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Abstract

This paper presents status quoof an
ongoing research study of collocations —
an essential linguistic phenomenon hav-
ing a wide spectrum of applications in
the field of natural language processing.
The core of the work is an empirical eval-
uation of a comprehensive list of auto-
matic collocation extraction methods us-
ing precision-recall measures and a pro-
posal of a new approach integrating mul-
tiple basic methods and statistical classi-
fication. We demonstrate that combining
multiple independent techniques leads to
a significant performance improvement in
comparisonwith individual basic methods.

Introduction and motivation

The term collocation has both linguistic and lexi-
cographic character. It covers a wide range of lexical
phenomena, such as phrasal verbs, light verb com-
pounds, idioms, stock phrases, technological ex-
pressions, and proper names. Collocations are of
high importance for many applications in the field
of NLP. The most desirable ones are machine trans-
lation, word sense disambiguation, language genera-
tion, and information retrieval. The recent availabil-
ity of large amounts of textual data has attracted in-
terest in automatic collocation extraction from text.
In the last thirty years a number of different methods
employing various association measures have been
proposed. Overview of the most widely used tech-
niques is given e.g. in (Manning and Schuitze, 1999)
or (Pearce, 2002). Several researches also attempted
to compare existing methods and suggested different
evaluation schemes, e.g Kita (1994) or Evert (2001).
A comprehensive study of statistical aspects of word
cooccurrences can be found in (Evert, 2004).

Natural language cannot be simply reduced to lex- In this paper we present a compendium of 84
icon and syntax. The fact that individual wordsmethods for automatic collocation extraction. They
cannot be combined freely or randomly is commorame from different research areas and some of them
for most natural languages. The ability of a worchave not been used for this purpose yet. A brief
to combine with other words can be expressed epverview of these methods is followed by their com-
therintensionallyor extensionally The former case parative evaluation against manually annotated data
refers tovalency Instances of the latter case aréby the means of precision and recall measures. In
calledcollocations(Cermak and Holub, 1982). The the end we propose a statistical classification method
term collocation has several other definitions bufior combining multiple methods and demonstrate a
none of them is widely accepted. Most attemptsubstantial performance improvement.

are based on a characteristic property of colloca- In our research we focus on two-worbigram)
tions: non-compositionality Choueka (1988) de- collocations, mainly for the reason that experiments
fines a collocational expression as “a syntactic andith longer expressions would require processing of
semantic unit whose exact and unambiguous meamuch larger amounts of data and limited scalability
ing or connotation cannot be derived directly fromof some methods to high order n-grams. The exper-
the meaning or connotation of its components”.  iments are performed on Czech data.
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2 Collocation extraction a) |a=f(zy)|b=f(zy)| f(z+)| b) | Cw | empirical context ofw
C.y | empirical context ofcy
_ _ c=1(@y) |[d=fE9|f@)| [
Most methods for collocation extraction are based [~ ;.., | ;) | ~ o
. g . . . . Ty
on verification of typical collocation properties.
These properties are formally described by mathé’able_ l:a)A conti_ngency table with observed frequencies and
ical f | hat d . he d f marginal frequencies for a bigramy; w stands for any word
mat.lcs.t ormulas that determine the egr_ee 0 a-%'xceptw; x stands for any word; N is a total number of bi-
sociation between components of collocation. Sucframs. The table cells are sometimes referrefi;asStatistical
formulas are calledssociation measuresnd com- tests of independence work with contingency tables of expected
. . . frequenciesf(zy)=f(z+)f(+y)/N. b) Different notions of em-
pute anassociation scoréor each collocation candi- pirical contexts.
date extracted from a corpus. The scores indicate a _ N
chance of a candidate to be a collocation. They cai#mption that semantically non-compositional ex-
be used for ranking or for classification — by setting€ssions typically occur in different contexts than

athreshold. Finding such a threshold depends on tHeeir components (Zhai, 1997). Measures—(9
intended application. have information theory background and measures

S(77—849 are adopted from the field of information
retrieval. Context association measures are mainly
ed for extracting idioms.

leftimmediate context ofy
right immediate context ofy

The most widely tested property of collocations i
non-compositionalitylf words occur together more

often than by a chance, then this is the evidence th4t€ ' > _
they have a special function that is not simply ex- Besides all the association measures described

plained as a result of their combination (Manning?P0ve. We aiso take into account other recommended
and Schiitze, 1999). We think of a corpus as a raf€asures1t2 (Manning and Schutze, 1999) and

domly generated sequence of words that is viewed M€ basic Iinggistic characteris_tics useql for filter-
a sequence of word pairs. Occurrence frequenciddd non-collocationsgs-8). This information can
of these bigrams are extracted and kept in conti2€ obtained automatically from morphological tag-
gency tables (Table 1a). Values from these tables aPE'S and syntactic parsers available with reasonably
used in several association measures that reflect hGigh accuracy for many languages.
much the word coocurrence is accidental. A list og
such measures is given in Table 2 and includes: es-
timation of bigram and unigram probabilities (rowsEvaluation of collocation extraction methods is a
3-5, mutual information and derived measures ( complicated task. On one hand, different applica-
11), statistical tests of independenae-19, likeli-  tions require different setting of association score
hood measuresi{-19, and various other heuristic thresholds. On the other hand, methods give differ-
association measures and coefficients 7). ent results within different ranges of their associa-
Another frequently tested property is taken dition scores. We need a complex evaluation scheme
rectly from the definition that a collocation issgn- covering all demands. In such a case, Evert (2001)
tactic and semantic unitFor each bigram occurring and other authors suggest usirgcisionandrecall
in the corpus, information of itempirical context measures on a full reference data omshestlists.
(frequencies of open-class words occurring within Data. All the presented experiments were per-
a specified context window) and left and right- formed on morphologically and syntactically anno-
mediate contextérequencies of words immediately tated Czech text from thRrague Dependency Tree-
preceding or following the bigram) is extracted (Tabank (PDT) (Haji€ et al., 2001). Dependency trees
ble 1b). By determining the entropy of the im-were broken down intdependency bigrantonsist-
mediate contexts of a word sequence, the associag of: lemmasand part-of-speeclof the compo-
tion measures rank collocations according to the asents, andype of dependendeetween the compo-
sumption that they occur as units in a (informationnents.
theoretically) noisy environment (Shimohata et al., For each bigram type we counted frequencies in
1997) 68-6). By comparing empirical contexts of its contingency table, extracted empirical and imme-
a word sequence and its components, the assocdiate contexts, and computed all the 84 association
tion measures rank collocations according to the ameasures from Table 2. We processed 81614 sen-

Empirical evaluation
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# Name Formula ‘ ’ # Name Formula
1. Mean component offset lsr 4 49, Gini index max[P(z+)(P(y|z)%+ P(g|z)?) — P(xy)?
2. Variance component offset | -1 >, (d;—d)? +P(a%)(P(y|z) >+ P(9]2)%) — P(x7)>,
3. Joint probability P(zy) P(xy)(P(z|y) %+ P(|y)?) — P(xx)?
4. Conditional probability P(y|z) +P(x9)(P(z|9)%4+ P(2|5)%) — P(z%)?]
5. Reverse conditional prob. | P(z|y) 50. Confidence max([P(y|z), P(z|y)]
*6. Pointwise mutual inform. log% 51.Laplace max| ﬁﬁﬁ;’iiié ) %i%:z;i;]
7. Mutual depend D) |logp e’ 52. Conviction [BEDPGy) PEOPGY),
. Mutual dependency (MD) ogm . max[ — o Sy
8. Log frequency biasedMD 10gm+mg P(zy) 53. Piatersky-Shapiro P(zy)— P(z*) P(xy)
9. Normalized expectation % 54. Certainity factor maX[P(Z{‘f)?P(*y> P(x‘y)ff*(f*)}
*10. Mutual expectation L 20@Y) . p(gy) 55. Added value (AV) max[P(y|z) — P(xy), P(z|y) — P(zx)]
f(“)}tf»(/*yg *56. Collective strength P(zy)+P(27) .
11. Salience log%- log f (zy) : 9 P(a=)P(y) FP(z*) P(*y)
A 1= P(2%) P(xy) = P(&%) P(xy)
12. Pearson’sy? test PO ”fi” T=P(zy)—P(z7)
ij

13. Fisher’s exact test

fl) F (@) (ey) ! f(+7)!
NIf(zy)! f (2! f () f(29)!
fzy)—f(zy)

57.Klosgen

P(zy) -AV

Context measures:

27.Second Kulczynski

14.t test \/W *58. Context entropy
15.z score — few-iy) 59. Left context entropy
ViEna-(F@y)/N) )
16. Poison significance measurg (z) =7 (=) lfggfj\(lw)ﬁogf(w)' *60- Right context-entropy
17. Log likelihood ratio —23%7,; fijlog ;] 61. Left context divergence
18. Squared log likelihood ratio —234 10ng 62. Right context divergence
Association coefficients:
19. Russel-Rao S - 63. Cross entropy
20. Sokal-Michiner a+%ﬁ+d 64. Reverse cross entropy
*21. Rogers-Tanimoto % 65. Intersection measure
22.Hamann % 66. Euclidean norm
23.Third Sokal-Sneath bye 67. Cosine norm
24.Jaccard aTbTe 68.L1 norm
*25. First Kulezynsky ﬁ 69. Confusion probability
26. Second Sokal-Sneath m 70

1
sz +ats)

.Reverse confusion prob.
*71.Jensen-Shannon diverg.

4w P(w|Cpy) logP(w|Cay)
-, P(wl|C},) logP(w|C},)
2w P(w]CZ) logP(w|Cy,)
P(xx*)logP(xx)
5 P(w|CL,) logP(w|CL,)
P(xy) logP(*y)
—EwP(w\C;y) logP(w\Cm"y)
> P(w|Cy) log P(w|Cy)
2w P(w|Cy) log P(w|Cr)
2|CxNCy |
[Cx[+1Cy ]
VW (P(w]Ca)— P(w]Cy))2
2w P(w|Cq) P(w|Cy)
>Sw P(w|Cp)2 3, P(w|Cy)2
>w [P(w|Cr) = P(w|Cy)|
) P(T\Cw)g’(ylcw)P(w)
w

T *
) P(y|Cw) P(z|Cyw) P(w)
w
D (p(w|C)|| 4 (p(w|Co ) p(w|Cy)))

P(xy)

28. Fourth Sokal-Sneath (a4 _d d
, # (o o s k) +D(p(w|Cy) |13 (p(w|Co ) +p(w]Cy )]
29. Odds ratio % 72. Cosine of pointwiseMI 2y MIGH ) MIG0Y)
30.Yulle's w % ' p > MI(w,z)2- \/Zwé\/ll(w,y)z
) P(w|Cy
*31. Yulle’s Q Zg;gz *73.KL divergence >w P(w|Cy )1ogPEw7‘|Cyg
) w|C
32. Driver-Kroeber m *74.Reverse KL divergence |3, P(w|Cy) log%
a a+c )
33. Fifth Sokal-Sneath : ad — 75. Skew divergence D (p(w|Cz)||e(w]|Cy) 4+ (1—a) p(w|Cy))
e N AR (dHe) 76. Reverse skew divergence D (p(w|Cy )| lap(w|Cr) + (1—a)p(w|Cy))
.Pearson
WI\*’/)L:*@(d*b)(d*C) 77.Phrase word coocurrence 4 f(f(lﬁj)y) + f(f(‘ff)y) )
. . a a ’
35. Baroni-Urbani TForeivad 78. Word association (f(ucy) f(zy) n F(y|Ce)—f(zy) )
36. Braun-Blanquet  TTICE A1 ) o 2 flzy) flzy)
) max(atb,ate) Cosine context similarity: L (cos(ca,cay)+cos(cy,cay)
37.Simpson mm(atsato Sy
4( Ti Vb_f— ) c.=(z;); cos(cg,cy) = = 5
38. Michael —Mad—be) VE a2 /Sy
29, Mountford (“+d) +(bte) *79.in boolean vector space | z; =§(f(w;|C:))
.Mountfor et —
0. 2“*‘“’*“ L 80.in tf vector space 2= f(wi|Cy)
.Fager —_— 1 b, )
9 . /(a+b)(a+c) —gmax(b ) 8L.in tf-idf vectorspace | z;=f(wi|Cs): grfl s df (w)= o wieCyl|
i _ /Lii 11 ) L i
41.Unigram subtuples log $2 —3. Q(Qh )a:' steta Dice context similarity: 3 (dice(cq ,cay) +dice(cy ,Cay))
min ,C a
42.U cost log(l+m) ca=(21); dice(ca,cy) = 23 @y
43.Scost log(14 Rin(bae) y =3 e R VETEES SRV
) e a+1 *82.in boolean vector space | z; =§(f(w;|Cy))
a —a
44.R cost _ log(1+335) log(1+ 335 *83.in tf vector space zi = f(w;|Cy)
45.T combined cost vUXS ié - *84.in tf-idf vector space | z; = f(w;|Cs)- r{‘{u”; df ()= Kz : w; eC}|
46. Phi (zy)—P(zx)P(*xy) - —
I{P(z*)lf(jy)(lgP(w;))(lfl;qy)}) - Linguistic features:
47.Kappa (myHl», ;?il;p(izzlé?ilj)*gp(ig*)) =] *85. Part of speech { Adjective:Noun, Noun:Noun, Noun:Verb, ...}
48.J measure max[P(zy)log ’;((y*‘;)) +P(x7)log 1;((1‘*‘;)), *86. Dependency type { Attribute, Object, Subject, ...}
P(zy)log };((Z‘f)) +P(zy)log 1;((“_;'3)) 11| 87.Dependency structure |{_~,~}

Table 2: Association measures and linguistic features used in bigram collocation extraction mettieastes those selected by

the attribute selection method discussed in Section 4. References can be found at the end of the paper.
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tences with 1255590 words and obtained a total of% p—
202 171 different dependency bigrams. %
Krenn (2000) argues that collocation extraction
methods should be evaluated against a reference sét| .
of collocations manually extracted from the full can-
didate data from a corpus. However, we reduced th§60

(%)

J .

full candidate data from PDT to 21597 bigram byg | Pointwise mutual information AN

. . . ) | ——— Pearson’stest N e
filtering out any bigrams which occurred 5 or less | ---- AKA;;:;ford SR
times in the data and thus we obtainedeterence | —-—- Left context divergence N Y

. . . .. | — - — Context intersection measure \

data setwhich fulfills requirements of a sufficient o L7 Cosnecometsmiaityinbodeanvs _pesline= 20.75%
size and a minimal frequency of observations which o 20 Dy 80 10

is needed for the assumption of normal distributio
required by some methods.

We manually processed the entire reference dataResults. Presenting individual results for all of
set and extracted bigrams that were considered to B 84 association measures is not possible in a paper
collocations. At this point we appliqhrt-of-speech of this length. Therefore, we present precision-recall
filtering: First, we identifiedOS patternshat never graphs only for the best methods from each group
form a collocation. Second, all dependency bigramgentioned in Section 2; see Figure 1. The baseline
having such &OSpattern were removed from the system that classifies bigrams randomly, operates
reference data and a final reference set of 8904 hiith a precision of 29.75%. The overall best re-
grams was created. We no longer consider bigrangglt was achieved bipointwise mutual informatian
with such patterns to be collocation candidates. 30 % recall with 85.5 % precision (F-measure 44.4),

This data set contained 2 649 items considered 8D % recall with 78.4 % precision (F-measure 68.0),
be collocations. The a priori probability of a bi-and 90 % recall with 62.5% precision (F-measure
gram to be a collocation was 29.75%. A strati-73.8).
fied one-third subsample of this data was selected
astestdataand used for evaluation and testing pur4  Statistical classification

poses in this work. The rest was taken apart and used _ _ _
astraining datain later experiments. In the previous section we mentioned that collo-

Evaluation metrics. Since we manually anno- cation extraction is a classification problem. Each

tated the entire reference data set we could use tR€thod classifies instances of the candidate data set
suggestegrecisionand recall measures (and their according to the values of an association score. Now
harmonic mearF-measurg A collocation extrac- we have several association scores for each candi-
tion method using any association measure with 3t€ bigram and want to combine them together to
given threshold can be considered a classifier arftfhieve better performance. A motivating example

the measures can be computed in the following ways depicted in Figure 3: Association scoresRoint-
wise mutual informatiorand Cosine context simi-
# correctly classified collocations

Precision = : , larity are independent enough to be linearly com-

# total predicted as collocations . . . .

bined to provide better results. Considering all as-

sociation measures, we deal with a problem of high-
dimensional classification into two classes.
The higher these scores, the better the classifier is.In our case, each bigram is described by the
By changing the threshold we can tune the clasttribute vectorx=(x1,...,zs7) consisting of lin-
sifier performance and “trade” recall for precisionguistic features and association scores from Table 2.
Therefore, collocation extraction methods can bBlow we look for a function assigning each bigram
thoroughly compared by comparing thpiecision- one class :f(x) —{collocation, non-collocatioh
-recall curves The closer the curve to the top rightThe result of this approach is similar to setting a
corner, the better the method is. threshold of the association score in methods us-

r]:igure 1: Precision-recall curves for selected assoc. measures.

# correctly classified collocations

Recall
eca # total collocations
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Figure 2: Data visualization in two dimensions. The dashed linEigure 3: Precision-recall curves of two classifiers based on
denotes a linear discriminant obtained by logistic linear regres} logistic linear regression on the full set of 87 attributes and

sion. By moving this boundary we can tune the classifier outpuit) on the selected subset with 17 attributes. The thin unlabeled
(a 5% stratified sample of the test data is displayed). curves refer to the methods from the 17 selected attributes

ing one association measure, which is not very use- Attribute selection. In the final step of our exper-
full for our purpose. Some classification methiments, we attempted to reduce the attribute space of
ods, however, output also the predicted probabilityur data and thus obtain an attribute subset with the
P(x s collocation) that can be considered a regulaisame prediction ability. We employedyeeedy step-
association measure as described above. Thus, (hgesearch method with attribute subset evaluation
classification method can be also tuned by changinga logistic regression implemented in Weka. It per-
a threshold of this probability and can be comparefbrms a greedy search through the space of attribute
with other methods by the same means of precisiofubsets and iteratively merges subsets that give the
and recall. best results until the performance is no longer im-
One of the basic classification methods that givegroved.

a predicted probability ifogistic linear regression We ended up with a subset consisting of the fol-
The model defines the predicted probability as: lowing 17 attributes: & 10, 21, 25, 31, 56, 58, 61, 71,
explotBizr.+Bnen 73, 74, 79, 82, 83, 84, 85, $avhich are also marked in
Table 2. The overview of achieved results is shown

o ] ) in Table 3 and precision-recall graphs of the selected
where the coefficients; are obtained by theer-  ,ihtes and their combinations are in Figure 3.
atively reweighted least squar€BRLS) algorithm
which solves the weighted least squares proble® conclusions and future work
at each iteration. Categorial attributes need to be
transformed to numeridummy variableslt is also We implemented 84 automatic collocation extrac-
recommended taormalizeall numeric attributes to tion methods and performed series of experiments
have zero mean and unit variance. on morphologically and syntactically annotated
We employed the datamining softwavéekaby data. The methods were evaluated against a refer-
Witten and Frank (2000) in our experiments. Asnce set of collocations manually extracted from the
training datawe used a two-third subsample of th ol Secson
reference da'ta described _above. Tést (_Jlatawas 30T 60 190 [ 50 T 80 T 90
the same as in the evaluation of the basic methods s iioarinformation 1855784 6251 78.0/56.0/ 16 3
By combining all the 87 attributes, we achieveq | ogistic regression-17| 92.6| 89.5| 84.5 96.7| 86.7| 55.8
the results displayed in Table 3 and illustrated in FigrAbsolute improvemen{ 7.1]11.1[22.0[17.7[30.7|39.2
ure 3. At a recall level of 90 % the relative increasgRelative improvement| 8.3|14.2|35.2|23.9| 54.8(242.3
in precision was 35.2% and at a precision level of

90 % th lative i . I . . Table 3: Precision (the 3 left columns) and recall (the 3 right
o theé refative Increase In recall was Impress'v@olumns) scores (in %) for the best individual method and linear

242.3%. combination of the 17 selected ones.

P(xis collocation) = 1+ expPotBran—+Buan
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same source. The best meth&difitwise mutual in- T. E. Dunning. 1993. Accurate methods for the statistics

formation) achieved 68.3 % recall with 73.0 % pre- of surprise and coincidence.Computational Linguistics
- ) 19(1):61-74.

cision (F-measure 70.6) on this data. We proposed

to Comblne the aSSOCIatlon scores Of each CandldéeEVert and B. Krenn. 2001. Methods for the qua“tatlve eval-
uation of lexical association measures.Pioceedings 39th

b_igram_and employedf)giStiC linear reg_re_SSiono Annual Meeting of the Association for Computational Lin-
find a linear combination of the association scores guistics pages 188-195.
of a”_the basic methOdS- Thus ‘_Ne ConsltrUCted a Coé'. Evert. 2004.The Statistics of Word Cooccurrences: Word
location extraction method which achieved 80.8 % Pairs and CollocationsPh.D. thesis, University of Stuttgart.
i 0 isi - . ., . .
recall with 84.8 % precision (F-measure 82.8). Fury \ajg E. Hajova, P. Pajas, J. Panevova, P. Sgall, and
thermore, we applied an attribute selection tech- B. Vidova-Hladka. 2001. Prague dependency treebank 1.0.
nique in order to lower the high dimensionality of ~Published by LDC, University of Pennsylvania.
the classification problem and reduced the humbe Kita, Y. Kato, T. Omoto, and Y. Yano. 1994. A comparative
of regressors from 87 to 17 with comparable perfor- study of automatic extraction of collocations from corpora:
. . . Mutual information vs. cost criterialournal of Natural Lan-
mance. Th|§ result can be V|eweq asa kln_d of evalu- guage Processing (1):21-33.
ation of basic collocation extraction techniques. We ) . -
inth I h ill ai h B. Krenn. 2000. Collocation Mining: Exploiting Corpora for
can obtain the smallest subset that still gives the be_StCollocation Idenfication and RepresentationPmceedings
result. The other measures therefore become unin-of KONVENS 2000
teresting and need not be further processed and eV@:I'Lee. 2001. On the effectiveness of the skew divergence
uated. for statistical language analysidArtificial Inteligence and
The reseach presented in this paper is in progress Sttistics pages 65-72.
The list of collocation extraction methods and as€. D. Manning and H. Schiitze. 199%oundations of Statis-
sociation measures is far from complete. Our long tical Natural Language ProcessingThe MIT Press, Cam-
. . bridge, Massachusetts.
term goal is to collect, implement, and evaluate all

available methods suitable for this task. and relea& Pearce. 2002. A comparative evaluation of collocation ex-
! traction techniques. Iifhird International Conference on

the toolkit for public use. language Resources and Evaluatitias Palmas, Spain.
In.the futgre, we WI”. fpcus eSpeC_la”y on im- T. Pedersen. 1996. Fishing for exactness.Piaceedings of
proving quality of the training and testing data, em-  the South Central SAS User's Group Conferepages 188—
ploying other classification and attribute-selection 200, Austin, TX.
techniques, and performing experiments on Englis§ shimohata, T. Sugio, and J. Nagata. 1997. Retrieving col-
data. A necessary part of the work will be a rigorous locations by co-occurrences and word order constraints. In
; ; _ Proc. of the 35th Annual Meeting of the ACL and 8th Con-
thgoretlcal study_of all appll_ed method; and appro ference of the EAGlpages 476-81, Madrid. Spain.
priateness of their usage. Finally, we will attempt to . . .
demonstrate contribution of collocations in selecteff Tan: V- Kumar, and J. Srivastava. 2002. Selecting the right

. . ! - ~~ interestingness measure for association patterriBroceed-
application areas, such as machine translation or in- ings of the Eight A CM SIGKDD International Conference

formation retrieval. on Knowledge Discovery and Data Mining

A. Thanopoulos, N. Fakotakis, and G. Kokkinakis. 2002. Com-
ACknOWIedgmentS parative evaluation of collocation extraction metrics.3d
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