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Abstract

Clarissa, an experimental voice enabled
procedure browser that has recently been
deployed on the International Space Sta-
tion (ISS), is to the best of our knowl-
edge the first spoken dialog system in
space.  This paper gives background
on the system and the ISS procedures,
then discusses the research developed to
address three key problems: grammar-
based speech recognition using the Regu-
lus toolkit; SVM based methods for open
microphone speech recognition; and ro-
bust side-effect free dialogue management
for handling undos, corrections and con-
firmations.

1 Overview

Astronauts on the International Space Station (ISS)
spend a great deal of their time performing com-
plex procedures. Crew members usually have to
divide their attention between the task and a pa-
per or PDF display of the procedure. In addition,
since objects float away in microgravity if not fas-
tened down, it would be an advantage to be able
to keep both eyes and hands on the task. Clarissa,
an experimental speech enabled procedure navigator
(Clarissa, 2005), is designed to address these prob-
lems. The system was deployed on the ISS on Jan-
uary 14, 2005 and is scheduled for testing later this
year; the initial version is equipped with five XML-
encoded procedures, three for testing water quality
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and two for space suit maintenance. To the best of
our knowledge, Clarissa is the first spoken dialogue
application in space.

The system includes commands for navigation:
forward, back, and to arbitrary steps. Other com-
mands include setting alarms and timers, record-
ing, playing and deleting voice notes, opening and
closing procedures, querying system status, and in-
putting numerical values. There is an optional mode
that aggressively requests confirmation on comple-
tion of each step. Open microphone speech recog-
nition is crucial for providing hands free use. To
support this, the system has to discriminate between
speech that is directed to it and speech that is not.
Since speech recognition is not perfect, and addi-
tional potential for error is added by the open micro-
phone task, it is also important to support commands
for undoing or correcting bad system responses.

The main components of the Clarissa system are
a speech recognition module, a classifier for exe-
cuting the open microphone accept/reject decision,
a semantic analyser, and a dialogue manager. The
rest of this paper will briefly give background on the
structure of the procedures and the XML representa-
tion, then describe the main research content of the
system.

2 \oice-navigable procedures

ISS procedures are formal documents that typically
represent many hundreds of person hours of prepa-
ration, and undergo a strict approval process. One
requirement in the Clarissa project was that the pro-
cedures should be displayed visually exactly as they
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Figure 1: Adding voice annotations to a group of
steps

appear in the original PDF form. However, reading
these procedures verbatim would not be very useful.
The challenge is thus to let the spoken version di-
verge significantly from the written one, yet still be
similar enough in meaning that the people who con-
trol the procedures can be convinced that the two
versions are in practice equivalent.

Figure 1 illustrates several types of divergences
between the written and spoken versions, with
“speech bubbles” showing how procedure text is ac-
tually read out. In this procedure for space suit main-
tenance, one to three suits can be processed. The
group of steps shown cover filling of a “dry LCVG”.
The system first inserts a question to ask which suits
require this operation, and then reads the passage
once for each suit, specifying each time which suit is
being referred to; if no suits need to be processed, it
jumps directly to the next section. Step 51 points the
user to a subprocedure. The spoken version asks if
the user wants to execute the steps of the subproce-
dure; if so, it opens the LCVVG Water Fill procedure
and goes directly to step 6. If the user subsequently
goes past step 17 of the subprocedure, the system
warns that the user has gone past the required steps,
and suggests that they close the procedure.

Other important types of divergences concern en-
try of data in tables, where the system reads out an
appropriate question for each table cell, confirms the
value supplied by the user, and if necessary warns
about out-of-range values.
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Rec Patterns Errors
Reject | Bad | Total
Text LF 3.1% | 0.5% | 3.6%
Text Surface 2.2% | 0.8% | 3.0%
Text | Surface+LF | 0.8% | 0.8% | 1.6%
| SLM | Surface [ 2.8% | 7.4% | 10.2% |
GLM LF 14% | 4.9% | 6.3%
GLM Surface 29% | 48% | 7.7%
GLM | Surface+LF | 1.0% | 5.0% | 6.0%

Table 1: Speech understanding performance on six
different configurations of the system.

3 Grammar-based speech understanding

Clarissa uses a grammar-based recognition architec-
ture. At the start of the project, we had two main rea-
sons for choosing this approach over the more popu-
lar statistical one. First, we had no available training
data. Second, the system was to be designed for ex-
perts who would have time to learn its coverage, and
who moreover, as former military pilots, were com-
fortable with the idea of using controlled language.
Although there is not much to be found in the litera-
ture, an earlier study in which we had been involved
(Knight et al., 2001) suggested that grammar-based
systems outperformed statistical ones for this kind
of user. Given that neither of the above arguments is
very strong, we wanted to implement a framework
which would allow us to compare grammar-based
methods with statistical ones, and retain the option
of switching from a grammar-based framework to a
statistical one if that later appeared justified. The
Regulus and Alterf platforms, which we have devel-
oped under Clarissa and other earlier projects, are
designed to meet these requirements.

The basic idea behind Regulus (Regulus, 2005;
Rayner et al., 2003) is to extract grammar-based lan-
guage models from a single large unification gram-
mar, using example-based methods driven by small
corpora.  Since grammar construction is now a
corpus-driven process, the same corpora can be used
to build statistical language models, facilitating a di-
rect comparison between the two methodologies.

On its own, however, Regulus only permits com-
parison at the level of recognition strings. Alterf
(Rayner and Hockey, 2003) extends the paradigm to



ID | Rec Features Classifier Error rates

Classification Task

In domain Out Av
Good | Bad

1 | SLM Confidence Threshold 5.5% | 59.1% | 16.5% | 11.8% | 10.1%
2 | GLM Confidence Threshold 7.1% | 48.7% | 89% | 9.4% | 7.0%
3 | SLM | Confidence + Lexical Linear SVM 2.8% | 37.1% | 9.0% | 6.6% | 7.4%
4 | GLM | Confidence + Lexical Linear SVM 2.8% | 485% | 8.7% | 6.3% | 6.2%
5 | SLM | Confidence + Lexical | Quadratic SVM | 2.6% | 23.6% | 85% | 55% | 6.9%
6 | GLM | Confidence + Lexical | Quadratic SVM | 4.3% | 28.1% | 4.7% | 55% | 5.4%

Table 2: Performance on accept/reject classification and the top-level task, on six different configurations.

the semantic level, by providing a trainable seman-
tic interpretation framework. Interpretation uses a
set of user-specified patterns, which can match ei-
ther the surface strings produced by both the statisti-
cal and grammar-based architectures, or the logical
forms produced by the grammar-based architecture.

Table 1 presents the result of an evaluation, car-
ried out on a set of 8158 recorded speech utterances,
where we compared the performance of a statisti-
cal/robust architecture (SLM) and a grammar-based
architecture (GLM). Both versions were trained off
the same corpus of 3297 utterances. We also show
results for text input simulating perfect recognition.
For the SLM version, semantic representations are
constructed using only surface Alterf patterns; for
the GLM and text versions, we can use either sur-
face patterns, logical form (LF) patterns, or both.
The “Error” columns show the proportion of ut-
terances which produce no semantic interpretation
(“Reject™), the proportion with an incorrect seman-
tic interpretation (“Bad”), and the total.

Although the WER for the GLM recogniser is
only slightly better than that for the SLM recogniser
(6.27% versus 7.42%, 15% relative), the difference
at the level of semantic interpretation is considerable
(6.3% versus 10.2%, 39% relative). This is most
likely accounted for by the fact that the GLM ver-
sion is able to use logical-form based patterns, which
are not accessible to the SLM version. Logical-form
based patterns do not appear to be intrinsically more
accurate than surface (contrast the first two “Text”
rows), but the fact that they allow tighter integration
between semantic understanding and language mod-
elling is intuitively advantageous.

31

4 Open microphone speech processing

The previous section described speech understand-
ing performance in terms of correct semantic inter-
pretation of in-domain input. However, open micro-
phone speech processing implies that some of the in-
put will not be in-domain. The intended behaviour
for the system is to reject this input. We would
also like it, when possible, to reject in-domain input
which has not been correctly recognised.

Surface output from the Nuance speech recog-
niser is a list of words, each tagged with a confidence
score; the usual way to make the accept/reject deci-
sion is by using a simple threshold on the average
confidence score. Intuitively, however, we should be
able to improve the decision quality by also taking
account of the information in the recognised words.

By thinking of the confidence scores as weights,
we can model the problem as one of classifying doc-
uments using a weighted bag of words model. It
is well known (Joachims, 1998) that Support Vec-
tor Machine methods are very suitable for this task.
We have implemented a version of the method de-
scribed by Joachims, which significantly improves
on the naive confidence score threshold method.

Performance on the accept/reject task can be eval-
uated directly in terms of the classification error. We
can also define a metric for the overall speech under-
standing task which includes the accept/reject deci-
sion, as a weighted loss function over the different
types of error. We assign weights of 1 to a false re-
ject of a correct interpretation, 2 to a false accept of
an incorrectly interpreted in-domain utterance, and 3
to a false accept of an out-of-domain utterance. This



captures the intuition that correcting false accepts is
considerably harder than correcting false rejects, and
that false accepts of utterances not directed at the
system are worse than false accepts of incorrectly
interpreted utterances.

Table 2 summarises the results of experiments
comparing performance of different recognisers and
accept/reject classifiers on a set of 10409 recorded
utterances. “GLM” and “SLM” refer respectively to
the best GLM and SLM recogniser configurations
from Table 1. “Av” refers to the average classi-
fier error, and “Task” to a normalised version of the
weighted task metric. The best SVM-based method
(line 6) outperforms the best naive threshold method
(line 2) by 5.4% to 7.0% on the task metric, a relative
improvement of 23%. The best GLM-based method
(line 6) and the best SLM-based method (line 5) are
equally good in terms of accept/reject classification
accuracy, but the GLM’s better speech understand-
ing performance means that it scores 22% better on
the task metric. The best quadratic kernel (line 6)
outscores the best linear kernel (line 4) by 13%. All
these differences are significant at the 5% level ac-
cording to the Wilcoxon matched-pairs test.

5 Side-effect free dialogue management

In an open microphone spoken dialogue application
like Clarissa, it is particularly important to be able
to undo or correct a bad system response. This
suggests the idea of representing discourse states
as objects: if the complete dialogue state is an ob-
ject, a move can be undone straightforwardly by
restoring the old object. We have realised this idea
within a version of the standard “update seman-
tics” approach to dialogue management (Larsson
and Traum, 2000); the whole dialogue management
functionality is represented as a declarative “update
function” relating the old dialogue state, the input
dialogue move, the new dialogue state and the out-
put dialogue actions.

In contrast to earlier work, however, we include
task information as well as discourse information in
the dialogue state. Each state also contains a back-
pointer to the previous state. As explained in detail
in (Rayner and Hockey, 2004), our approach per-
mits a very clean and robust treatment of undos, cor-
rections and confirmations, and also makes it much
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simpler to carry out systematic regression testing of
the dialogue manager component.
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