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Abstract 
Lasso is a regularization method for pa-
rameter estimation in linear models. It op-
timizes the model parameters with respect 
to a loss function subject to model com-
plexities. This paper explores the use of 
lasso for statistical language modeling for 
text input. Owing to the very large number 
of parameters, directly optimizing the pe-
nalized lasso loss function is impossible. 
Therefore, we investigate two approxima-
tion methods, the boosted lasso (BLasso) 
and the forward stagewise linear regres-
sion (FSLR). Both methods, when used 
with the exponential loss function, bear 
strong resemblance to the boosting algo-
rithm which has been used as a discrimi-
native training method for language mod-
eling. Evaluations on the task of Japanese 
text input show that BLasso is able to 
produce the best approximation to the 
lasso solution, and leads to a significant 
improvement, in terms of character error 
rate, over boosting and the traditional 
maximum likelihood estimation. 

1 Introduction 
Language modeling (LM) is fundamental to a 
wide range of applications. Recently, it has been 
shown that a linear model estimated using dis-
criminative training methods, such as the boost-
ing and perceptron algorithms, outperforms 
significantly a traditional word trigram model 
trained using maximum likelihood estimation 
(MLE) on several tasks such as speech recogni-
tion and Asian language text input (Bacchiani et 
al. 2004; Roark et al. 2004; Gao et al. 2005; Suzuki 
and Gao 2005). 

The success of discriminative training meth-
ods is largely due to fact that unlike the tradi-
tional approach (e.g., MLE) that maximizes the 
function (e.g., likelihood of training data) that is 
loosely associated with error rate, discriminative 
training methods aim to directly minimize the 
error rate on training data even if they reduce the 

likelihood. However, given a finite set of training 
samples, discriminative training methods could 
lead to an arbitrary complex model for the pur-
pose of achieving zero training error. It is 
well-known that complex models exhibit high 
variance and perform poorly on unseen data. 
Therefore some regularization methods have to 
be used to control the complexity of the model. 

Lasso is a regularization method for parame-
ter estimation in linear models. It optimizes the 
model parameters with respect to a loss function 
subject to model complexities. The basic idea of 
lasso is originally proposed by Tibshirani (1996). 
Recently, there have been several implementa-
tions and experiments of lasso on multi-class 
classification tasks where only a small number of 
features need to be handled and the lasso solu-
tion can be directly computed via numerical 
methods. To our knowledge, this paper presents 
the first empirical study of lasso for a realistic, 
large scale task: LM for Asian language text in-
put. Because the task utilizes millions of features 
and training samples, directly optimizing the 
penalized lasso loss function is impossible. 
Therefore, two approximation methods, the 
boosted lasso (BLasso, Zhao and Yu 2004) and 
the forward stagewise linear regression (FSLR, 
Hastie et al. 2001), are investigated. Both meth-
ods, when used with the exponential loss func-
tion, bear strong resemblance to the boosting 
algorithm which has been used as a discrimina-
tive training method for LM. Evaluations on the 
task of Japanese text input show that BLasso is 
able to produce the best approximation to the 
lasso solution, and leads to a significant im-
provement, in terms of character error rate, over 
the boosting algorithm and the traditional MLE. 

2 LM Task and Problem Definition 
This paper studies LM on the application of 
Asian language (e.g. Chinese or Japanese) text 
input, a standard method of inputting Chinese or 
Japanese text by converting the input phonetic 
symbols into the appropriate word string. In this 
paper we call the task IME, which stands for 
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input method editor, based on the name of the 
commonly used Windows-based application. 

Performance on IME is measured in terms of 
the character error rate (CER), which is the 
number of characters wrongly converted from 
the phonetic string divided by the number of 
characters in the correct transcript.  

Similar to speech recognition, IME is viewed 
as a Bayes decision problem. Let A be the input 
phonetic string. An IME system’s task is to 
choose the most likely word string W* among 
those candidates that could be converted from A: 

)|()(maxarg)|(maxarg
(A))(

* WAPWPAWPW
WAW GENGEN ∈∈

==  (1) 

where GEN(A) denotes the candidate set given A. 
Unlike speech recognition, however, there is no 
acoustic ambiguity as the phonetic string is in-
putted by users. Moreover, we can assume a 
unique mapping from W and A in IME as words 
have unique readings, i.e. P(A|W) = 1. So the 
decision of Equation (1) depends solely upon 
P(W), making IME an ideal evaluation test bed 
for LM.  

In this study, the LM task for IME is formu-
lated under the framework of linear models (e.g., 
Duda et al. 2001). We use the following notation, 
adapted from Collins and Koo (2005):  

• Training data is a set of example in-
put/output pairs. In LM for IME, training sam-
ples are represented as {Ai, WiR}, for i = 1…M, 
where each Ai is an input phonetic string and WiR 
is the reference transcript of Ai. 

• We assume some way of generating a set of 
candidate word strings given A, denoted by 
GEN(A).  In our experiments, GEN(A) consists of 
top n word strings converted from A using a 
baseline IME system that uses only a word tri-
gram model. 

• We assume a set of D+1 features fd(W), for d 
= 0…D. The features could be arbitrary functions 
that map W to real values. Using vector notation, 
we have f(W)∈ℜD+1, where f(W) = [f0(W), f1(W), 
…, fD(W)]T. f0(W) is called the base feature, and is 
defined in our case as the log probability that the 
word trigram model assigns to W. Other features 
(fd(W), for d = 1…D) are defined as the counts of 
word n-grams (n = 1 and 2 in our experiments) in 
W. 

• Finally, the parameters of the model form a 
vector of D+1 dimensions, each for one feature 
function, λ = [λ0, λ1, …, λD]. The score of a word 
string W can be written as 
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The decision rule of Equation (1) is rewritten as 
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Equation (3) views IME as a ranking problem, 
where the model gives the ranking score, not 
probabilities. We therefore do not evaluate the 
model via perplexity. 

Now, assume that we can measure the num-
ber of conversion errors in W by comparing it 
with a reference transcript WR using an error 
function Er(WR,W), which is the string edit dis-
tance function in our case. We call the sum of 
error counts over the training samples sample risk. 
Our goal then is to search for the best parameter 
set λ which minimizes the sample risk, as in 
Equation (4):  
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However, (4) cannot be optimized easily since 
Er(.) is a piecewise constant (or step) function of λ 
and its gradient is undefined. Therefore, dis-
criminative methods apply different approaches 
that optimize it approximately. The boosting 
algorithm described below is one of such ap-
proaches.  

3 Boosting 
This section gives a brief review of the boosting 
algorithm, following the description of some 
recent work (e.g., Schapire and Singer 1999; 
Collins and Koo 2005).  

The boosting algorithm uses an exponential 
loss function (ExpLoss) to approximate the sam-
ple risk in Equation (4). We define the margin of 
the pair (WR, W) with respect to the model λ as 

),(),(),( λλ WScoreWScoreWWM RR −=  (5)

Then, ExpLoss is defined as 
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Notice that ExpLoss is convex so there is no 
problem with local minima when optimizing it. It 
is shown in Freund et al. (1998) and Collins and 
Koo (2005) that there exist gradient search pro-
cedures that converge to the right solution.  

Figure 1 summarizes the boosting algorithm 
we used. After initialization, Steps 2 and 3 are 

1 Set λ0 = argminλ0ExpLoss(λ); and λd = 0 for d=1…D 
2 Select a feature fk* which has largest estimated 

impact on reducing ExpLoss of Eq. (6) 
3 Update λk*   λk* + δ*, and return to Step 2 

Figure 1: The boosting algorithm 
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repeated N times; at each iteration, a feature is 
chosen and its weight is updated as follows.  

First, we define Upd(λ, k, δ) as an updated 
model, with the same parameter values as λ with 
the exception of λk, which is incremented by δ 

},...,,...,,{),,Upd( 10 Dkk λδλλλδ +=λ  

Then, Steps 2 and 3 in Figure 1 can be rewritten 
as Equations (7) and (8), respectively. 

)),,d(ExpLoss(Upminarg*)*,(
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*)*,,Upd( 1 δktt −= λλ  (8)

The boosting algorithm can be too greedy: 
Each iteration usually reduces the ExpLoss(.) on 
training data, so for the number of iterations 
large enough this loss can be made arbitrarily 
small. However, fitting training data too well 
eventually leads to overfiting, which degrades 
the performance on unseen test data (even 
though in boosting overfitting can happen very 
slowly).  

Shrinkage is a simple approach to dealing 
with the overfitting problem. It scales the incre-
mental step δ by a small constant ν, ν ∈ (0, 1). 
Thus, the update of Equation (8) with shrinkage 
is 

*)*,,Upd( 1 νδktt −= λλ  (9)

Empirically, it has been found that smaller values 
of ν lead to smaller numbers of test errors. 

4 Lasso 
Lasso is a regularization method for estimation in 
linear models (Tibshirani 1996). It regularizes or 
shrinks a fitted model through an L1 penalty or 
constraint.  

Let T(λ) denote the L1 penalty of the model, 
i.e., T(λ) = ∑d = 0…D|λd|. We then optimize the 
model λ so as to minimize a regularized loss 
function on training data, called lasso loss defined 
as 

)()ExpLoss(),LassoLoss( λλλ Tαα +=  (10)

where T(λ) generally penalizes larger models (or 
complex models), and the parameter α controls 
the amount of regularization applied to the esti-
mate. Setting α = 0 reverses the LassoLoss to the 
unregularized ExpLoss; as α increases, the model 
coefficients all shrink, each ultimately becoming 
zero. In practice, α should be adaptively chosen 
to minimize an estimate of expected loss, e.g., α 
decreases with the increase of the number of 
iterations.  

Computation of the solution to the lasso prob-
lem has been studied for special loss functions. 

For least square regression, there is a fast algo-
rithm LARS to find the whole lasso path for dif-
ferent α’ s (Obsborn et al. 2000a; 2000b; Efron et 
al. 2004); for 1-norm SVM, it can be transformed 
into a linear programming problem with a fast 
algorithm similar to LARS (Zhu et al. 2003). 
However, the solution to the lasso problem for a 
general convex loss function and an adaptive α 
remains open. More importantly for our pur-
poses, directly minimizing lasso function of 
Equation (10) with respect to λ is not possible 
when a very large number of model parameters 
are employed, as in our task of LM for IME. 
Therefore we investigate below two methods that 
closely approximate the effect of the lasso, and 
are very similar to the boosting algorithm. 

It is also worth noting the difference between 
L1 and L2 penalty. The classical Ridge Regression 
setting uses an L2 penalty in Equation (10) i.e., 
T(λ) = ∑d = 0…D(λd)2, which is much easier to 
minimize (for least square loss but not for Ex-
pLoss). However, recent research (Donoho et al. 
1995) shows that the L1 penalty is better suited for 
sparse situations, where there are only a small 
number of features with nonzero weights among 
all candidate features. We find that our task is 
indeed a sparse situation: among 860,000 features, 
in the resulting linear model only around 5,000 
features have nonzero weights. We then focus on 
the L1 penalty. We leave the empirical compari-
son of the L1 and L2 penalty on the LM task to 
future work. 

4.1 Forward Stagewise Linear 
Regression (FSLR) 

The first approximation method we used is FSLR, 
described in (Algorithm 10.4, Hastie et al. 2001), 
where Steps 2 and 3 in Figure 1 are performed 
according to Equations (7) and (11), respectively. 

)),,d(ExpLoss(Upminarg*)*,(
,
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Notice that FSLR is very similar to the boosting 
algorithm with shrinkage in that at each step, the 
feature fk* that has largest estimated impact on 
reducing ExpLoss is selected. The only difference 
is that FSLR updates the weight of fk* by a small 
fixed step size ε. By taking such small steps, FSLR 
imposes some implicit regularization, and can 
closely approximate the effect of the lasso in a 
local sense (Hastie et al. 2001). Empirically, we 
find that the performance of the boosting algo-
rithm with shrinkage closely resembles that of 
FSLR, with the learning rate parameter ν corre-
sponding to ε. 
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4.2 Boosted Lasso (BLasso) 
The second method we used is a modified ver-
sion of the BLasso algorithm described in Zhao 
and Yu (2004). There are two major differences 
between BLasso and FSLR. At each iteration, 
BLasso can take either a forward step or a backward 
step. Similar to the boosting algorithm and FSLR, 
at each forward step, a feature is selected and its 
weight is updated according to Equations (12) 
and (13). 

)),,d(ExpLoss(Upminarg*)*,(
,
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However, there is an important difference be-
tween Equations (12) and (7). In the boosting 
algorithm with shrinkage and FSLR, as shown in 
Equation (7), a feature is selected by its impact on 
reducing the loss with its optimal update δ*. In 
contract, in BLasso, as shown in Equation (12), 
the optimization over δ is removed, and for each 
feature, its loss is calculated with an update of 
either +ε or -ε, i.e., the grid search is used for 
feature selection. We will show later that this 
seemingly trivial difference brings a significant 
improvement. 

The backward step is unique to BLasso. In 
each iteration, a feature is selected and its weight 
is updated backward if and only if it leads to a 
decrease of the lasso loss, as shown in Equations 
(14) and (15): 
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where θ  is a tolerance parameter. 
Figure 2 summarizes the BLasso algorithm we 

used. After initialization, Steps 4 and 5 are re-
peated N times; at each iteration, a feature is 
chosen and its weight is updated either backward 
or forward by a fixed amount ε. Notice that the 
value of α is adaptively chosen according to the 
reduction of ExpLoss during training. The algo-
rithm starts with a large initial α, and then at each 
forward step the value of α decreases until the 
ExpLoss stops decreasing. This is intuitively 
desirable: It is expected that most highly effective 
features are selected in early stages of training, so 
the reduction of ExpLoss at each step in early 
stages are more substantial than in later stages. 
These early steps coincide with the boosting steps 
most of the time. In other words, the effect of 
backward steps is more visible at later stages. 

Our implementation of BLasso differs slightly 
from the original algorithm described in Zhao 
and Yu (2004). Firstly, because the value of the 
base feature f0 is the log probability (assigned by 
a word trigram model) and has a different range 
from that of other features as in Equation (2), λ0 is 
set to optimize ExpLoss in the initialization step 
(Step 1 in Figure 2) and remains fixed during 
training. As suggested by Collins and Koo (2005), 
this ensures that the contribution of the 
log-likelihood feature f0 is well-calibrated with 
respect to ExpLoss. Secondly, when updating a 
feature weight, if the size of the optimal update 
step (computed via Equation (7)) is smaller than 
ε, we use the optimal step to update the feature. 
Therefore, in our implementation BLasso does 
not always take a fixed step; it may take steps 
whose size is smaller than ε. In our initial ex-
periments we found that both changes (also used 
in our implementations of boosting and FSLR) 
were crucial to the performance of the methods.  
1 Initialize λ0: set λ0 = argminλ0ExpLoss(λ), and λd = 0 

for d=1…D. 
2 Take a forward step according to Eq. (12) and (13), 

and the updated model is denoted by λ1 
3 Initialize α = (ExpLoss(λ0)-ExpLoss(λ1))/ε 
4 Take a backward step if and only if it leads to a 

decrease of LassoLoss according to Eq. (14) and 
(15), where θ  = 0; otherwise 

5 Take a forward step according to Eq. (12) and (13); 
update α = min(α, (ExpLoss(λt-1)-ExpLoss(λt))/ε ); 
and return to Step 4. 

Figure 2: The BLasso algorithm 

(Zhao and Yu 2004) provides theoretical justi-
fications for BLasso. It has been proved that (1) it 
guarantees that it is safe for BLasso to start with 
an initial α which is the largest α that would 
allow an ε step away from 0 (i.e., larger α’s cor-
respond to T(λ)=0); (2) for each value of α, BLasso 
performs coordinate descent (i.e., reduces Ex-
pLoss by updating the weight of a feature) until 
there is no descent step; and (3) for each step 
where the value of α decreases, it guarantees that 
the lasso loss is reduced.  As a result, it can be 
proved that for a finite number of features and θ 
= 0, the BLasso algorithm shown in Figure 2 
converges to the lasso solution when ε  0. 

5 Evaluation 

5.1 Settings 
We evaluated the training methods described 
above in the so-called cross-domain language 
model  adaptation paradigm, where we adapt a 
model trained on one domain (which we call the 
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background domain) to a different domain (adap-
tation domain), for which only a small amount of 
training data is available. 

The data sets we used in our experiments 
came from five distinct sources of text. A 
36-million-word Nikkei Newspaper corpus was 
used as the background domain, on which the 
word trigram model was trained. We used four 
adaptation domains: Yomiuri (newspaper cor-
pus), TuneUp (balanced corpus containing 
newspapers and other sources of text), Encarta 
(encyclopedia) and Shincho (collection of novels). 
All corpora have been pre-word-segmented us-
ing a lexicon containing 167,107 entries. For each 
of the four domains, we created training data 
consisting of 72K sentences (0.9M~1.7M words) 
and test data of 5K sentences (65K~120K words) 
from each adaptation domain. The first 800 and 
8,000 sentences of each adaptation training data 
were also used to show how different sizes of 
training data affected the performances of vari-
ous adaptation methods. Another 5K-sentence 
subset was used as held-out data for each do-
main.  

We created the training samples for discrimi-
native learning as follows. For each phonetic 
string A in adaptation training data, we pro-
duced a lattice of candidate word strings W using 
the baseline system described in (Gao et al. 2002), 
which uses a word trigram model trained via 
MLE on the Nikkei Newspaper corpus. For effi-
ciency, we kept only the best 20 hypotheses in its 
candidate conversion set  GEN(A) for each 
training sample for discriminative training. The 
oracle best hypothesis, which gives the minimum 
number of errors, was used as the reference tran-
script of A.  

We used unigrams and bigrams that occurred 
more than once in the training set as features in 
the linear model of Equation (2). The total num-
ber of candidate features we used was around 
860,000.  

5.2 Main Results 
Table 1 summarizes the results of various model 
training (adaptation) methods in terms of CER 
(%) and CER reduction (in parentheses) over 
comparing models. In the first column, the 
numbers in parentheses next to the domain name 
indicates the number of training sentences used 
for adaptation. 

Baseline, with results shown in Column 3, is 
the word trigram model. As expected, the CER 
correlates very well the similarity between the 
background domain and the adaptation domain, 
where domain similarity is measured in terms of 

cross entropy (Yuan et al. 2005) as shown in Col-
umn 2.  

MAP (maximum a posteriori), with results 
shown in Column 4, is a traditional LM adapta-
tion method where the parameters of the back-
ground model are adjusted in such a way that 
maximizes the likelihood of the adaptation data. 
Our implementation takes the form of linear 
interpolation as described in Bacchiani et al. 
(2004): P(wi|h) = λPb(wi|h) + (1-λ)Pa(wi|h), where 
Pb is the probability of the background model, Pa 
is the probability trained on adaptation data 
using MLE and the history h corresponds to two 
preceding words (i.e. Pb and Pa are trigram 
probabilities). λ is the interpolation weight opti-
mized on held-out data.  

Boosting, with results shown in Column 5, is 
the algorithm described in Figure 1. In our im-
plementation, we use the shrinkage method 
suggested by Schapire and Singer (1999) and 
Collins and Koo (2005). At each iteration, we 
used the following update for the kth feature 

ZC
ZC

k

k
k ε

ε
δ

+
+

=
+

_log
2
1  (16)

where Ck+ is a value increasing exponentially 
with the sum of margins of (WR, W) pairs over the 
set where fk is seen in WR but not in W; Ck-  is the 
value related to the sum of margins over the set 
where fk is seen in W but not in WR. ε is a 
smoothing factor (whose value is optimized on 
held-out data) and Z is a normalization constant 
(whose value is the ExpLoss(.) of training data 
according to the current model). We see that εZ in 
Equation (16) plays the same role as ν in Equation 
(9).  

BLasso, with results shown in Column 6, is 
the algorithm described in Figure 2. We find that 
the performance of BLasso is not very sensitive to 
the selection of the step size ε across training sets 
of different domains and sizes. Although small ε 
is preferred in theory as discussed earlier, it 
would lead to a very slow convergence. There-
fore, in our experiments, we always use a large 
step (ε = 0.5) and use the so-called early stopping 
strategy, i.e., the number of iterations before 
stopping is optimized on held-out data. 

In the task of LM for IME, there are millions of 
features and training samples, forming an ex-
tremely large and sparse matrix. We therefore 
applied the techniques described in Collins and 
Koo (2005) to speed up the training procedure. 
The resulting algorithms run in around 15 and 30 
minutes respectively for Boosting and BLasso to 
converge on an XEON™ MP 1.90GHz machine 
when training on an 8K-sentnece training set. 

229



The results in Table 1 give rise to several ob-
servations. First of all, both discriminative train-
ing methods (i.e., Boosting and BLasso) outper-
form MAP substantially. The improvement mar-
gins are larger when the background and adap-
tation domains are more similar. The phenome-
non is attributed to the underlying difference 
between the two adaptation methods: MAP aims 
to improve the likelihood of a distribution, so if 
the adaptation domain is very similar to the 
background domain, the difference between the 
two underlying distributions is so small that 
MAP cannot adjust the model effectively. Dis-
criminative methods, on the other hand, do not 
have this limitation for they aim to reduce errors 
directly. Secondly, BLasso outperforms Boosting 
significantly (p-value < 0.01) on all test sets. The 
improvement margins vary with the training sets 
of different domains and sizes. In general, in 
cases where the adaptation domain is less similar 
to the background domain and larger training set 
is used, the improvement of BLasso is more visi-
ble.    

Note that the CER results of FSLR are not in-
cluded in Table 1 because it achieves very similar 
results to the boosting algorithm with shrinkage 
if the controlling parameters of both algorithms 
are optimized via cross-validation. We shall dis-
cuss their difference in the next section. 

5.3 Dicussion 
This section investigates what components of 
BLasso bring the improvement over Boosting. 
Comparing the algorithms in Figures 1 and 2, we 
notice three differences between BLasso and 
Boosting: (i) the use of backward steps in BLasso; 
(ii) BLasso uses the grid search (fixed step size) 
for feature selection in Equation (12) while 
Boosting uses the continuous search (optimal 
step size) in Equation (7); and (iii) BLasso uses a 
fixed step size for feature update in Equation (13) 
while Boosting uses an optimal step size in 
Equation (8). We then investigate these differ-
ences in turn. 

To study the impact of backward steps, we 
compared BLasso with the boosting algorithm 
with a fixed step search and a fixed step update, 
henceforth referred to as F-Boosting. F-Boosting 
was implemented as Figure 2, by setting a large 
value to θ in Equation (15), i.e., θ = 103, to prohibit 
backward steps. We find that although the 
training error curves of BLasso and F-Boosting 
are almost identical, the T(λ) curves grow apart 
with iterations, as shown in Figure 3. The results 
show that with backward steps, BLasso achieves 
a better approximation to the true lasso solution: 

It leads to a model with similar training errors 
but less complex (in terms of L1 penalty). In our 
experiments we find that the benefit of using 
backward steps is only visible in later iterations 
when BLasso’s backward steps kick in. A typical 
example is shown in Figure 4. The early steps fit 
to highly effective features and in these steps 
BLasso and F-Boosting agree. For later steps, 
fine-tuning of features is required. BLasso with 
backward steps provides a better mechanism 
than F-Boosting to revise the previously chosen 
features to accommodate this fine level of tuning. 
Consequently we observe the superior perform-
ance of BLasso at later stages as shown in our 
experiments.  

As well-known in linear regression models, 
when there are many strongly correlated fea-
tures, model parameters can be poorly estimated 
and exhibit high variance. By imposing a model 
size constraint, as in lasso, this phenomenon is 
alleviated. Therefore, we speculate that a better 
approximation to lasso, as BLasso with backward 
steps, would be superior in eliminating the nega-
tive effect of strongly correlated features in 
model estimation. To verify our speculation, we 
performed the following experiments. For each 
training set, in addition to word unigram and 
bigram features, we introduced a new type of 
features called headword bigram.  

As described in Gao et al. (2002), headwords 
are defined as the content words of the sentence. 
Therefore, headword bigrams constitute a special 
type of skipping bigrams which can capture 
dependency between two words that may not be 
adjacent. In reality, a large portion of headword 
bigrams are identical to word bigrams, as two 
headwords can occur next to each other in text. In 
the adaptation test data we used, we find that 
headword bigram features are for the most part 
either completely overlapping with the word bi-
gram features (i.e., all instances of headword 
bigrams also count as word bigrams) or not over-
lapping at all (i.e., a headword bigram feature is 
not observed as a word bigram feature) – less 
than 20% of headword bigram features displayed 
a variable degree of overlap with word bigram 
features. In our data, the rate of completely 
overlapping features is 25% to 47% depending on 
the adaptation domain. From this, we can say 
that the headword bigram features show moder-
ate to high degree of correlation with the word 
bigram features.  

We then used BLasso and F-Boosting to train 
the linear language models including both word 
bigram and headword bigram features. We find 
that although the CER reduction by adding 
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headword features is overall very small, the dif-
ference between the two versions of BLasso is 
more visible in all four test sets. Comparing Fig-
ures 5 – 8 with Figure 4, it can be seen that BLasso 
with backward steps outperforms the one with-
out backward steps in much earlier stages of 
training with a larger margin. For example, on 
Encarta data sets, BLasso outperforms F-Boosting 
after around 18,000 iterations with headword 
features (Figure 7), as opposed to 25,000 itera-
tions without headword features (Figure 4). The 
results seem to corroborate our speculation that 
BLasso is more robust in the presence of highly 
correlated features. 

To investigate the impact of using the grid 
search (fixed step size) versus the continuous 
search (optimal step size) for feature selection, 
we compared F-Boosting with FSLR since they 
differs only in their search methods for feature 
selection. As shown in Figures 5 to 8, although 
FSLR is robust in that its test errors do not in-
crease after many iterations, F-Boosting can reach 
a much lower error rate on three out of four test 
sets. Therefore, in the task of LM for IME where 
CER is the most important metric, the grid search 
for feature selection is more desirable.  

To investigate the impact of using a fixed ver-
sus an optimal step size for feature update, we 
compared FSLR with Boosting. Although both 
algorithms achieve very similar CER results, the 
performance of FSLR is much less sensitive to the 
selected fixed step size. For example, we can 
select any value from 0.2 to 0.8, and in most set-
tings FSLR achieves the very similar lowest CER 
after 20,000 iterations, and will stay there for 
many iterations. In contrast, in Boosting, the 
optimal value of ε in Equation (16) varies with the 
sizes and domains of training data, and has to be 
tuned carefully. We thus conclude that in our 
task FSLR is more robust against different train-
ing settings and a fixed step size for feature up-
date is more preferred. 

6 Conclusion 
This paper investigates two approximation lasso 
methods for LM applied to a realistic task with a 
very large number of features with sparse feature 
space. Our results on Japanese text input are 
promising. BLasso outperforms the boosting 
algorithm significantly in terms of CER reduction 
on all experimental settings. 

We have shown that this superior perform-
ance is a consequence of BLasso’s backward step 
and its fixed step size in both feature selection 
and feature weight update.  Our experimental 

results in Section 5 show that the use of backward 
step is vital for model fine-tuning after major 
features are selected and for coping with strongly 
correlated features; the fixed step size of BLasso 
is responsible for the improvement of CER and 
the robustness of the results. Experiments on 
other data sets and theoretical analysis are 
needed to further support our findings in this 
paper. 
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Table 1. CER (%) and CER reduction (%) (Y=Yomiuri; T=TuneUp; E=Encarta; S=-Shincho) 

Domain Entropy vs.Nikkei Baseline MAP (over Baseline) Boosting (over MAP) BLasso (over MAP/Boosting) 
Y (800) 7.69 3.70 3.70 (+0.00) 3.13 (+15.41) 3.01 (+18.65/+3.83) 
Y (8K) 7.69 3.70 3.69 (+0.27) 2.88 (+21.95) 2.85 (+22.76/+1.04) 
Y (72K) 7.69 3.70 3.69 (+0.27) 2.78 (+24.66) 2.73 (+26.02/+1.80) 
T (800) 7.95 5.81 5.81 (+0.00) 5.69 (+2.07) 5.63 (+3.10/+1.05) 
T (8K) 7.95 5.81 5.70 (+1.89) 5.48 (+5.48) 5.33 (+6.49/+2.74) 
T (72K) 7.95 5.81 5.47 (+5.85) 5.33 (+2.56) 5.05 (+7.68/+5.25) 
E (800) 9.30 10.24 9.60 (+6.25) 9.82 (-2.29) 9.18 (+4.38/+6.52) 
E (8K) 9.30 10.24 8.64 (+15.63) 8.54 (+1.16) 8.04 (+6.94/+5.85) 
E (72K) 9.30 10.24 7.98 (+22.07) 7.53 (+5.64) 7.20 (+9.77/+4.38) 
S (800) 9.40 12.18 11.86 (+2.63) 11.91 (-0.42) 11.79 (+0.59/+1.01) 
S (8K) 9.40 12.18 11.15 (+8.46) 11.09 (+0.54) 10.73 (+3.77/+3.25) 
S (72K) 9.40 12.18 10.76 (+11.66) 10.25 (+4.74) 9.64 (+10.41/+5.95) 

 

  
 

Figure 3. L1 curves: models are trained 
on the E(8K) dataset. 

Figure 4. Test error curves: models are 
trained on the E(8K) dataset. 

Figure 5. Test error curves: models are 
trained on the Y(8K) dataset, including 
headword bigram features. 

   
Figure 6. Test error curves: models are 
trained on the T(8K) dataset, including 
headword bigram features. 

Figure 7. Test error curves: models are 
trained on the E(8K) dataset, including 
headword bigram features. 

Figure 8. Test error curves: models are 
trained on the S(8K) dataset, including 
headword bigram features. 
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