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Abstract 

Suppose you are on a mobile device with 

no keyboard (e.g., a cell or PDA).  How 

can you enter text quickly?  T9?  Graffiti? 

This demo will show how language model-

ing can be used to speed up data entry, both 

in the mobile context, as well as the desk-

top.  The Wild Thing encourages users to 

use wildcards (*).  A language model finds 

the k-best expansions.  Users quickly figure 

out when they can get away with wild-

cards.  General purpose trigram language 

models are effective for the general case 

(unrestricted text), but there are important 

special cases like searching over popular 

web queries, where more restricted lan-

guage models are even more effective. 

1 Motivation: Phone App 

Cell phones and PDAs are everywhere.  Users love 

mobility.  What are people doing with their phone?  

You’d think they would be talking on their phones, 

but a lot of people are typing.  It is considered rude 

to talk on a cell in certain public places, especially 

in Europe and Asia.  SMS text messaging enables 

people to communicate, even when they can’t talk. 

It is bizarre that people are typing on their 

phones given how painful it is.   “Talking on the 

phone” is a collocation, but “typing on the phone” 

is not.  Slate (slate.msn.com/id/2111773) recently 

ran a story titled: “A Phone You Can Actually 

Type On” with the lead: 

“If you've tried to zap someone a text mes-

sage recently, you've probably discovered 

the huge drawback of typing on your cell 

phone. Unless you're one of those cyborg 

Scandinavian teenagers who was born with 

a Nokia in his hand, pecking out even a 

simple message is a thumb-twisting chore.”  
 

There are great hopes that speech recognition 

will someday make it unnecessary to type on your 

phone (for SMS or any other app), but speech rec-

ognition won’t help with the rudeness issue.  If 

people are typing because they can’t talk, then 

speech recognition is not an option.  Fortunately, 

the speech community has developed powerful 

language modeling techniques that can help even 

when speech is not an option. 

2 K-Best String Matching 

Suppose we want to search for MSN using a cell 

phone.  A standard approach would be to type 6 

<pause> 777 <pause> 66, where 6 � M, 777 � S 

and 66 � N.  (The pauses are necessary for disam-

biguation.)   Kids these days are pretty good at typ-

ing this way, but there has to be a better solution. 

T9
 
(www.t9.com) is an interesting alternative.  

The user types 676 (for MSN).  The system uses a 

(unigram) language model to find the k-best 

matches.  The user selects MSN from this list.  

Some users love T9, and some don’t. 

The input, 676, can be thought of as short hand 

for the regular expression:  
/^[6MNOmno][7PRSprs][6MNOmno]$/ 

using standard Unix notation.  Regular expressions 

become much more interesting when we consider 

wildcards.  So-called “word wheeling” can be 

thought of as the special case where we add a 

wildcard to the end of whatever the user types.  

Thus, if the user types 676 (for MSN), we would 

find the k-best matches for:  

/^[6MNOmno][7PRSprs][6MNOmno].*/ 
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See Google Suggests
1
 for a nice example of 

word wheeling.  Google Suggests makes it easy to 

find popular web queries (in the standard non-

mobile desktop context).  The user types a prefix.  

After each character, the system produces a list of 

the k most popular web queries that start with the 

specified prefix. 

Word wheeling not only helps when you know 

what you want to say, but it also helps when you 

don’t.  Users can’t spell.  And things get stuck on 

the tip of their tongue.  Some users are just brows-

ing.  They aren’t looking for anything in particular, 

but they’d like to know what others are looking at. 

The popular query application is relatively easy 

in terms of entropy.  About 19 bits are needed to 

specify one of the 7 million most popular web que-

ries.  That is, if we assign each web query a prob-

ability based on query logs collected at msn.com, 

then we can estimate entropy, H, and discover that 

H≈19.  (About 23 bits would be needed if these 

pages were equally likely, but they aren’t.)  It is 

often said that the average query is between two 

and three words long, but H is more meaningful 

than query length. 

General purpose trigram language models are 

effective for the general case (unrestricted text), 

but there are important special cases like popular 

web queries, where more restricted language mod-

els are even more effective than trigram models.  

Our language model for web queries is simply a 

list of queries and their probabilities.  We consider 

queries to be a finite language, unlike unrestricted 

text where the trigram language model allows sen-

tences to be arbitrarily long. 

Let’s consider another example.  The MSN 

query was too easy.  Suppose we want to find 

Condoleezza Rice, but we can’t spell her name.  

And even if we could, we wouldn’t want to.  Typ-

ing on a phone isn’t fun. 

We suggest spelling Condoleezza as 2*, where 

2 � [ABCabc2] and * is the wildcard.  We then 

type ‘#’ for space.  Rice is easy to spell: 7423.   

Thus, the user types, 2*#7423, and the system 

searches over the MSN query log to produce a list 

of k-best (most popular) matches (k defaults to 10): 

1. Anne Rice 

2. Book of Shadows 

3. Chris Rice 

4. Condoleezza Rice 

                                                           
1 http://www.google.com/webhp?complete=1  

5. Ann Rice 

… 

8. Condoleeza Rice 

The letters matching constants in the regular ex-

pression are underlined.  The other letters match 

wildcards.  (An implicit wildcard is appended to 

the end of the input string.) 

Wildcards are very powerful.   Strings with 

wildcards are more expressive than prefix match-

ing (word wheeling).  As mentioned above, it 

should take just 19 bits on average to specify one 

of the 7 million most popular queries.   The query 

2*#7423 contains 7 characters in an 12-character 

alphabet (2-9 � [A-Za-z2-9] in the obvious way, 

except that 0 � [QZqz0]; # � space; * is wild).  7 

characters in a 12 character alphabet is 7 log212 = 

25 bits.  If the input notation were optimal (which 

it isn’t), it shouldn’t be necessary to type much 

more than this on average to specify one of the 7 

million most popular queries. 

Alphabetic ordering causes bizarre behavior.  

Yellow Pages are full of company names starting 

with A, AA, AAA, etc..  If prefix matching tools like 

Google Suggests take off, then it is just a matter of 

time before companies start to go after valuable 

prefixes: mail, maps, etc.  Wildcards can help soci-

ety avoid that non-sense.  If you want to find a top 

mail site, you can type, “*mail” and you’ll find: 

Gmail, Hotmail, Yahoo mail, etc.. 

3 Collaboration & Personalization 

Users quickly learn when they can get away with 

wildcards.  Typing therefore becomes a collabora-

tive exercise, much like Palm’s approach to hand-

writing recognition. Recognition is hard.  Rather 

than trying to solve the general case, Palm encour-

ages users to work with the system to write in a 

way that is easier to recognize (Graffiti).  The sys-

tem isn’t trying to solve the AI problem by itself, 

but rather there is a man-machine collaboration 

where both parties work together as a team. 

Collaboration is even more powerful in the 

web context.  Users issue lots of queries, making it 

clear what’s hot (and what’s not).  The system con-

structs a language model based on these queries to 

direct users toward good stuff.   More and more 

users will then go there, causing the hot query to 

move up in the language model.  In this way, col-

laboration can be viewed as a positive feedback 
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loop.  There is a strong herd instinct; all parties 

benefit from the follow-the-pack collaboration. 

In addition, users want personalization.  When 

typing names of our friends and family, technical 

terms, etc., we should be able to get away with 

more wildcards than other users would.  There are 

obvious opportunities for personalizing the lan-

guage model by integrating the language model 

with a desktop search index (Dumais et al, 2003). 

4 Modes, Language Models and Apps 

The Wild Thing demo has a switch for turning on 

and off phone mode to determine whether input 

comes from a phone keypad or a standard key-

board.  Both with and without phone mode, the 

system uses a language model to find the k-best 

expansions of the wildcards. 

The demo contains a number of different lan-

guage models, including a number of standard tri-

gram language models.  Some of the language 

models were trained on large quantities (6 Billion 

words) of English.  Others were trained on large 

samples of Spanish and German.  Still others were 

trained on small sub-domains (such as ATIS, 

available from www.ldc.upenn.edu).  The demo 

also contains two special purpose language models 

for searching popular web queries, and popular 

web domains. 

Different language models are different.  With 

a trigram language model trained on general Eng-

lish (containing large amounts of newswire col-

lected over the last decade), 
pres* rea* *d y* t* it is v* 

imp* � President Reagan said 

yesterday that it is very impor-

tant 

With a Spanish Language Model, 
pres* rea* � presidente Reagan 

In the ATIS domain,  
pres* rea* � <UNK> <UNK> 

The tool can also be used to debug language 

models.  It turns out that some French slipped into 

the English training corpus.  Consequently, the 

English language model expanded the * in en * de 

to some common French words that happen to be 

English words as well: raison, circulation, oeuvre, 

place, as well as <OOV>.  After discovering this, 

we discovered quite a few more anomalies in the 

training corpus such as headers from the AP news. 

There may also be ESL (English as a Second 

Language) applications for the tool.  Many users 

have a stronger active vocabulary than passive vo-

cabulary.  If the user has a word stuck on the tip of 

their tongue,  they can type a suggestive context 

with appropriate wildcards and there is a good 

chance the system will propose the word the user is 

looking for. 

Similar tricks are useful in monolingual con-

texts.  Suppose you aren’t sure how to spell a ce-

lebrity’s name.  If you provide a suggestive 

context, the language model is likely to get it right:  

ron* r*g*n � Ronald Reagan 

don* r*g*n � Donald Regan 

c* rice � Condoleezza Rice 

To summarize, wildcards are helpful in quite a 

few apps: 

• No keyboard: cell phone, PDA, Tablet PC. 

• Speed matters: instant messaging, email. 

• Spelling/ESL/tip of the tongue. 

• Browsing: direct users toward hot stuff. 

5 Indexing and Compression 

The k-best string matching problem raises a num-

ber of interesting technical challenges.   We have 

two types of language models: trigram language 

models and long lists (for finite languages such as 

the 7 million most popular web queries).  

The long lists are indexed with a suffix array.  

Suffix arrays
2
 generalize very nicely to phone 

mode, as described below.  We treat the list of web 

queries as a text of N bytes.  (Newlines are re-

placed with end-of-string delimiters.)  The suffix 

array, S, is a sequence of N ints.  The array is ini-

tialized with the ints from 0 to N−1.  Thus, S[i]=i, 

for 0≤i<N.  Each of these ints represents a string, 

starting at position i in the text and extending to the 

end of the string.  S is then sorted alphabetically. 

Suffix arrays make it easy to find the frequency 

and location of any substring.  For example, given 

the substring “mail,” we find the first and last suf-

fix in S that starts with “mail.”  The gap between 

these two is the frequency.  Each suffix in the gap 

points to a super-string of “mail.” 

To generalize suffix arrays for phone mode we 

replace alphabetical order (strcmp) with phone or-

der (phone-strcmp).  Both strcmp and phone-

strcmp consider each character one at a time.  In 

standard alphabetic ordering, ‘a’<‘b’<‘c’, but in 

                                                           
2 An excellent discussion of suffix arrays including source 

code can be found at www.cs.dartmouth.edu/~doug.   
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phone-strcmp, the characters that map to the same 

key on the phone keypad are treated as equivalent. 

We generalize suffix arrays to take advantage 

of popularity weights.  We don’t want to find all 

queries that contain the substring “mail,” but 

rather, just the k-best (most popular).  The standard 

suffix array method will work, if we add a filter on 

the output that searches over the results for the k-

best.  However, that filter could take O(N) time if 

there are lots of matches, as there typically are for 

short queries. 

An improvement is to sort the suffix array by 

both popularity and alphabetic ordering, alternating 

on even and odd depths in the tree.  At the first 

level, we sort by the first order and then we sort by 

the second order and so on, using a construction, 

vaguely analogous to KD-Trees (Bentley, 1975).  

When searching a node ordered by alphabetical 

order, we do what we would do for standard suffix 

arrays.  But when searching a node ordered by 

popularity, we search the more popular half before 

the second half.  If there are lots of matches, as 

there are for short strings, the index makes it very 

easy to find the top-k quickly, and we won’t have 

to search the second half very often.  If the prefix 

is rare, then we might have to search both halves, 

and therefore, half the splits (those split by popu-

larity) are useless for the worst case, where the 

input substring doesn’t match anything in the table.  

Lookup is O(sqrt N).
3
 

Wildcard matching is, of course, a different 

task from substring matching.  Finite State Ma-

chines (Mohri et al, 2002) are the right way to 

think about the k-best string matching problem 

with wildcards.  In practice, the input strings often 

contain long anchors of constants (wildcard free 

substrings).  Suffix arrays can use these anchors to 

generate a list of candidates that are then filtered 

by a regex package. 

                                                           
3
 Let F(N) be the work to process N items on the 

frequency splits and let A(N) be the work to proc-

ess N items on the alphabetical splits.  In the worst 

case, F(N) = 2A(N/2) + C1 and A(N) = F(N/2) + C2, 

where C1  and C2 are two constants.  In other 

words, F(N) = 2F(N/4) + C, where C = C1 + 2C2.  

We guess that F(N) = α sqrt(N) + β, where α and β 

are constant.  Substituting this guess into the recur-

rence, the dependencies on N cancel.  Thus, we 

conclude, F(N) = O(sqrt N).  

Memory is limited in many practical applica-

tions, especially in the mobile context.  Much has 

been written about lossless compression of lan-

guage models.  For trigram models, we use a lossy 

method inspired by the Unix Spell program (McIl-

roy, 1982).   We map each trigram <x, y, z> into a 

hash code h = (V
2
 x + V y + z) % P, where V is the 

size of the vocabulary and P is an appropriate 

prime.  P trades off memory for loss.  The cost to 

store N trigrams is: N [1/loge2 + log2(P/N)] bits.   

The loss, the probability of a false hit, is 1/P. 

The N trigrams are hashed into h hash codes.  

The codes are sorted.  The differences, x, are en-

coded with a Golomb code
4
 (Witten et al, 1999), 

which is an optimal Huffman code, assuming that 

the differences are exponentially distributed, which 

they will be, if the hash is Poisson. 

6 Conclusions 

The Wild Thing encourages users to make use of 

wildcards, speeding up typing, especially on cell 

phones.  Wildcards are useful when you want to 

find something you can’t spell, or something stuck 

on the tip of your tongue.   Wildcards are more 

expressive than standard prefix matching, great for 

users, and technically challenging (and fun) for us. 
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4
 In Golomb, x = xq m + xr, where xq = floor(x/m) 

and xr = x mod m.  Choose m to be a power of two 

near ceil(½ E[x])=ceil(½ P/N).  Store quotients xq 

in unary and remainders xr in binary.  z in unary is 

a sequence of z−1 zeros followed by a 1.  Unary is 

an optimal Huffman code when Pr(z)=(½)
z+1
.  Stor-

age costs are: xq bits for xq + log2m bits for xr. 
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