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Abstract of Berger et al. (1996). Zhang and Gildea (2004)
found ITG to outperform the tree-to-string model for
word-level alignment, as measured against human
gold-standard alignments. One explanation for this
result is that, while a tree representation is helpful
for modeling translation, the trees assigned by the
traditional monolingual parsers (and the treebanks
on which they are trained) may not be optimal for
translation of a specific language pair. ITG has the
advantage of being entirely data-driven — the trees
are derived from an expectation maximization pro-
cedure given only the original strings as input.

In this paper, we extend ITG to condition the
The Inversion Transduction Grammar (ITG) of Wugrammar production probabilities on lexical infor-
(1997) is a syntactically motivated algorithm formation throughout the tree. This model is reminis-
producing word-level alignments of pairs of translacent of lexicalization as used in modern statistical
tionally equivalent sentences in two languages. Thegarsers, in that a unique head word is chosen for
algorithm builds a synchronous parse tree for boteach constituent in the tree. It differs in that the
sentences, and assumes that the trees have the s@e®d words are chosen through EM rather than de-
underlying structure but that the ordering of conterministic rules. This approach is designed to retain
stituents may differ in the two languages. the purely data-driven character of ITG, while giving

This probabilistic, syntax-based approach has irthe model more information to work with. By condi-
spired much subsequent reasearch. Alshawi &bning on lexical information, we expect the model
al. (2000) use hierarchical finite-state transducert be able capture the same systematic differences in
In the tree-to-string model of Yamada and Knightanguages’ grammars that motive the tree-to-string
(2001), a parse tree for one sentence of a translarodel, for example, SVO vs. SOV word order or
tion pair is projected onto the other string. Melamegbrepositions vs. postpositions, but to be able to do
(2003) presents algorithms for synchronous parsingp in a more fine-grained manner. The interaction
with more complex grammars, discussing how tdetween lexical information and word order also ex-
parse grammars with greater than binary branchirgjains the higher performance of IBM model 4 over
and lexicalization of synchronous grammars. IBM model 3 for alignment.

Despite being one of the earliest probabilistic We begin by presenting the probability model in
syntax-based translation models, ITG remains statthe following section, detailing how we address is-
of-the art. Zens and Ney (2003) found that the consues of pruning and smoothing that lexicalization in-
straints of ITG were a better match to the decodroduces. We present alignment results on a parallel
ing task than the heuristics used in the IBM decodeChinese-English corpus in Section 3.

We present a version of Inversion Trans-
duction Grammar where rule probabili-
ties are lexicalized throughout the syn-
chronous parse tree, along with pruning
techniques for efficient training. Align-
ment results improve over unlexicalized
ITG on short sentences for which full EM
is feasible, but pruning seems to have a
negative impact on longer sentences.

1 Introduction
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2 Lexicalization of Inversion Transduction - P(C' — see/vois) - P(C — them/les)
Grammars

An Inversion Transduction Grammar can generate It is important to note that besides the bottom-
pairs of sentences in two languages by recursivelgvel word-pairing rules, the other rules are all non-
applying context-free bilingual production rules.lexical, which means the structural alignment com-
Most work on ITG has focused on the 2-normaponent of the model is not sensitive to the lexical
form, which consists of unary production rules thatontents of subtrees. Although the ITG model can
are responsible for generating word pairs: effectively restrict the space of alignment to make
X —eff polynomial time parsing algorithms possible, the
preference for inverted or straight rules only pas-
and binary production rules in two forms that aresively reflect the need of bottom level word align-
responsible for generating syntactic subtree pairs: ment. We are interested in investigating how much
X —[YZ] help it would be if we strengthen the structural align-
ment component by making the orientation choices
dependent on the real lexical pairs that are passed up
X —({Y2) from the bottom.

The rul it brack losing the riah The first step of lexicalization is to associate a lex-
€ ruies With square brac ets.enc 0sing t_ erg |£al pair with each nonterminal. The head word pair
hand side expand the left hand side symbol into trﬁeneration rules are designed for this purpose:
two symbols on the right hand side in the same ord

in the two languages, whereas the rules with pointed X — X(e/f)

two right hand side symbols in reverse order in thggntent ofX in the two languages.

and

two languages. For binary rules, the mechanism of head selection

One special case of ITG is the bracketing ITG thak jntroduced. Now there are 4 forms of binary rules:
has only one nonterminal that instantiates exactly

one straight rule and one inverted rule. The ITG we X(e/f) = [Y(e/f)Z]
apply in our experiments has more structural labels X(e/f) —[YZ(e/f)]
than the primitive bracketing grammar: it has a start

symbol S, a single preterminal’, and two interme- X(e/f) = (¥Y(e/)2)
diate nonterminalsl and B used to ensure that only X(e/f) — (YZ(e/f))

one parse can generate any given word-level align-

ment, as discussed by Wu (1997) and Zens and Négtermined by the four possible combinations of
(2003). head selectionsY{ or Z) and orientation selections
As an example, Figure 1 shows the alignment ani@traight or inverted). _ _
the corresponding parse tree for the sentencelpair TNe rules for generating lexical pairs at the leaves
lesvois/ | see them using the unambiguous bracket-Of the tree are now predetermined:
ingITG. | X(e/f) = e/f
A stochastic ITG can be thought of as a stochastic _ :
CFG extended to the space of bitext. The indepen- E’utt!ng th?f“ all together, we are at_)le to derive a
dence assumptions typifying S-CFGs are also Valilgx]callze'd bilingual parse treg fo_r agiven ser\tfence
for S-ITGs. Therefore, the probability of an s-iTcPar In Flgu_rg 2, the example_ In Figure 1 s revisited.
parse is calculated as the product of the probabilil:he probability of the lexicalized parse is:

ties of all the instances of rules in the parse tree. ForP (S — S(see/vois))

instance, the probability of the parse in Figure 1 is: - P(S(see/vois) — A(see/vois))
P(S— A)-P(A—[CB)) - P(A(see/vois) — [C'B(see/vois)])
-P(B— (CC))-P(C—1I/Je) -P(C — C(I)Je))
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them A
see c B
I e © c
Je les vois seelvois them/le
Figure 1: ITG Example
S
them S‘(see/vois)
see A(seelvois)

B(see/vois)

C(1/1Je)C(seelvois)
Je les vois C(them/les

Figure 2: Lexicalized ITG Exampleee/voisis the headword of both the 2x2 cell and the entire alignment.

- P(B(see/vois) — (C(see/vois)C)) two languages.
- P(C — C(them/les))
2.1 Parsing

The factors of the product are ordered to show
the generative process of the most probable parggiven a bilingual sentence pair, a synchronous parse
Starting from the start symbd¥, we first choose can be built using a two-dimensional extension of
the head word pair fof, which is see/vois in the chart parsing, where chart items are indexed by their
example. Then, we recursively expand the lexicalronterminalX, head word paie/ f if specified, be-
ized head constituents using the lexicalized stru@inning and ending positiorism in the source lan-
tural rules. Since we are only lexicalizing rather thaiguage string, and beginning and ending positiors
bilexicalizing the rules, the non-head constituent# the target language string. For Expectation Max-
need to be lexicalized using head generation rulégiization training, we compute lexicalized inside
so that the top-down generation process can proceptbbabilities 5(X (e/f),1,m,1, j), as well as un-
in all branches. By doing so, word pairs can appedexicalized inside probabilities(X, I, m, 4, j), from
at all levels of the final parse tree in contrast with théhe bottom up as outlined in Algorithm 1.
unlexicalized parse tree in which the word pairs are The algorithm has a complexity ab(NZN}),
generated only at the bottom. where N, and N, are the lengths of source and tar-
The binary rules are lexicalized rather than bilexiget sentences respectively. The complexity of pars-
calized! This is a trade-off between complexity anding for an unlexicalized ITG i®) (N2 N}?). Lexical-
expressiveness. After our lexicalization, the numbeeation introduces an additional factor Of N, V),
of lexical rules, thus the number of parameters in theaused by the choice of headwordand f in the
statistical model, is still at the order 6¥(|V||T'|), pseudocode.
where|V| and |T| are the vocabulary sizes of the Assuming that the lengths of the source and target
—Y o __sentences are proportional, the algorithm has a com-
In a sense our rules are bilexicalized in that they condition lexity of O(ns) wheren is the average lenath of
y , g g

on words from both languages; however they do not capturg
head-modifier relations within a language. the source and target sentences.
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Algorithm 1 LexicalizedITG, t)
for all [, m suchthat <! <m < N, do
for all i, j suchthat <i < j < N;do
foralle e {e/ 1...e,}do
forall f € {fit1...f;}do
for all n suchthat <n <m do
for all ksuchthat <k <j do
for all rulesX — YZ € G do
B(X(e/f),1m. i, j) +=
> straight rule, wherd” is head
P([Y(e/1)Z) | X(e/ 1) -B(Y (e/£),1,n.i.K) - B(Z,n,m. K, 5)
> inverted rule, wher&” is head
+ P(<Y(e/f)Z> | X<€/f)) ﬁ(Y(e/f),n, m, i, k) ’ ﬁ(Zv l,n, kv])
> straight rule, wher¢’ is head
+ P([YZ(e/f)] | X(e/[)) -B(Y,ln,i,k) - B(Z(e/f),n,m,k,j)
> inverted rule, wheré¢’ is head
+ P(YZ(e/f)) | X(e/f)) -B(Y.n.m.i, k) - B(Z(e/f),1,n. k. )
end for
end for
end for
> word pair generation rule
B(X,1,m,i,j) += P(X(e/f) | X) -B(X(e/f),1,m.i, )
end for
end for
end for
end for

2.2 Pruning outside probabilities. In the Model 1 estimate of

We need to further restrict the space of alignmem@_e outs_ide probabilit)_/, source anq target words can
spanned by the source and target strings to make tﬂlégn using any combination of points from the four

algorithm feasible. Our technique involves computpmSlde corner; of Fhe t'C'taT'éoe I|c|)attern. Thuds_ In
ing an estimate of how likely each of the cells in Figure 3(a), there is one solid cell (corresponding

the chart is before considering all ways of buildin 0 t_he Model _1 Viterbi alignment) in eagh column,
the cell by combining smaller subcells. Our figur alling elthgr in the upper or lower outside shadgd
of merit for a cell involves an estimate of both the*©M€" This can be a_lso be thought of_as squeezing
inside probability of the cell (how likely the words together the fOl_J_r ou_tS|de corners, creafing a new cell
within the box in both dimensions are to align) and’vhose [E)mba_b'"ﬁ/ IS es;qmatedfusmg IICBMhMOdTII
the outside probability (how likely the words out-+ Mathematica Y, ouf Ture 9 dme“t dol” vy
side the box in both dimensions are to align). Ir{l_’l,m’z’]d) 'ﬁ a pro_duct Of(; ?mS' El\t/)l'?' € 1 proba-
including an estimate of the outside probability, ouPI ity and the outside Model 1 probability:

technique is related to A* methods for monolingual P (f; ;) [ e m)) - P(fm | em) 1)
parsing (Klein and Manning, 2003), although our

estimate is not guaranteed to be lower than com-  — Al(Lml|.d)] H > Hfiles)
plete outside probabity assigned by ITG. Figure 3(a) te(td) se{0.(Lm)}

displays the tic-tac-toe pattern for the inside and ] II Y tfiles)
outside components of a particular cell. We use te(i,j) se{0,(L,m)}

IBM Model 1 as our estimate of both the inside and
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Figure 3: The tic-tac-toe figure of merit used for pruning bitext cells. $haded regions in (a) show
alignments included in the figure of merit for bitext cgllm, i, j) (Equation 1); solid black cells show the
Model 1 Viterbi alignment within the shaded area. (b) shows how to compate#ide probability of a
unit-width cell by combining basic cells (Equation 2), and (c) shows how topede the inside probability
of any cell by combining unit-width cells (Equation 3).

where(l, m) and(z, j) represent the complementarywith a cell of width one:

spans in the two languages;,, 1., is the probability N

of any word alignment temEJIazite for a pair @f - INS(m,inf) = JT > tfile)

word source string andls-word target string, which

we model as a uniform distribution of word-for-

word alignment patterns after a Poisson distribution tei.y)

of target string’s possible lengths, following Brown INS(l,m, i, 5 = 1)

et al. (1993). As an alternative, thé operator can -INS(l,m, 3,7) 3)

be replaced by theiax operator as the inside opera-rig e 3(h) and (c) illustrate the inductive compu-

tor over the translation probabilities above, meaning,+inn indicated by the two equations. Each of the

that we use the Model 1 Viterbi probability as ourO(n4) inductive steps takes one additive or mul-

estimate, r_ather than th_e total Model 1 probabity. tiplicative computation. A similar dynammic pro-
A naive |mplementat|on would talz@(nﬁ) steps graming technique can be used to efficiently com-

of computation, because there @ren”) cells, each e the outside component of the figure of merit.

of which takesO(n?) steps to compute its Model 1 Hence, the algorithm takes juStn?) steps to com-

probability. Fortunately, we can exploit the recury, e the figure of merit for all cells in the chart.

sive nature of the cells. LaNS(/,m, i, j) denote Once the cells have been scored, there can be
the major factor of our Model 1 estimate of a ceII’smany ways of pruning. In our experiments, we ap-
inside probability] Ty i j) 2 seo,m)) (/e | €s)- It hjiad heam ratio pruning to each individual bucket of
turns out that one can compute cells of width ong. s sharing a common source substring. We prune
(i = 5)in cor_lstant time from a cell of equal width cells whose probability is lower than a fixed ratio be-
and lower height: low the best cell for the same source substring. As a

te(i,5) s€{0,(l,m)}
H INS(l,m,t,t)

INS(l,m,j,j) = H Z t(fi ] es) result, at least one cell will be kept for each source
te(4,9) s€{0,(1,m)} substring. We safely pruned more than 70% of cells
— S (] es) using10~° as the beam ratio for sentences up to 25
se{0,(Lm)} words. Note that this pruning technique is applica-
= INS(l,m—1,j,5) ble to both the lexicalized ITG and the conventional
ITG.
+t(fj | em) )

In addition to pruning based on the figure of merit
Similarly, one can compute cells of width greatedescribed above, we use tépsruning to limit the
than one by combining a cell of one smaller widthumber of hypotheses retained for each cell. This
2The experimental difference of the two alternatives wadS ne_cgssary for Iexmah;ed ITG becguse t_he number
small. For our results, we used thexx version. of distinct hypotheses in the two-dimensional ITG
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chart has increased 0(N3N}?) from O(N2N?) The more oftenX (e/f) occurred, the more reli-
due to the choice one aP(N;) source language able are the estimated conditional probabilities with
words and one oD (V) target language words asthe condition part being (e/ f).

the head. We keep only the tdplexicalized items )

for a given chart cell of a certain nonterminialcon- 3 EXperiments

taingd in the cell, m, i_’j' Thus the additional com- We trained both the unlexicalized and the lexical-
plexity of O(N,N¢) will be replaced by a constant ized ITGs on a parallel corpus of Chinese-English

factor. newswire text. The Chinese data were automati-

The two pruning techniques can work for both the;aly segmented into tokens, and English capitaliza-
computation of expected counts during the trainingon yas retained. We replaced words occurring only
process and for the Viterbi-style algorithm for ex-ynce with an unknown word token, resulting in a

tracting the most probable parse after training. HOW-hinese vocabulary of 23,783 words and an English
ever, if we initialize EM from a uniform distribution, vocabulary of 27,075 words.

all probabilties are equal on the first iteration, giving | the first experiment, we restricted ourselves to

us no basis to make pruning decisions. S0, IN OWantences of no more than 15 words in either lan-
exp_e'rlments, we initialize the head generation pmt?juage, resulting in a training corpus of 6,984 sen-
abilities of the formP(X (e/ f) | X) to be the same (o ce pairs with a total of 66,681 Chinese words and
asP(e/f | C) from the result of the unlexicalized 74 651 English words. In this experiment, we didn't
ITG training. apply the pruning techniques for the lexicalized ITG.

In the second experiment, we enabled the pruning
techniques for the LITG with the beam ratio for the
Even though we have controlled the number of paic-tac-toe pruning as0—° and the numbet for the
rameters of the model to be at the magnitude dbp-k pruning as 25. We ran the experiments on sen-
O(|V||T|), the problem of data sparseness still rentences up to 25 words long in both languages. The
ders a smoothing method necessary. We use badksulting training corpus had 18,773 sentence pairs
ing off smoothing as the solution. The probabilitiegvith a total of 276,113 Chinese words and 315,415
of the unary head generation rules are in the form dfnglish words.
P(X(e/f) | X). We simply back them off to the =~ We evaluate our translation models in terms of
uniform distribution. The probabilities of the binary agreement with human-annotated word-level align-
rules, which are conditioned on lexicalized nonterments between the sentence pairs. For scoring the
minals, however, need to be backed off to the prob¢iterbi alignments of each system against gold-
abilities of generalized rules in the following forms:standard annotated alignments, we use the alignment

P(Y (%) 2] | X(+)) zlrjrrc:arsrzte (AER) of Och and Ney (2900), Which.mea-
greement at the level of pairs of words:
P(YZ(x)] | X(x)) ABR — 1. ANGPI+]ANGS|
| Al + Gl

where A is the set of word pairs aligned by the
automatic system(Gyg is the set marked in the
P(YZ(x)) | X(x)) gold standard as “sure”, andp is the set marked
as “possible” (including the “sure” pairs). In our
Chinese-English data, only one type of alignment

2.3 Smoothing

PY()Z) | X(+))

wherex stands for any lexical pair. For instance,

P([Y(e/f)Z] | X(e/f)) = was marked, meaning thatp = Gg.
(1=NPem([Y(e/f)Z]) | X(e/f)) In our hand-aligned data, 20 sentence pairs are
+ AP([Y (%)Z] | X (%)) less than or equal to 15 words in both languages,
where and were used as the test set for the first experiment,

and 47 sentence pairs are no longer than 25 words in
A =1/(1+4 Expected_Counts(X(e/f))) either language and were used to evaluate the pruned
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Alignment

Precison Recall Error Rate
IBM Model 1 .59 37 .54
IBM Model 4 .63 43 .49
ITG .62 A7 .46
Lexicalized ITG .66 .50 43

Table 1: Alignment results on Chinese-English corpds 6 words on both sides). Full ITG vs. Full LITG

Alignment

Precision Recall Error Rate
IBM Model 1 .56 42 .52
IBM Model 4 .67 43 A7
ITG .68 52 .40
Lexicalized ITG .69 51 41

Table 2: Alignment results on Chinese-English corpgs26 words on both sides). Full ITG vs. Pruned
LITG

LITG against the unlexicalized ITG. 4 Discussion

A sepe_lrate development set of hapq-allgned Ses shown by the numbers in Table 1, the full lexical-
tence pairs was used_to control overfitting. The suqzed model produced promising alignment resuilts on
set of up to 15 words in both languages was used f%rentence pairs that have no more than 15 words on
cross-validating ir_1 the first experiment. The SUbse&oth sides. However, due to its prohibitic(n®)
of up to 25 Wo“_’s in both Ianguages_ was used for th@omputational complexity, our C++ implementation
same purpose in the second experiment. of the unpruned lexicalized model took more than

Table 1 compares results using the full (unprunedy00 CPU hours, which were distributed over multi-
model of unlexicalized ITG with the full model of ple machines, to finish one iteration of training. The
lexicalized ITG. number of CPU hours would increase to a point that
is unacceptable if we doubled the average sentence

The two models were initialized from uniform length. Some type of pruning is a must-have. Our

dlstrlbutloqs forall rules and were trameq unpl AER runed version of LITG controlled the running time
began to rise on our held-out cross-validation dat

; . ) or one iteration to be less than 1200 CPU hours, de-
Whlch turr]:ed out to be 4 iterations for ITG and 3spite the fact that both the number of sentences and
Iterations for LITG. the average length of sentences were more than dou-

The results from the second experiment are showsled. To verify the safety of the tic-tac-toe pruning
in Table 2. The performance of the full model of untechnique, we applied it to the unlexicalized ITG us-
lexicalized ITG is compared with the pruned modeing the same beam ratid((~°) and found that the
of lexicalized ITG using more training data and evalAER on the test data was not changed. However,
uation data. whether or not the tog-lexical head pruning tech-
ique is equally safe remains a question. One no-
ceable implication of this technique for training is
the reliance on initial probabilities of lexical pairs

For comparison, we also included the results frorthat are discriminative enough. The comparison of
IBM Model 1 and Model 4. The numbers of itera-results for ITG and LITG in Table 2 and the fact that
tions for the training of the IBM models were cho-AER began to rise after only one iteration of train-
sen to be the turning points of AER changing on théng seem to indicate that keeping few distinct lex-
cross-validation data. ical heads caused convergence on a suboptimal set

Under the same check condition, we trained ITC?i
for 3 iterations and the pruned LITG for 1 iteration.
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of parameters, leading to a form of overfitting. Indata, to Kevin Knight and Daniel Marcu for their
contrast, overfitting did not seem to be a problem fofeedback, and to the authors of GIZA. This work
LITG inthe unpruned experiment of Table 1, despitevas partially supported by NSF ITR 11S-09325646
the much larger number of parameters for LITG thaand NSF ITR 11S-0428020.
for ITG and the smaller training set.

We also want to point out that for a pair of long
sentences, it would be hard to reflect the inhererﬁeferenceﬁ
bilingual syntactic structure using the lexicalized biHiyan Alshawi, Srinivas Bangalore, and Shona Douglas.
nary bracketing parse tree. In Figurefsee /vois) 2000. Learning dependency translation models as col-
echoes IP(.see/vois) . and B(see/vois). ephoes ![ie:r?achLsin?;Ligi‘gg Zséa(l;e):zgflgoj[ransducerQomputa—
V P(see/vois) so that it mean$P(see/vois) is not . .
. . o . /Adam Berger, Peter Brown, Stephen Della Pietra, Vin-
inverted from English to French but its right child” "~ o+ pella Pietra, J. R. Fillett, Andrew Kehler, and
V P(see/vois) is inverted. However, for longer sen-  Robert Mercer. 1996. Language translation apparatus
tences with more than 5 levels of bracketing and the and method of using context-based tanslation models.
same lexicalized nonterminal repeatedly appearing United States patent 5,510,981
at different levels, the correspondences would b@ete_r F. Brown, Stephen A. Della Pietra, Vincent J. De_IIa
come less linguistically plausible. We think the lim- Pietra, and Robert L. Mercer. 1993. The mathematics

o ; of statistical machine translation: Parameter estima-
itations of the bracketing grammar are another rea- iy, Computational Linguistics, 19(2):263—311.

son for not bging able t‘? im_prOYe the AER of Ior]ger[)an Klein and Christopher D. Manning. 2003. A* pars-

sentence pairs after lexicalization. ing: Fast exact viterbi parse selection. Pnoceed-
The space of alignments that is to be considered ings of the 2003 Meeting of the North American chap-

by LITG is exactly the space considered by ITG ter of the Association for Computational Linguistics

since the structural rules shared by them define the (NAACL-03). .

alignment space. The lexicalized ITG is designey Pan Melamed. 2003. Multitext grammars and syn-

0 b itive to the lexical infl th chronous parsers. IProceedings of the 2003 Meeting
0 be more sensitive 1o the lexical Influence on tNe o yhe North American chapter of the Association for

choices of inversions so that it can find better align- Computational Linguistics (NAACL-03), Edmonton.
ments. Wu (1997) demonstrated that for pa'rs_qfranz Josef Och and Hermann Ney. 2000. Improved
sentences that are less than 16 words, the ITG align-statistical alignment models. IRroceedings of the
ment space has a good coverage over all possibili- 38th Annual Conference of the Association for Compu-
ties. Hence, it's reasonable to see a better chancet@iona Linguistics (ACL-00), pages 440-447, Hong
Kong, October.

of improving the alignment result for sentences Iesg kai Wu. 1997, Stochastic | ion transduct
than 16 words. ekai Wu. : ochastic inversion transduction

grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377-403.

Kenji Yamada and Kevin Knight. 2001. A syntax-based

We presented the formal description of a Stochastic Stafistical translation model.  IRroceedings of the
N . . . 39th Annual Conference of the Association for Com-
Lexicalized Inversion Transduction Grammar with

i o X putational Linguistics (ACL-01), Toulouse, France.
lts EM training procedure, and proposed SpeCIa”}ﬁichard Zens and Hermann Ney. 2003. A comparative

designed pruning and smoothing techniques. The study on reordering constraints in statistical machine

experiments on a parallel corpus of Chinese and En- translation. InProceedings of the 40th Annual Megt-

glish showed that lexicalization helped for aligning ing of the Association for Computational Linguistics,

sentences of up to 15 words on both sides. The prun-SaPPoro, Japan. .

ing and the limitations of the bracketing grammaﬁaol_Zhangtagd DanleIdG|Idea. 2004. dfgpta;—(?ased
ignment: Supervised or unsupervised?Phoceed-

may be the reasons th_at the_ result on sentences of uqangs of the 20th International Conference on Compu-

to 25 words on both sides is not better than that of tational Linguistics (COLING-04), Geneva, Switzer-

the unlexicalized ITG. land, August.

5 Conclusion
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