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Abstract

We present an unsupervised learning al-
gorithm that mines large text corpora for
patterns that express implicit semantic re-
lations. For a given input word pair
X:Y with some unspecified semantic
relations, the corresponding output list of
patterns(F’l,...,Pm is ranked according
to how well each patter® expresses the
relations betweerX andY . For exam-
ple, given X =ostrich andY =bird, the
two highest ranking output patterns are
“X is the largesty” and“Y such as the
X". The output patterns are intended to
be useful for finding further pairs with
the same relations, to support the con-
struction of lexicons, ontologies, and se-
mantic networks. The patterns are sorted
by pertinence where the pertinence of a
pattern B for a word pairX:Y is the
expected relational similarity between the
given pair and typical pairs fdg. The
algorithm is empirically evaluated on two
tasks, solving multiple-choice SAT word
analogy questions and classifying seman-
tic relations in noun-modifier pairs. On
both tasks, the algorithm achieves state-
of-the-art results, performing signifi-
cantly better than several alternative pat-
tern ranking algorithms, based on tf-idf.

1 Introduction

mine corpora for pairsX:Y in which X is a
meronym (part) of (e.qg., “wheel of the car”).

Here we consider thiaverseof this problem:
Given a word pairX :Y with some unspecified
semantic relations, can we mine a large text cor-
pus for lexico-syntactic patterns that express the
implicit relations betweerX andY ? For exam-
ple, if we are given the pair ostrich:bird, can we
discover the pattertiY such as th&”? We are
particularly interested in discovering high quality
patterns that are reliable for mining further word
pairs with the same semantic relations.

In our experiments, we use a corpus of web
pages containing abo@x10 English words
(Terra and Clarke, 2003). From co-occurrences
of the pair ostrich:bird in this corpus, we can
generate 516 patterns of the fot¥ ... Y” and
452 patterns of the forfty ... X". Most of these
patterns are not very useful for text mining. The
main challenge is to find a way of ranking the
patterns, so that patterns liKé such as theX”
are highly ranked. Another challenge is to find a
way to empirically evaluate the performance of
any such pattern ranking algorithm.

For a given input word paiK :Y with some
unspecified semantic relations, we rank the cor-
responding output list of patterd8,...,Py) in
order of decreasingertinence The pertinence of
a patternR, for a word pairX :Y is the expected
relational similarity between the given pair and
typical pairs that fitR . We define pertinence
more precisely in Section 2.

Hearst (1992) suggests that her work may be
useful for building a thesaurus. Berland and
Charniak (1999) suggest their work may be use-

In a widely cited paper, Hearst (1992) showedul for building a lexicon or ontology, like
that the lexico-syntactic pattefiY such as the WordNet. Our algorithm is also applicable to
X" can be used to mine large text corpora fothese tasks. Other potential applications and re-
word pairsX :Y in whichXis a hyponym (type) lated problems are discussed in Section 3.

of Y. For example, if we search in a large corpus To calculate pertinence, we must be able to

using the patterftY such as th&” and we find

measure relational similarity. Our measure is

the string “bird such as the ostrich”, then we camased on Latent Relational Analysis (Turney,
infer that “ostrich” is a hyponym of “bird”. Ber- 2005). The details are given in Section 4.

land and Charniak (1999) demonstrated that the Given a word pairX :Y, we want our algo-
patterns’Y’ s X" and“X of theY” can be used to rithm to rank the corresponding list of patterns
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(Pl,...,Pm> according to their value for mining If a pattern with high pertinence is used for
text, in support of semantic network constructiortext mining, it will tend to produce word pairs
and similar tasks. Unfortunately, it is difficult to that are very similar to the given word pair; this
measure performance on such tasks. Therefofellows from the definition of pertinence. We
our experiments are based on two tasks that prbelieve this definition is the first formal measure
vide objective performance measures. of quality for text mining patterns.

In Section 5, ranking algorithms are compared Let f,; be the number of occurrences in a
by their performance on solving multiple-choicecorpus of the word paiKy : Y with the pattern
SAT word analogy questions. In Section 6, theyR . We could estimat@( Xy :Yk|R) as follows:
are compared by their performance on classify- n
ing semantic relations in noun-modifier pairs. P(Xk:YiR)=fii/ D fj,

The experiments demonstrate that ranking b{/ _ R

pertinence is significantly better than several allnstead, we first estimate(R| X, : Y;) :

ternative pattern ranking algorithms, based on U 4
tf-idf. The performance of pertinence on these p(P'|Xk HYe) = fkvi/z fi.j
two tasks is slightly below the best performanc ‘,:1 .

that has been reported so far (Turney, 2005), b‘fﬁhen we apply Bayes’ Theorem:

the difference is not statistically significant. _ _ PXk:Ye) (R Xic 1Y)

We discuss the results in Section 7 and con- P(Xk YR =3
clude in Section 8. 2. P(X; YBR[ X; 1Y)

j=1

2 Pertinence We assumep(X; :Y;) =1/n for all pairs inW :

n
The relational similarity between two pairs of  p(Xy :Yk||3,):p(P,|X.< “Yx) Zp(P,|Xj 1Y)
words, X;:Y; and X,:Y, , is the degree to j=1
which their semantic relations are analogous. Forhe use of Bayes’ Theorem and the assumption
example, mason:stone and carpenter:wood haweat p(X;:Y;) =1/n for all word pairs is a way
a high degree of relational similarity. Measuringof smoothing the probabilitp(X, : Y|R), simi-
relational similarity will be discussed in Sec-lar to Laplace smoothing.
tion 4. For now, assume that we have a measure
of the relational similarity between pairs of3 Related Work
words, sim, (X1:Y;, X5:Y,) OO ] o
LetW ={X;:Y1,..., X»:Ya} be a set of word Hearst (1992) describes a method for finding
pairs and letP ={R,...,P.} be a set of patterns. Patterns like”y such as th&”, but her method
The pertinence of pattern R to a word pair féquires human judgement. Berland and
X;:Y; is theexpected relational similaritpe- Charniak (1999) use Hearst's manual procedure.
tween a word paifX, Y, randomly selected Riloff and Jones (1999) use a mutual boot-
from W according to the probability distribution Strapping technique that can find patterns auto-
p(X :Yk|p|)’ and the word paiX; :Y; : matically, but the bootstrapping requires an ini-
pertinenceX; :Y;,R) tial seed of manually chosen examples for each
) class ofhwords.I Miller et al.'(ZOOr?) propose ?n
- : : oy : approach to relation extraction that was evalu-
_;p(xk YR GBI (X 1Y) Xic 1Y) ated in the Seventh Message Understanding Con-

The conditional probabilitp(xk:Yk|H) can be ference (MUC7). Their algorithm requires la-

: ; beled examples of each relation. Similarly, Ze-
interpreted as the degree to which the pai e .
XY, is representative (i.etypical of pairs Fenko et al. (2003) use a supervised kernel

that fit the patterrR . That is,R is pertinent to Method that requires labeled training examples.
X, :Y; if highly typical word pairsXy :Yy for Aglchteln and Gravano (200_0) also_ require train-
the patternR tend to be relationally similar to "9 €xamples for each relation. Brin (1998) uses
X, bootsirapping fram ssed exarples of suthordte

Pertinence tends to be highest with pattern '
that are unambiguous. The ?naximum v%lue of Yangarber et ’?"- (2000) and \_(angarber (2003)
pertinencéX :Y;,R) is attained when the pair PreSent an algorithm that can find patterns auto-
X;:Y; belongs to a cluster of highly similar matically, but it requires an initial seed of manu-

: . 2 e ally designed patterns for each semantic relation.
pairs and the conditional probability distribution
(X, ZYk|P.) is concentrated on the cluster. AnStevenson (2004) uses WordNet to extract rela-

ambiguous pattern, with its probability spreao“ons from text, but also requires initial seed pat-
over multiple clusters, will have less pertinence. terns for each relation.
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Lapata (2002) examines the task of expressingell the corresponding patterR expresses a
the implicit relations in nominalizations, which relation of X :Y . This claim is supported by the
are noun compounds whose head noun is derivekperiments in Sections 5 and 6.
from a verb and whose modifier can be inter- Pertinence (as defined in Section 2) builds on
preted as an argument of the verb. In contrashe measure of relational similarity in Turney
with this work, our algorithm is not restricted to (2005), but it has the advantage that the semantic
nominalizations. Section 6 shows that our algoeontent can be interpreted; we can point to spe-
rithm works with arbitrary noun compounds andcific patterns and say that they express the im-
the SAT questions in Section 5 include all nineplicit relations. Furthermore, we can use the pat-
possible pairings of nouns, verbs, and adjectivegerns to find other pairs with the same relations.

As far as we know, our algorithm is the first Hearst (1992) processed her text with a part-
unsupervised learning algorithm that can findof-speech tagger and a unification-based con-
patterns for semantic relations, given only a largstituent analyzer. This makes it possible to use
corpus (e.g., in our experiments, ab8w10'® more general patterns. For example, instead of
words) and a moderately sized set of word pairthe literal string pattertlY such as th&”, where
(e.g., 600 or more pairs in the experiments), suck andY are words, Hearst (1992) used the more
that the members of each pair appear togethabstract pattern NR such asNR”, where NR
frequently in short phrases in the corpus. Theseepresents a noun phrase. For the sake of sim-
word pairs are not seeds, since the algorithrplicity, we have avoided part-of-speech tagging,
does not require the pairs to be labeled owhich limits us to literal patterns. We plan to
grouped; we do not assume they are homogenoagperiment with tagging in future work.

The word pairs that we need could be gener-
ated automatically, by searching for word pairg#  The Algorithm
that co-occur frequently in the corpus. However . . .
our evaluation methods (Sections 5 and 6) botfi"e algorithm takes as input a set of word pairs
involve a predetermined list of word pairs. If our W ={X1:Y1,..., X :Ya} and produces as output
algorithm were allowed to generate its own word@nked lists of patterng,..., By) for each input
pairs, the overlap with the predetermined list®il- The following steps are similar to the algo-
would likely be small. This is a limitation of our fithm of Turney (2005), with several changes to
evaluation methods rather than the algorithm.  SUPPort the calculation of pertinence.

Since any two word pairs may have some relal: Find phrases: For each paiiX;:Y,, make a
tions in common and some that are not sharedSt of phrases in the corpus that contain the pair.

our algorithm generates a unique list of pattern¥/€ Use the Waterloo MultiText System (Clarke
for each input word pair. For example, ma-et aI.,O 1998_) to search in a corpus of about
son:stone and carpenter:wood share the pattefi10" English words (Terra and Clarke, 2003).
“X carvesY”, but the pattern&X nails Y* and Make one list of phrases that begin with and

“X bendsY” are unique to carpenter:wood. The€nd withY; and a second list for the opposite
ranked list of patterns for a word paj:Y orde_zr. Each phrase must have one to_three inter-
gives the relations betweahandY in the corpus, VeNing words betwee; andY;. The first and

sorted with the most pertinent (i.e., characteristid®St Words in the phrase do not need to exactly
distinctive, unambiguous) relations first. match X; andY;. The MultiText query language

Turney (2005) gives an algorithm for measur-2/lows different suffixes. Veale (2004) has ob-
ing the relational similarity between two pairs ofS€rved that it is easier to identify semantic rela-
words, called Latent Relational Analysis (LRA). ions between nouns than between other parts of
This algorithm can be used to solve multiple-SP€€ch. Therefore we use WordNet 2.0 (Miller,
choice word analogy questions and to classify999) t0 guess whetheX; andY; are likely to
noun-modifier pairs (Turney, 2005), but it doesP® nouns. When they are nouns, we are relatively
not attempt to express the implicit semantic relaStrict about suffixes; we only allow variation in

tions. Turney (2005) maps each pXirY to a Pluralization. For all other parts of speech, we
high-dimensional vectov . The value of each &€ liberal about suffixes. For example, we allow
elementv: in v is based on the frequency, for@" adjective such as “inflated” to match a noun

the pair X:Y , of a corresponding patter . s_uch as “inflation”. Wi_th MultiText, _the query
The prelational similarity t?etweegn ptwo n?)airs “inflat*” matches both “inflated” and “inflation”.

X;:Y, and X :Y, , is derived from the cosine of 2. Generate patterns: For each list of phrases,
the angle between their two vectors. A limitationdenerate a list of patterns, based on the phrases.

of this approach is that the semantic content dRePlace the first word in each phrase with the

the vectors is difficult to interpret; the magnitudedeneric markerX” and replace the last word
of an elemenw; is not a good indicator of how with “Y” . The intervening words in each phrase
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may be either left as they are or replaced with theveight to patterns that vary substantially in fre-
wildcard “*". For example, the phrase “carpenterquency for each pair.

nails the wood” yields the patterfiX nails the 8. Apply SVD: After log and entropy transforms,
Y”, “X nails *Y”, “X *theY”, and“X ** Y”.  apply the Singular Value Decomposition (SVD)
Do not allow duplicate patterns in a list, but notgo X (Golub and Van Loan, 1996). SVD de-
the number of times a pattern is generated fatomposesX into a product of three matrices
each word pairX; Y, in each orderX; firstand UZV'™ , where U and V are in column or-

Y; last or vice versa). We call this tipattern thonormal form (i.e., the columns are orthogonal
frequency It is a local frequency count, analo-and have unit length) and is a diagonal matrix
gous toterm frequencyn information retrieval. of singular values (hence SVD). X is of rank

3. Count pair frequency: The pair frequency r, thenX is also of rankr . Let ¥, , where

for a pattern is the number of lists from the prek <r, be the diagonal matrix formed from the
ceding step that contain the given pattern. It is gop k singular values, and léf, andV, be the
global frequency count, analogous document matrices produced by selecting the correspond-
frequencyin information retrieval. Note that a ing columns fromU and V . The matrix
pair X; 1Y, yields two lists of phrases and henceU,2,V, is the matrix of rank that best ap-
two lists of patterns. A given pattern might ap-proximates the original matriX, in the sense
pear in zero, one, or two of the lists f&r :Y;. that it minimizes the approximation errors
4. Map pairsto rows: In preparation for build- (Golub and Van Loan, 1996). Following Lan-
ing a matrixX , create a mapping of word pairsdauer and Dumais (1997), we use 300. We

to row numbers. For each pa¥; :Y,, create a may think of this matrixUkaVkT as a smoothed
row for X;:Y; and another row foY;: X;. If W  version of the original matrix. SVD is used to
does not already contai;: X4,...,Y,: X}, reduce noise and compensate for sparseness
then we have effectively doubled the number ofLandauer and Dumais, 1997).

word pairs, which increases the sample size fd@. Calculate cosines. The relational similarity
calculating pertinence. between two pairs,sim,(X;:Y;, X5:Y,) , IS

5. Map patternsto columns; Create a mapping given by the cosine of the angle between their
of patterns to column numbers. For each uniqueorresponding row vectors in the matrix
pattern of the forniX ... Y” from Step 2, create U,%,V, (Turney, 2005). To calculate perti-
a column for the original patterfX ... Y” and nence, we will need the relational similarity be-
another column for the same pattern wittand tween all possible pairs of pairs. All of the co-
Y swapped,Y ... X". Step 2 can generate mil- sines can be efficiently derived from the matrix
lions of distinct patterns. The experiment in SecU, %, (U,Zy)" (Landauer and Dumais, 1997).

tion 5 results in 1,706,845 distinct patterns10. Calculate conditional probabilities: Using
yielding 3,413,690 columns. This is too manyBayes’ Theorem (see Section 2) and the raw fre-
columns for matrix operations with today’s stan-quency data in the matriX from Step 6, before
dard desktop computer. Most of the patterns hadeg and entropy transforms, calculate the condi-
a very low pair frequency. For the experiment irtional probability p(X; :Yi|Pj) for every row
Section 5, 1,371,702 of the patterns have a pafword pair) and every column (pattern).
frequency of one. To keep the matf& man- 11. Calculate pertinence: With the cosines from
ageable, we drop all patterns with a pair freStep 9 and the conditional probabilities from
quency less than ten. For Section 5, this leaveStep 10, calculatepertinencéX;:Y;,P;) for
42,032 patterns, yielding 84,064 columns. Turevery row X;:Y; and every columnP; for
ney (2005) limited the matrix to 8,000 columnswhich p(X; :Y,|P;)>0. Whenp(X; :Y|P;) =0,

but a larger pool of patterns is better for our purit is possible thapertinencéX;:Y;,P;)>0, but
poses, since it increases the likelihood of findingve avoid calculating pertinence in these cases for
good patterns for expressing the semantic reldwo reasons. First, it speeds computation, be-
tions of a given word pair. causeX is sparse, s@(X; :Yi|P,-) =0 for most

6. Build a sparse matrix: Build a matrixX in  rows and columns. SeconpiX; :Yi|Pj) =0 im-
sparse matrix format. The value for the cell inplies that the patter®; does not actually appear
row i and columrj is the pattern frequency of the with the word pairX; :Y; in the corpus; we are
j-th pattern for the thieth word pair. only guessing that the pattern is appropriate for
7. Calculate entropy: Apply log and entropy the word pair, and we could be wrong. Therefore
transformations to the sparse matdx (Lan- we prefer to limit ourselves to patterns and word
dauer and Dumais, 1997). Each cell is replacepairs that have actually been observed in the cor-
with its logarithm, multiplied by a weight basedpus. For each paiX; :Y; in W, output two sepa-
on the negative entropy of the correspondingate ranked lists, one for patterns of the form
column vector in the matrix. This gives more“X ... Y” and another for patterns of the form
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“Y ... X", where the patterns in both lists are Word pair Best shared pattern Score
sorted in order of decreasing pertinencetaY;. 1. ostrich:bird

Ranking serves as a kind of normalization. Wea) lion:cat “Y such asthe X” 1.0
have found that the relative rank of a pattern igb) goose:flock “X ** preedingY” 43.5
more reliable as an indicator of its importancec) ewe:sheep “X are the onlyy” 13.5
than the absolute pertinence. This is analogous fd) cub:bear ‘Y are calledX” 29.0
information retrieval, where documents are(€) primate:monkey "V is the *X" 80.0
ranked in order of their relevance to a query. Th@. traffic:street

relative rank of a document is more importan{a) ship:gangplank  “X * down theY” 53.0
than its actual numerical score (which is usuallyP) crop:harvest “X *adjacent *y”  248.0
hidden from the user of a search engine). Havinff) car:garage “X *aresidential”  63.0
two separate ranked lists helps to avoid bias. Féf) pedestrians:feet  *Y * accommodatx”  23.0
example, ostrich:bird generates 516 patterns ¢f) water:riverbed  *Y that carry X 17.0
the form“X ... Y” and 452 patterns of the form 3-_locomotive:train ____

“Y ... X". Since there are more patterns of thd@) horse:saddle X carrying *Y 82.0
form “X ... Y”, there is a slight bias towards (P) tractor:plow X pulled * Y 7.0
these patterns. If the two lists were merged, th d)) g::]jslr_gg‘s’v:r?at $ Wi)t(h o X" 3412'8
Y ... X" patterns would be at a disadvantage. (&) gasoline-automobiléY powered * *X” 50

5 Experimentswith Word Analogies Table 1. Three examples of SAT questions.

: _ Table 2 shows the four highest ranking pat-
In these experiments, we evaluate pertinence Ugsyns for the stem and solution for the first exam-
ing 374 college-level multiple-choice word pie The patterfiX lion Y” is anomalous, but the
analogies, taken from the SAT test. For eacQiner patterns seem reasonable. The shared pat-
question, there is a target word pair, called thgsrn«y such as the” is ranked 1 for both pairs,
stempair, and fivechoice pairs. The task is 10 pence the average score for this pattern is 1.0, as

find the choice that is most analogous (i.e., Naghown in Table 1. Note that the “ostrich is the
the highest relational similarity) to the stem. Th'ﬁargest bird” and “lions are large cats”, but the
choice pair is called theolution and the other largest cat is the Siberian tiger. '

choices ardalistractors Since there are six word

pairs per question (the stem and the five choicedyord pair “X... Y” Y.L X

there are374x 6= 2244 pairs in the input sat.  ostrich:bird“X is the largesy” “Y such asthe X”
In Step 4 of the algorithm, we double the pairs ‘X is * largesty” Y such * thex”
but we also drop some pairs because they do n#tn:cat  “X lion Y” “Y such asthe X
co-occur in the corpus. This leaves us with 4194 ‘X are largey”  "Y and mountairx”

rows in the matrix. As mentioned in Step 5, thelable 2. The highest ranking patterns.

matrix has 84,064 columns (patterns). The sparse Taple 3 lists the top five pairs W that match

matrix density is 0.91%. _ the patternY such as thex”. The pairs are
To answer a SAT question, we generat@oried byp(X :Y|P). The patterrfY such as the

ranked lists of patterns for each of the six wordk» s one of 146 patterns that are shared by os-

pairs. Each choice is evaluated by taking the ingich:pird and lion:cat. Most of these shared pat-
tersection of its patterns with the stem’s patterngerns are not very informative.

The shared patterns are scored by the average_of

their rank in the stem’s lists and the choice’s listsWord pair Conditional probability
Since the lists are sorted in order of decreasind”'eartiorgan 0.49342
pertinence, a low score means a high pertinencedodo:bird 0.08888
Our guess is the choice with the lowest scoring®!Pow-joint 0.06385
ostrich:bird 0.05774

shared pattern.

Table 1 shows three examples, two question
that are answered correctly followed by one tha
is answered incorrectly. The correct answers are In Table 4, we compare ranking patterns by
in bold font. For the first question, the stem ispertinence to ranking by various other measures,
ostrich:bird and the best choice is (a) lion:catmostly based on varieties of tf-idf (term fre-
The highest ranking pattern that is shared by botuency times inverse document frequency, a
of these pairs iSY such as theX”. The third common way to rank documents in information
question illustrates that, even when the answer igtrieval). The tf-idf measures are taken from
incorrect, the best shared pattetsf powered *  Salton and Buckley (1988). For comparison, we
* X") may be plausible. also include three algorithms that do not rank

Semaphore:signal 0.03741
able 3. The top five pairs f0¥ such as th&”.
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patterns (the bottom three rows in the table)2005) to rank patterns. The results in row 12
These three algorithms can answer the SASupport the claim made in Section 3, that LRA is
guestions, but they do not provide any kind ohot suitable for ranking patterns, although it
explanation for their answers. works well for answering the SAT questions (as

we see in row 16). The vectors in LRA yield a

Algorithm Prec. Rec. _F  4ood measure of relational similarity, but the
1 pertinence (Step 11) 55.753.5 54.6 maanitude of the val f ific element i
2 log and entropy matrix 43.5 41.7 42.6 gnit ue of a specilic element in a
(Step 7) vector is not a good indicator of the quality of the
3 TF=f,IDF=log((N-)in) 432 414 423 coresponding pattern. .
4 TF =logf+1), IDF = log(\/n) 42.9 412 42.0 The best m_ethod for ranking patterns is perti-
5 TF =f, IDF = logN/n) 42.9 41.2 42.0 hence (row 1in Table 4). As a point of compari-
6 TF = logf+1), 42.3 40.6 41.4 son, the performance of the average senior
IDF = log((N-n)/n) highschool student on the SAT analogies is about
7 TF=1.0,IDF =T 415 39.8 40.6 57% (Turney and Littman, 2005). The second
8 TF=f IDF=1h 415 39.8 40.6 best method is to use the values in the mafrix
9 TF=0.5+0.5*f(F), 415 39.8 40.6 after the log and entropy transformations in
IDF = log(\/n) Step 7 (row 2). The difference between these two
10 TF =logf+1), IDF = 1h 41.2 39.6 40.4 methods is statistically significant with 95% con-
11 p(X:Y|P) (Step 10) 39.8 38.2 39.0 fidence. Pertinence (row 1) performs slightly
12 SVD matrix (Step 8) 359345 352 below Latent Relational Analysis (row 16; Tur-
13 random 27.0 25.9 26.4 ney, 2005), but the difference is not significant.
14 TF = 1f,IDF = 1.0 26.7 25.7 26.2 Randomly guessing answers should yield an F
15 TF =f, IDF = 1.0 (Step 6) 18.117.4 17.7 of 20% (1 out of 5 choices), but ranking patterns
16 Turney (2005) 56.8 56.1 56.4  randomly (row 13) results in an F of 26.4%. This
17 Turney and Littman (2005) ~ 47.747.1 47.4 g hecause the stem pair tends to share more pat-
18 Veale (2004) 42.8 428 42.8 terns with the solution pair than with the distrac-

Table 4. Performance of various algorithms on SAT. {grs. The minimum of a large set of random

All of the pattern ranking a|gorithms are givennumbers is Ilkely to be lower than the minimum
exactly the same sets of patterns to rank. An9f a small set of random numbers.
differences in performance are due to the ranking , . .
method alone. The algorithms may skip ques® EXxperimentswith Noun-Modifiers
tions when the word pairs do not co-occur in th

corpus. All of the ranking algorithms skip the?n these experiments, we evaluate pertinence on

same set of 15 of the 374 SAT questidPeCi- the task of classifying noun-modifier pairs. The

o X roblem is to classify a noun-modifier pair, such
sion is defined as the percentage of correct an: “flu virus”, according to the semantic relation
swers out of the questions that were answereﬁitween the head noun (virus) and the modifier
(not skipped)Recallis the percentage of correctg

answers out of the maximum bossible numbe lu). For example, “flu virus” is classified as a
P -causalityrelation (the flu iscaused bya virus).

correct f(374).' _The Ijjmeaﬁure Is the harmonlﬁor these experiments, we use a set of 600
mean of precision and recall. ’ . -

; : . manually labeled noun-modifier pairs (Nastase
teriogréhiéfr;::df n?setphoeds E:I?r -::%bleeﬂr']f thiz ?ﬁg and Szpakowicz, 2003). There are five general
maximu?n f fo>r/nall atte?ns forqt%e )i’\:’/en word classes of labels with thirty subclasses. We pre-

air. andN is the to?al number of wo?d airs. B sent here the results with five classes; the results
pair, u PaIrs. BY \ith thirty subclasses follow the same trends

“TF =1, IDF =1/n”, for example (row 8), we (that is, pertinence performs significantly better

?saunetnhcaf grlf'g/sna rgestgarto'lz ?Q:ﬁg%%;fg tg&';}han the other ranking methods). The five classes
to i?wers?a/ documeFr)lt 1¥e uency. That is, in rgow gdre causality (storm cloud),temporality (daily
9 Y- ' gercise), spatial (desert storm),participant

. . (2
the patterns are ranked in decreasing order : :

- . tudent protest), argliality (expensive book).
pattern frequency divided by palr frequency. ? The inF;))ut se)tW consigtgs 0F1)‘ the 600 nZ)un—

Table 4 also Sh.OWS SOme _rankir_lg methOdﬁwodifier pairs. This set is doubled in Step 4, but
based on intermediate calculations in the algql-v

rithm in Section 4. For example, row 2 in Table 4 e drop some pairs because they do not co-occur

ives the results when patterns are ranked in o'r-] the corpus, leaving us with 1184 rows in the
9 . patte Ofatrix. There are 16,849 distinct patterns with a
der of decreasing values in the correspondin

cells of the matrixX from Step 7 Bair frequency of ten or more, resulting in 33,698

: o 0
Row 12 in Table 4 shows the results we woulofommns' The matrix density is 2.57%.
get using Latent Relational Analysis (Turney,
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To classify a noun-modifier pair, we use a sin- _ Algorithm Prec. Rec. F

gle nearest neighbour algorithm with leave-onel pertinence (Step 11) 51.39.5 50.2
out cross-validation. We split the set 600 times2 TF =logf+1), IDF = 1h 37.4 36.5 36.9
Each pair gets a turn as the single testing examd- TF = log{+1), IDF = log(\/n) 36.5 36.0 36.2
ple, while the other 599 pairs serve as training TF =logf+1), 36.0 354 35.7

examples. The testing example is classified ac- |DF =log((N-n)/n)
cording to the label of its nearest neighbour i? TF =f, IDF = log((N-n)/n) 36.0 35.3 35.6

the training set. The distance between two nourf SVD matrix (Step 8) 43.933.4 34.8
modifier pairs is measured by the average rank of TF=f IDF=1h 35.4 33.6 343
their best shared pattern. Table 5 shows the ré- zggtie%n%entropy matrix 35.6 333 34.1
Iting precision, recall, and F, when ranki

;:tte?nspbicpsezir;en?:%é » and F, when ranking, -7 ne log(\/n) 34.1 31.4 32.2
10 TF=0.5 + 0.5 *{/F), 319 31.7 31.6

Class name Prec. Rec. F Class size IDF = log(N/n)
causality 373 360 367 86 11 p(X:YP) (Step 10) 31.830.8 31.2
participant 61.1 64.4 62.7 260 12 TF=1.0, IDF =1 29.2 28.8 28.7
quality 49.3 50.7 50.0 146 13 random 19.4 19.3 19.2
spatial 43.9 32.7 37.5 56 14 TF=1f,IDF=1.0 20.3 20.7 19.2
temporality 64.7 63.5 64.1 52 15 TF =f, IDF = 1.0 (Step 6) 12.819.7 8.0
all 51.3 495 50.2 600 16 Turney (2005) 55.953.6 54.6
Table 5. Performance on noun-modifiers. 17 Turney and Littman (2005) 43.443.1 43.2

. . . . Table 7. Perf -modifiers.
To gain some insight into the algorithm, we avie eriormance on notin-modiiers

examined the 600 best shared patterns for eagh pigeyssion

pair and its single nearest neighbour. For each of

the five classes, Table 6 lists the most frequer€omputing pertinence took about 18 hours for
pattern among the best shared patterns for thRe experiments in Section 5 and 9 hours for Sec-
given class. All of these patterns seem approprtion 6. In both cases, the majority of the time was
ate for their respective classes. spent in Step 1, using MultiText (Clarke et al.,

1998) to search through the corpus5of10Y

Szﬁss;ity :\(A ?ksct;[iqetée(? t patteiﬁ;n \'?ilﬁjg,alr words. MultiText was running on a Beowulf
participant Y of hisX” “dream analysis” cluster with sixteen 2.4 GHz_InteI Xeon_ CPUs.
quality  “Y made ofx” “copper coin” The corpus and the search index require about
spatial “X **terrestrialY” “aquatic mammal”  ©ON€ terabyte of disk space. This may seem com-
temporality“Y in * earlyX” “morning frost” putationally demanding by today’s standards, but

Table 6. Most frequent of the best shared patterns.  Progress in hardware will soon allow an average
desktop computer to handle corpora of this size.

Table 7 gives the performance of pertinence Although the performance on the SAT anal-
on the noun-modifier problem, compared topgy questions (54.6%) is near the level of the
various other pattern ranking methods. The bofayerage senior highschool student (57%), there is
tom two rows are included for comparison; theyrgom for improvement. For applications such as
are not pattern ranking algorithms. The bespyilding a thesaurus, lexicon, or ontology, this
method for ranking patterns is pertinence (row leve| of performance suggests that our algorithm
in Table 7). The difference between pertinenc@ould assist, but not replace, a human expert.
and the second best ranking method (row 2) is one possible improvement would be to add
Statistica”y Slgnlflcant with 95% confidence. part_of-speech taggn‘]g or parsing. We have done
Latent Relational Analysis (row 16) performssome preliminary experiments with parsing and
slightly better than pertinence (row 1), but thepjan to explore tagging as well. A difficulty is
difference is not statistically significant. that much of the text in our corpus does not con-

Row 6 in Table 7 shows the results we wouldsist of properly formed sentences, since the text
get using Latent Relational Analysis (Turney,comes from web pages. This poses problems for

2005) to rank patterns. Again, the results sUppOfhost part-of-speech taggers and parsers.
the claim in Section 3, that LRA is not suitable

for ranking patterns. LRA can classify the noun-8  Conclusion

modifiers (as we see in row 16), but it cannot

express the implicit semantic relations that makéatent Relational Analysis (Turney, 2005) pro-

an unlabeled noun-modifier in the testing sevides a way to measure the relational similarity

similar to its nearest neighbour in the training selbetween two word pairs, but it gives us little in-
sight into how the two pairs are similar. In effect,
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LRA is a black box. The main contribution of ing to extract information from text. IRroceed-
this paper is the idea of pertinence, which allows ings of the Sixth Applied Natural Language Proc-
us to take an opaque measure of relational simi- essing Conference (ANLP 200pages 226-233.
larity and use it to find patterns that express th
implicit semantic relations between two words.
The experiments in Sections 5 and 6 show that tional Workshop on Computational Semantics
ranking patterns by pertinence is superior to (IWCS-5) pa es'3285_301 P
ranking them by a variety of tf-idf methods. On pag '
the word analogy and noun-modifier tasks, pertiEllen Riloff and Rosie Jones. 1999. Learning dittio
nence performs as well as the state-of-the-art, aries for information extraction by multi-level
LRA, but pertinence goes beyond LRA by mak- bootstrapping. IfProceedings of the 16th National
ing relations explicit. Conference on Atrtificial Intelligence (AAAI-99)
pages 474-479.
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