire list of one million facts extracted from
chunk Wy, ranked in decreasing order of their
computed scores. The sample is generated auto-
matically from the top of the list to the bottom, by
retaining a fact and skipping the following consec-
utive N facts, where N is incremented at each step.
The resulting list, which preserves the relative or-
der of the facts, contains 1414 facts. The 115 facts
for which a Web search engine does not return any
documents, when the name (as a phrase) and the
year are submitted together in a conjunctive query,
are discarded from the sample of 1414 facts. In
those cases, the facts were acquired from the 2003
snapshot of the Web, but queries are submitted to
a search engine with access to current Web doc-
uments, hence the difference when some of the
2003 documents are no longer available or index-
able.

Based on the sample set, the average preci-
sion of the list of one million facts extracted from
chunk W is 98.5% over the top 1/100 of the list,
93.1% over the top half of the list, and 88.3% over
the entire list of one million facts. Table 2 shows
examples of erroneous facts extracted from chunk
W,. Causes of errors include incorrect approxima-
tions of the name boundaries (e.g., Alma in Alma
Theresa Rausch is incorrectly tagged as an adjec-
tive), and selection of the wrong year as birth year
(e.g., for Henry Lumbar).

In the case of famous people, the extracted facts
tend to capture the correct birth year for several
variations of the names, as shown in Table 3. Con-
versely, it is not necessary that a fact occur with
high frequency in order for it to be extracted,
which is an advantage over previous approaches
that rely strongly on redundancy (cf. (Cafarella et
al., 2005)). Table 4 illustrates a few of the cor-
rectly extracted facts that occur rarely on the Web.

4.4 Recall

In contrast to the assessment of precision, recall
can be evaluated automatically, based on external
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Table 2: Incorrect facts extracted from the Web

Spurious Fact | Context in Source Sentence

Table 4: Extracted facts that occur infrequently
[ Fact Source Domain |

(Theresa Rausch, Alma Theresa Rausch was born

(Trvine J Forcier, 1912) geocities.com

1918) 28, 1918, in Labaddiey

Table 3: Birth years extracted for both

pseudonyms and corresponding real names

[ Pseudonym | Real Name | Year |
Gloria Estefan Gloria Fajardo 1957
Nicolas Cage Nicolas Kim Coppola 1964
Ozzy Osbourne | John Osbourne 1948
Ringo Starr Richard Starkey 1940
Tina Turner Anna Bullock 1939
Tom Cruise Thomas Cruise Mapother IV | 1962
Woody Allen Allen Stewart Konigsberg 1935

lists of birth dates of various people. We start by
collecting two gold standard sets of facts. The first
set is a random set of 609 actors and their birth
years from a Web compilation (Gold 4). The sec-
ond set is derived from the set of questions used
in the Question Answering track (Voorhees and
Tice, 2000) of the Text REtrieval Conference from
1999 through 2002. Each question asking for the
birth date of a person (e.g., “What year was Robert
Frost born?”’) results in a pair containing the per-
son’s name and the birth year specified in the an-
swer keys. Thus, the second gold standard set
contains 17 pairs of people and their birth years
(Goldy). Table 5 shows examples of facts in each
of the gold standard sets.

Table 6 shows two types of recall scores com-
puted against the gold standard sets. The recall
scores over NGold take into consideration only the
set of person names from the gold standard with
some extracted year(s). More precisely, given that
some years were extracted for a person name, it
verifies whether they include the year specified in
the gold standard for that person name. Compar-
atively, the recall score denoted AllGold is com-

1912) on 9 March 1912 (Marie Louise Azelie Chabert, 1861) | vienici.com

(Henry Lumbar, Henry Lumbar was born 1861 (Jacob Shalles, 1750) selfhost.com

1937) and died 1937 i (Robert Chester Claggett, 1898) rootsweb.com

(Concepcion Paxety, | Maria de la Concepcion Paxety (Charoltte Mollett, 1843) rootsweb.com

1817) b. 08 Dec. 1817 St. Aug., FL. (Nora Elizabeth Curran, 1979) jimtravis.com

(Mae Yaeger, Ella May/Mae Yaeger was born

1872) 20 May 1872 in Mt.

Charles Whatley, Long, Charles Whatley b. 16 .-

(1821) y FEBglgzl d. 29 AUGy Table 5: Composition of gold standard sets

(HOLT George W. HOLT (new Tine) George W. Holt [ Gold Set | Composition and Examples of Facts |

Holt, 1845) was born in Alabama in 1845 Gold 4 Actors (Web compilation) | Nr. facts: 609

(David Morrish David Morrish (new line) (l/gxgg)ie(lggcfowil:l, 19|5|8%,9(3I'3\__);)ris Day,

Canadian, 1953) Canadian, b. 1953 , (Diahann Carroll,

(Mary Ann, 1838) had a daughter, Mary Ann, who Goldr People (TREC QA track) | Nr. facts: 17
was born in Tennessee in 1838 (Davy Crockett, 1786), (Julius Caesar,

(Mrs. Blackmore, Mrs. Blackmore was born April 100 B.C.), (King Louis X1V, 1638)

puted over the entire set of names from the gold
standard.

For the Gold 4 set, the size of the NGold set of
person names changes little when the facts are ex-
tracted from chunk Wy vs. W5 vs. W3. The re-
call scores over NGold exhibit little variation from
one Web chunk to another, whereas the AllGold
score is slightly higher on the W3 chunk, prob-
ably due to a higher number of documents that
are relevant to the extraction task. When the facts
are extracted from a combination of two or three
of the available Web chunks, the recall scores
computed over AllGold are significantly higher as
the size of the NGold set increases. In compar-
ison, the recall scores over the growing NGold
set increases slightly with larger evaluation sets.
The highest value of the recall score for Gold 4
is 89.9% over the NGold set, and 70.7% over
AllGold. The smaller size of the second gold stan-
dard set, Goldy, explains the higher variation of
the values shown in the lower portion of Table 6.

4.5 Comparison to Previous Results

Another recent approach specifically addresses the
problem of extracting facts from a similarly-sized
collection of Web documents. In (Cafarella et al.,
2005), manually-prepared extraction rules are ap-
plied to a collection of 60 million Web documents
to extract entities of types Company and Country,
as well as facts of type Person-CeoOf-Company
and City-CapitalOf-Country. Based on manual
evaluation of precision and recall, a total of 23,128
company names are extracted at precision of 80%;
the number decreases to 1,116 at precision of 90%.
In addition, 2,402 Person-CeoOf-Company facts
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Table 6: Automatic evaluation of recall, over two
gold standard sets Gold 4 (609 person names) and
Goldy (17 person names)

Gold Set Input Data Recall (%)
(Web Chunk) | NGold [ AliGold
Gold 4 W, 86.4 494
W 85.0 50.5
W3 86.3 54.1
Wi+Ws 88.5 64.5
W1+W2+W3 89.9 70.7
Goldr W, 81.8 52.9
W, 90.0 52.9
W5 100.0 64.7
Wi1+W, 81.8 52.9
Wi+W2+W5 91.6 64.7

are extracted at precision 80%. The recall value is
80% at precision 90%. Recall is evaluated against
the set of company names extracted by the system,
rather than an external gold standard with pairs of
a CEO and a company name. As such, the result-
ing metric for evaluating recall used in (Cafarella
et al., 2005) is somewhat similar to, though more
relaxed than, the recall score over the NGold set
introduced in the previous section.

5 Conclusion

The combination of generalized extraction pat-
terns and similarity-driven ranking criteria results
in a fast-growth iterative approach for large-scale
fact extraction. From 10 Person-Bornln-Year facts
and no additional knowledge, a set of one million
facts of the same type is extracted from a collec-
tion of 100 million Web documents of arbitrary
quality, with a precision around 90%. This cor-
responds to a growth ratio of 100,000:1 between
the size of the extracted set of facts and the size
of the initial set of seed facts. To our knowledge,
the growth ratio and the number of extracted facts
are several orders of magnitude higher than in any
of the previous studies on fact extraction based on
either hand-written extraction rules (Cafarella et
al., 2005), or bootstrapping for relation and infor-
mation extraction (Agichtein and Gravano, 2000;
Lita and Carbonell, 2004). The next research steps
converge towards the automatic construction of a
searchable repository containing billions of facts
regarding people.
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