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Abstract

This paper presents astatus quoof an
ongoing research study of collocations –
an essential linguistic phenomenon hav-
ing a wide spectrum of applications in
the field of natural language processing.
The core of the work is an empirical eval-
uation of a comprehensive list of auto-
matic collocation extraction methods us-
ing precision-recall measures and a pro-
posal of a new approach integrating mul-
tiple basic methods and statistical classi-
fication. We demonstrate that combining
multiple independent techniques leads to
a significant performance improvement in
comparisonwith individualbasic methods.

1 Introduction and motivation

Natural language cannot be simply reduced to lex-
icon and syntax. The fact that individual words
cannot be combined freely or randomly is common
for most natural languages. The ability of a word
to combine with other words can be expressed ei-
ther intensionallyor extensionally. The former case
refers tovalency. Instances of the latter case are
calledcollocations(Čermák and Holub, 1982). The
term collocation has several other definitions but
none of them is widely accepted. Most attempts
are based on a characteristic property of colloca-
tions: non-compositionality. Choueka (1988) de-
fines a collocational expression as “a syntactic and
semantic unit whose exact and unambiguous mean-
ing or connotation cannot be derived directly from
the meaning or connotation of its components”.

The term collocation has both linguistic and lexi-
cographic character. It covers a wide range of lexical
phenomena, such as phrasal verbs, light verb com-
pounds, idioms, stock phrases, technological ex-
pressions, and proper names. Collocations are of
high importance for many applications in the field
of NLP. The most desirable ones are machine trans-
lation, word sense disambiguation, language genera-
tion, and information retrieval. The recent availabil-
ity of large amounts of textual data has attracted in-
terest in automatic collocation extraction from text.
In the last thirty years a number of different methods
employing various association measures have been
proposed. Overview of the most widely used tech-
niques is given e.g. in (Manning and Schütze, 1999)
or (Pearce, 2002). Several researches also attempted
to compare existing methods and suggested different
evaluation schemes, e.g Kita (1994) or Evert (2001).
A comprehensive study of statistical aspects of word
cooccurrences can be found in (Evert, 2004).

In this paper we present a compendium of 84
methods for automatic collocation extraction. They
came from different research areas and some of them
have not been used for this purpose yet. A brief
overview of these methods is followed by their com-
parative evaluation against manually annotated data
by the means of precision and recall measures. In
the end we propose a statistical classification method
for combining multiple methods and demonstrate a
substantial performance improvement.

In our research we focus on two-word (bigram)
collocations, mainly for the reason that experiments
with longer expressions would require processing of
much larger amounts of data and limited scalability
of some methods to high order n-grams. The exper-
iments are performed on Czech data.
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2 Collocation extraction

Most methods for collocation extraction are based
on verification of typical collocation properties.
These properties are formally described by mathe-
matical formulas that determine the degree of as-
sociation between components of collocation. Such
formulas are calledassociation measuresand com-
pute anassociation scorefor each collocation candi-
date extracted from a corpus. The scores indicate a
chance of a candidate to be a collocation. They can
be used for ranking or for classification – by setting
a threshold. Finding such a threshold depends on the
intended application.

The most widely tested property of collocations is
non-compositionality: If words occur together more
often than by a chance, then this is the evidence that
they have a special function that is not simply ex-
plained as a result of their combination (Manning
and Schütze, 1999). We think of a corpus as a ran-
domly generated sequence of words that is viewed as
a sequence of word pairs. Occurrence frequencies
of these bigrams are extracted and kept in contin-
gency tables (Table 1a). Values from these tables are
used in several association measures that reflect how
much the word coocurrence is accidental. A list of
such measures is given in Table 2 and includes: es-
timation of bigram and unigram probabilities (rows
3–5), mutual information and derived measures (6–

11), statistical tests of independence (12–16), likeli-
hood measures (17–18), and various other heuristic
association measures and coefficients (19–57).

Another frequently tested property is taken di-
rectly from the definition that a collocation is asyn-
tactic and semantic unit. For each bigram occurring
in the corpus, information of itsempirical context
(frequencies of open-class words occurring within
a specified context window) and left and rightim-
mediate contexts(frequencies of words immediately
preceding or following the bigram) is extracted (Ta-
ble 1b). By determining the entropy of the im-
mediate contexts of a word sequence, the associa-
tion measures rank collocations according to the as-
sumption that they occur as units in a (information-
theoretically) noisy environment (Shimohata et al.,
1997) (58–62). By comparing empirical contexts of
a word sequence and its components, the associa-
tion measures rank collocations according to the as-

a) a=f(xy) b=f(xȳ) f(x∗)

c=f(x̄y) d=f(x̄ȳ) f(x̄∗)

f(∗y) f(∗ȳ) N

b) Cw empirical context ofw
Cxy empirical context ofxy

Cl
xy left immediate context ofxy

Cr
xy right immediate context ofxy

Table 1: a) A contingency table with observed frequencies and
marginal frequencies for a bigramxy; w̄ stands for any word
exceptw; ∗ stands for any word; N is a total number of bi-
grams. The table cells are sometimes referred asfij . Statistical
tests of independence work with contingency tables of expected
frequenciesf̂(xy)=f(x∗)f(∗y)/N. b) Different notions of em-
pirical contexts.

sumption that semantically non-compositional ex-
pressions typically occur in different contexts than
their components (Zhai, 1997). Measures (63–76)
have information theory background and measures
(77–84) are adopted from the field of information
retrieval. Context association measures are mainly
used for extracting idioms.

Besides all the association measures described
above, we also take into account other recommended
measures (1–2) (Manning and Schütze, 1999) and
some basic linguistic characteristics used for filter-
ing non-collocations (85–87). This information can
be obtained automatically from morphological tag-
gers and syntactic parsers available with reasonably
high accuracy for many languages.

3 Empirical evaluation

Evaluation of collocation extraction methods is a
complicated task. On one hand, different applica-
tions require different setting of association score
thresholds. On the other hand, methods give differ-
ent results within different ranges of their associa-
tion scores. We need a complex evaluation scheme
covering all demands. In such a case, Evert (2001)
and other authors suggest usingprecisionandrecall
measures on a full reference data or onn-bestlists.

Data. All the presented experiments were per-
formed on morphologically and syntactically anno-
tated Czech text from thePrague Dependency Tree-
bank (PDT) (Hajǐc et al., 2001). Dependency trees
were broken down intodependency bigramsconsist-
ing of: lemmasand part-of-speechof the compo-
nents, andtype of dependencebetween the compo-
nents.

For each bigram type we counted frequencies in
its contingency table, extracted empirical and imme-
diate contexts, and computed all the 84 association
measures from Table 2. We processed 81 614 sen-
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# Name Formula

1. Mean component offset 1
n

Pn
i=1 di

2. Variance component offset 1
n−1

Pn
i=1

`
di−d̄

´2
3. Joint probability P (xy)

4. Conditional probability P (y|x)

5. Reverse conditional prob. P (x|y)

?6. Pointwise mutual inform. log
P (xy)

P (x∗)P (∗y)

7. Mutual dependency (MD) log
P (xy)2

P (x∗)P (∗y)

8. Log frequency biasedMD log
P (xy)2

P (x∗)P (∗y)+log P (xy)

9. Normalized expectation 2f(xy)
f(x∗)+f(∗y)

?10. Mutual expectation 2f(xy)
f(x∗)+f(∗y) ·P (xy)

11. Salience log
P (xy)2

P (x∗)P (∗y) · logf(xy)

12. Pearson’sχ2 test
P

i,j

(fij−f̂ij)2

f̂ij

13. Fisher’s exact test f(x∗)!f(x̄∗)!f(∗y)!f(∗ȳ)!
N!f(xy)!f(xȳ)!f(x̄y)!f(x̄ȳ)!

14.t test f(xy)−f̂(xy)√
f(xy)(1−(f(xy)/N))

15.z score f(xy)−f̂(xy)√
f̂(xy)(1−(f̂(xy)/N))

16. Poison significance measuref̂(xy)−f(xy) logf̂(xy)+logf(xy)!
logN

17. Log likelihood ratio −2
P

i,jfij log
fij

f̂ij

18. Squared log likelihood ratio −2
P

i,j

logfij
2

f̂ij

Association coefficients:

19. Russel-Rao a
a+b+c+d

20. Sokal-Michiner a+d
a+b+c+d

?21. Rogers-Tanimoto a+d
a+2b+2c+d

22. Hamann (a+d)−(b+c)
a+b+c+d

23. Third Sokal-Sneath b+c
a+d

24. Jaccard a
a+b+c

?25. First Kulczynsky a
b+c

26. Second Sokal-Sneath a
a+2(b+c)

27. Second Kulczynski 1
2 ( a

a+b + a
a+c )

28. Fourth Sokal-Sneath 1
4 ( a

a+b + a
a+c + d

d+b + d
d+c )

29. Odds ratio ad
bc

30. Yulle’s ω
√

ad−
√

bc√
ad+

√
bc

?31. Yulle’s Q ad−bc
ad+bc

32. Driver-Kroeber a√
(a+b)(a+c)

33. Fifth Sokal-Sneath ad√
(a+b)(a+c)(d+b)(d+c)

34. Pearson ad−bc√
(a+b)(a+c)(d+b)(d+c)

35. Baroni-Urbani a+
√

ad

a+b+c+
√

ad

36. Braun-Blanquet a
max(a+b,a+c)

37. Simpson a
min(a+b,a+c)

38. Michael 4(ad−bc)
(a+d)2+(b+c)2

39. Mountford 2a
2bc+ab+ac

40. Fager a√
(a+b)(a+c)

− 1
2max(b, c)

41. Unigram subtuples log ad
bc −3.29

q
1
a

+ 1
b
+ 1

c
+ 1

d

42. U cost log(1+
min(b,c)+a
max(b,c)+a

)

43. S cost log(1+
min(b,c)

a+1 )
−1

2

44. R cost log(1+ a
a+b )·log(1+ a

a+c )

45. T combined cost
√

U×S×R

46. Phi P (xy)−P (x∗)P (∗y)√
P (x∗)P (∗y)(1−P (x∗))(1−P (∗y))

47. Kappa P (xy)+P (x̄ȳ)−P (x∗)P (∗y)−P (x̄∗)P (∗ȳ)
1−P (x∗)P (∗y)−P (x̄∗)P (∗ȳ)

48. J measure max[P (xy)log
P (y|x)
P (∗y) +P (xȳ)log

P (ȳ|x)
P (∗ȳ) ,

P (xy)log
P (x|y)
P (x∗) +P (x̄y)log

P (x̄|y)
P (x̄∗) ]

# Name Formula

49. Gini index max[P (x∗)(P (y|x)2+P (ȳ|x)2)−P (∗y)2

+P (x̄∗)(P (y|x̄)2+P (ȳ|x̄)2)−P (∗ȳ)2,

P (∗y)(P (x|y)2+P (x̄|y)2)−P (x∗)2

+P (∗ȳ)(P (x|ȳ)2+P (x̄|ȳ)2)−P (x̄∗)2]

50. Confidence max[P (y|x), P (x|y)]

51. Laplace max[
NP (xy)+1
NP (x∗)+2 ,

NP (xy)+1
NP (∗y)+2 ]

52. Conviction max[
P (x∗)P (∗y)

P (xȳ) ,
P (x̄∗)P (∗y)

P (x̄y) ]

53. Piatersky-Shapiro P (xy)−P (x∗)P (∗y)

54. Certainity factor max[
P (y|x)−P (∗y)

1−P (∗y) ,
P (x|y)−P (x∗)

1−P (x∗) ]

55. Added value (AV) max[P (y|x)−P (∗y), P (x|y)−P (x∗)]
?56. Collective strength P (xy)+P (x̄ȳ)

P (x∗)P (y)+P (x̄∗)P (∗y) ·
1−P (x∗)P (∗y)−P (x̄∗)P (∗y)

1−P (xy)−P (x̄ȳ)

57. Klosgen
p

P (xy) ·AV

Context measures:
?58. Context entropy −

P
w P (w|Cxy) logP (w|Cxy)

59. Left context entropy −
P

w P (w|Cl
xy) logP (w|Cl

xy)

60. Right context entropy −
P

w P (w|Cr
xy) logP (w|Cr

xy)

?61. Left context divergence P (x∗) logP (x∗)
−

P
wP (w|Cl

xy) logP (w|Cl
xy)

62. Right context divergence P (∗y) logP (∗y)

−
P

wP (w|Cr
xy) logP (w|Cr

xy)

63. Cross entropy −
P

wP (w|Cx) log P (w|Cy)

64. Reverse cross entropy −
P

wP (w|Cy) log P (w|Cx)

65. Intersection measure
2|Cx∩Cy|
|Cx|+|Cy|

66. Euclidean norm
qP

w(P (w|Cx)−P (w|Cy))2

67. Cosine norm
P

w P (w|Cx)P (w|Cy)P
w P (w|Cx)2·

P
w P (w|Cy)2

68. L1 norm
P

w |P (w|Cx)−P (w|Cy)|

69. Confusion probability
P

w
P (x|Cw)P (y|Cw)P (w)

P (x∗)

70. Reverse confusion prob.
P

w
P (y|Cw)P (x|Cw)P (w)

P (∗y)
?71. Jensen-Shannon diverg. 1

2 [D(p(w|Cx)|| 12 (p(w|Cx)+p(w|Cy)))

+D(p(w|Cy)|| 12 (p(w|Cx)+p(w|Cy)))]

72. Cosine of pointwiseMI
P

w MI(w,x)MI(w,y)√P
w MI(w,x)2·

√P
w MI(w,y)2

?73. KL divergence
P

w P (w|Cx) log
P (w|Cx)
P (w|Cy)

?74. Reverse KL divergence
P

w P (w|Cy) log
P (w|Cy)
P (w|Cx)

75. Skew divergence D(p(w|Cx)||α(w|Cy)+(1−α)p(w|Cx))

76. Reverse skew divergence D(p(w|Cy)||αp(w|Cx)+(1−α)p(w|Cy))

77. Phrase word coocurrence 1
2 (

f(x|Cxy)
f(xy) +

f(y|Cxy)
f(xy) )

78. Word association 1
2 (

f(x|Cy)−f(xy)
f(xy) +

f(y|Cx)−f(xy)
f(xy) )

Cosine context similarity: 1
2 (cos(cx,cxy)+cos(cy,cxy))

cz=(zi); cos(cx,cy)=

P
xiyi√P

xi
2·
√P

yi
2

?79. in boolean vector space zi =δ(f(wi|Cz))

80. in tf vector space zi =f(wi|Cz)

81. in tf·idf vector space zi =f(wi|Cz)· N
df(wi)

; df(wi)= |{x :wiεCx}|

Dice context similarity: 1
2 (dice(cx,cxy)+dice(cy,cxy))

cz=(zi); dice(cx,cy)=
2

P
xiyiP

xi
2+

P
yi

2
?82. in boolean vector space zi =δ(f(wi|Cz))

?83. in tf vector space zi =f(wi|Cz)

?84. in tf·idf vector space zi =f(wi|Cz)· N
df(wi)

; df(wi)= |{x :wiεCx}|

Linguistic features:
?85. Part of speech { Adjective:Noun, Noun:Noun, Noun:Verb, . . . }

?86. Dependency type { Attribute, Object, Subject, . . . }

87. Dependency structure {↗,↖}

Table 2: Association measures and linguistic features used in bigram collocation extraction methods.? denotes those selected by
the attribute selection method discussed in Section 4. References can be found at the end of the paper.
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tences with 1 255 590 words and obtained a total of
202 171 different dependency bigrams.

Krenn (2000) argues that collocation extraction
methods should be evaluated against a reference set
of collocations manually extracted from the full can-
didate data from a corpus. However, we reduced the
full candidate data from PDT to 21 597 bigram by
filtering out any bigrams which occurred 5 or less
times in the data and thus we obtained areference
data setwhich fulfills requirements of a sufficient
size and a minimal frequency of observations which
is needed for the assumption of normal distribution
required by some methods.

We manually processed the entire reference data
set and extracted bigrams that were considered to be
collocations. At this point we appliedpart-of-speech
filtering: First, we identifiedPOS patternsthat never
form a collocation. Second, all dependency bigrams
having such aPOSpattern were removed from the
reference data and a final reference set of 8 904 bi-
grams was created. We no longer consider bigrams
with such patterns to be collocation candidates.

This data set contained 2 649 items considered to
be collocations. The a priori probability of a bi-
gram to be a collocation was 29.75 %. A strati-
fied one-third subsample of this data was selected
astest dataand used for evaluation and testing pur-
poses in this work. The rest was taken apart and used
astraining datain later experiments.

Evaluation metrics. Since we manually anno-
tated the entire reference data set we could use the
suggestedprecisionand recall measures (and their
harmonic meanF-measure). A collocation extrac-
tion method using any association measure with a
given threshold can be considered a classifier and
the measures can be computed in the following way:

Precision =
# correctly classified collocations

# total predicted as collocations

Recall =
# correctly classified collocations

# total collocations

The higher these scores, the better the classifier is.
By changing the threshold we can tune the clas-
sifier performance and “trade” recall for precision.
Therefore, collocation extraction methods can be
thoroughly compared by comparing theirprecision-
-recall curves: The closer the curve to the top right
corner, the better the method is.
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Pointwise mutual information
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Mountford
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Left context divergence
Context intersection measure
Cosine context similarity in boolean VS

Figure 1: Precision-recall curves for selected assoc. measures.

Results. Presenting individual results for all of
the 84 association measures is not possible in a paper
of this length. Therefore, we present precision-recall
graphs only for the best methods from each group
mentioned in Section 2; see Figure 1. The baseline
system that classifies bigrams randomly, operates
with a precision of 29.75 %. The overall best re-
sult was achieved byPointwise mutual information:
30 % recall with 85.5 % precision (F-measure 44.4),
60 % recall with 78.4 % precision (F-measure 68.0),
and 90 % recall with 62.5 % precision (F-measure
73.8).

4 Statistical classification

In the previous section we mentioned that collo-
cation extraction is a classification problem. Each
method classifies instances of the candidate data set
according to the values of an association score. Now
we have several association scores for each candi-
date bigram and want to combine them together to
achieve better performance. A motivating example
is depicted in Figure 3: Association scores ofPoint-
wise mutual informationand Cosine context simi-
larity are independent enough to be linearly com-
bined to provide better results. Considering all as-
sociation measures, we deal with a problem of high-
dimensional classification into two classes.

In our case, each bigramx is described by the
attribute vectorx=(x1, . . . , x87) consisting of lin-
guistic features and association scores from Table 2.
Now we look for a function assigning each bigram
one class :f(x)→{ collocation, non-collocation}.
The result of this approach is similar to setting a
threshold of the association score in methods us-
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Figure 2: Data visualization in two dimensions. The dashed line
denotes a linear discriminant obtained by logistic linear regres-
sion. By moving this boundary we can tune the classifier output
(a 5 % stratified sample of the test data is displayed).

ing one association measure, which is not very use-
full for our purpose. Some classification meth-
ods, however, output also the predicted probability
P (x is collocation) that can be considered a regular
association measure as described above. Thus, the
classification method can be also tuned by changing
a threshold of this probability and can be compared
with other methods by the same means of precision
and recall.

One of the basic classification methods that gives
a predicted probability isLogistic linear regression.
The model defines the predicted probability as:

P (x is collocation) =
expβ0+β1x1...+βnxn

1 + expβ0+β1x1...+βnxn

where the coefficientsβi are obtained by theiter-
atively reweighted least squares(IRLS) algorithm
which solves the weighted least squares problem
at each iteration. Categorial attributes need to be
transformed to numericdummy variables. It is also
recommended tonormalizeall numeric attributes to
have zero mean and unit variance.

We employed the datamining softwareWekaby
Witten and Frank (2000) in our experiments. As
training datawe used a two-third subsample of the
reference data described above. Thetest datawas
the same as in the evaluation of the basic methods.

By combining all the 87 attributes, we achieved
the results displayed in Table 3 and illustrated in Fig-
ure 3. At a recall level of 90 % the relative increase
in precision was 35.2 % and at a precision level of
90 % the relative increase in recall was impressive
242.3 %.
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Figure 3: Precision-recall curves of two classifiers based on
i) logistic linear regression on the full set of 87 attributes and
ii) on the selected subset with 17 attributes. The thin unlabeled
curves refer to the methods from the 17 selected attributes

Attribute selection. In the final step of our exper-
iments, we attempted to reduce the attribute space of
our data and thus obtain an attribute subset with the
same prediction ability. We employed agreedy step-
wisesearch method with attribute subset evaluation
via logistic regression implemented in Weka. It per-
forms a greedy search through the space of attribute
subsets and iteratively merges subsets that give the
best results until the performance is no longer im-
proved.

We ended up with a subset consisting of the fol-
lowing 17 attributes: (6, 10, 21, 25, 31, 56, 58, 61, 71,

73, 74, 79, 82, 83, 84, 85, 86) which are also marked in
Table 2. The overview of achieved results is shown
in Table 3 and precision-recall graphs of the selected
attributes and their combinations are in Figure 3.

5 Conclusions and future work

We implemented 84 automatic collocation extrac-
tion methods and performed series of experiments
on morphologically and syntactically annotated
data. The methods were evaluated against a refer-
ence set of collocations manually extracted from the

Recall Precision
30 60 90 70 80 90

P. mutual information 85.5 78.4 62.5 78.0 56.0 16.3
Logistic regression-17 92.6 89.5 84.5 96.7 86.7 55.8
Absolute improvement 7.1 11.1 22.0 17.7 30.7 39.2
Relative improvement 8.3 14.2 35.2 23.9 54.8 242.3

Table 3: Precision (the 3 left columns) and recall (the 3 right
columns) scores (in %) for the best individual method and linear
combination of the 17 selected ones.
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same source. The best method (Pointwise mutual in-
formation) achieved 68.3 % recall with 73.0 % pre-
cision (F-measure 70.6) on this data. We proposed
to combine the association scores of each candidate
bigram and employedLogistic linear regressionto
find a linear combination of the association scores
of all the basic methods. Thus we constructed a col-
location extraction method which achieved 80.8 %
recall with 84.8 % precision (F-measure 82.8). Fur-
thermore, we applied an attribute selection tech-
nique in order to lower the high dimensionality of
the classification problem and reduced the number
of regressors from 87 to 17 with comparable perfor-
mance. This result can be viewed as a kind of evalu-
ation of basic collocation extraction techniques. We
can obtain the smallest subset that still gives the best
result. The other measures therefore become unin-
teresting and need not be further processed and eval-
uated.

The reseach presented in this paper is in progress.
The list of collocation extraction methods and as-
sociation measures is far from complete. Our long
term goal is to collect, implement, and evaluate all
available methods suitable for this task, and release
the toolkit for public use.

In the future, we will focus especially on im-
proving quality of the training and testing data, em-
ploying other classification and attribute-selection
techniques, and performing experiments on English
data. A necessary part of the work will be a rigorous
theoretical study of all applied methods and appro-
priateness of their usage. Finally, we will attempt to
demonstrate contribution of collocations in selected
application areas, such as machine translation or in-
formation retrieval.
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