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Abstract 

Information extraction systems incorpo-
rate multiple stages of linguistic analysis.  
Although errors are typically compounded 
from stage to stage, it is possible to re-
duce the errors in one stage by harnessing 
the results of the other stages.  We dem-
onstrate this by using the results of 
coreference analysis and relation extrac-
tion to reduce the errors produced by a 
Chinese name tagger.  We use an N-best 
approach to generate multiple hypotheses 
and have them re-ranked by subsequent 
stages of processing.  We obtained 
thereby a reduction of 24% in spurious 
and incorrect name tags, and a reduction 
of 14% in missed tags. 

1 Introduction 

Systems which extract relations or events from a 
document typically perform a number of types of 
linguistic analysis in preparation for information 
extraction.  These include name identification and 
classification, parsing (or partial parsing), semantic 
classification of noun phrases, and coreference 
analysis.  These tasks are reflected in the evalua-
tion tasks introduced for MUC-6 (named entity, 
coreference, template element) and MUC-7 (tem-
plate relation). 

In most extraction systems, these stages of 
analysis are arranged sequentially, with each stage 
using the results of prior stages and generating a 

single analysis that gets enriched by each stage.  
This provides a simple modular organization for 
the extraction system.  

Unfortunately, each stage also introduces a cer-
tain level of error into the analysis.  Furthermore, 
these errors are compounded – for example, errors 
in name recognition may lead to errors in parsing.  
The net result is that the final output (relations or 
events) may be quite inaccurate. 

This paper considers how interactions between 
the stages can be exploited to reduce the error rate. 
For example, the results of coreference analysis or 
relation identification may be helpful in name clas-
sification, and the results of relation or event ex-
traction may be helpful in coreference. 

Such interactions are not easily exploited in a 
simple sequential model … if name classification 
is performed at the beginning of the pipeline, it 
cannot make use of the results of subsequent stages. 
It may even be difficult to use this information im-
plicitly, by using features which are also used in 
later stages, because the representation used in the 
initial stages is too limited. 

To address these limitations, some recent sys-
tems have used more parallel designs, in which a 
single classifier (incorporating a wide range of fea-
tures) encompasses what were previously several 
separate stages (Kambhatla, 2004; Zelenko et al., 
2004).  This can reduce the compounding of errors 
of the sequential design.  However, it leads to a 
very large feature space and makes it difficult to 
select linguistically appropriate features for par-
ticular analysis tasks.  Furthermore, because these 
decisions are being made in parallel, it becomes 
much harder to express interactions between the 
levels of analysis based on linguistic intuitions. 
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In order to capture these interactions more ex-
plicitly, we have employed a sequential design in 
which multiple hypotheses are forwarded from 
each stage to the next, with hypotheses being rer-
anked and pruned using the information from later 
stages. We shall apply this design to show how 
named entity classification can be improved by 
‘feedback’ from coreference analysis and relation 
extraction.  We shall show that this approach can 
capture these interactions in a natural and efficient 
manner, yielding a substantial improvement in 
name identification and classification. 

2 Prior Work 

A wide variety of trainable models have been ap-
plied to the name tagging task, including HMMs 
(Bikel et al., 1997), maximum entropy models 
(Borthwick, 1999), support vector machines 
(SVMs), and conditional random fields.  People 
have spent considerable effort in engineering ap-
propriate features to improve performance; most of 
these involve internal name structure or the imme-
diate local context of the name. 

Some other named entity systems have explored 
global information for name tagging. (Borthwick,  
1999) made a second tagging pass which uses in-
formation on token sequences tagged in the first 
pass; (Chieu and Ng, 2002) used as features infor-
mation about features assigned to other instances 
of the same token. 

Recently, in (Ji and Grishman, 2004) we pro-
posed a name tagging method which applied an 
SVM based on coreference information to filter the 
names with low confidence, and used coreference 
rules to correct and recover some names. One limi-
tation of this method is that in the process of dis-
carding many incorrect names, it also discarded 
some correct names. We attempted to recover 
some of these names by heuristic rules which are 
quite language specific. In addition, this single-
hypothesis method placed an upper bound on recall. 

Traditional statistical name tagging methods 
have generated a single name hypothesis. BBN 
proposed the N-Best algorithm for speech recogni-
tion in (Chow and Schwartz, 1989). Since then N-
Best methods have been widely used by other re-
searchers (Collins, 2002; Zhai et al., 2004). 

In this paper, we tried to combine the advan-
tages of the prior work, and incorporate broader 
knowledge into a more general re-ranking model. 

3 Task and Terminology 

Our experiments were conducted in the context of 
the ACE Information Extraction evaluations, and 
we will use the terminology of these evaluations: 

entity:  an object or a set of objects in one of the 
semantic categories of interest 

mention:  a reference to an entity (typically, a noun 
phrase) 

name mention:  a reference by name to an entity 
nominal mention:  a reference by a common noun 

or noun phrase to an entity 
relation:  one of a specified set of relationships be-

tween a pair of entities 
The 2004 ACE evaluation had 7 types of entities, 

of which the most common were PER (persons), 
ORG (organizations), and GPE (‘geo-political enti-
ties’ – locations which are also political units, such 
as countries, counties, and cities).  There were 7 
types of relations, with 23 subtypes.  Examples of 
these relations are “the CEO of Microsoft” (an em-
ploy-exec relation), “Fred’s wife” (a family rela-
tion), and “a military base in Germany” (a located 
relation). 

In this paper we look at the problem of identify-
ing name mentions in Chinese text and classifying 
them as persons, organizations, or GPEs.  Because 
Chinese has neither capitalization nor overt word 
boundaries, it poses particular problems for name 
identification. 

4 Baseline System 

4.1 Baseline Name Tagger 

Our baseline name tagger consists of a HMM tag-
ger augmented with a set of post-processing rules.  
The HMM tagger generally follows the Nymble 
model (Bikel et al, 1997), but with multiple hy-
potheses as output and a larger number of states 
(12) to handle name prefixes and suffixes, and 
transliterated foreign names separately.  It operates 
on the output of a word segmenter from Tsinghua 
University.   

Within each of the name class states, a statistical 
bigram model is employed, with the usual one-
word-per-state emission. The various probabilities 
involve word co-occurrence, word features, and 
class probabilities. Then it uses A* search decod-
ing to generate multiple hypotheses. Since these 
probabilities are estimated based on observations 
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seen in a corpus, “back-off models” are used to 
reflect the strength of support for a given statistic, 
as for the Nymble system. 

We also add post-processing rules to correct 
some omissions and systematic errors using name 
lists (for example, a list of all Chinese last names; 
lists of organization and location suffixes) and par-
ticular contextual patterns (for example, verbs oc-
curring with people’s names).  They also deal with 
abbreviations and nested organization names. 

The HMM tagger also computes the margin – 
the difference between the log probabilities of the 
top two hypotheses.  This is used as a rough meas-
ure of confidence in the top hypothesis (see sec-
tions 5.3 and 6.2, below). 

The name tagger used for these experiments 
identifies the three main ACE entity types: Person 
(PER), Organization (ORG), and GPE (names of 
the other ACE types are identified by a separate 
component of our system, not involved in the ex-
periments reported here). 

4.2 Nominal Mention Tagger 

Our nominal mention tagger (noun group recog-
nizer) is a maximum entropy tagger trained on the 
Chinese TreeBank from the University of Pennsyl-
vania, supplemented by list matching. 

4.3  Reference Resolver  

Our baseline reference resolver goes through two 
successive stages: first, coreference rules will iden-
tify some high-confidence positive and negative 
mention pairs, in training data and test data; then 
the remaining samples will be used as input of a 
maximum entropy tagger. The features used in this 
tagger involve distance, string matching, lexical 
information, position, semantics, etc. We separate 
the task into different classifiers for different men-
tion types (name / noun / pronoun). Then we in-
corporate the results from the relation tagger to 
adjust the probabilities from the classifiers. Finally 
we apply a clustering algorithm to combine them 
into entities (sets of coreferring mentions). 

4.4 Relation Tagger 

The relation tagger uses a k-nearest-neighbor algo-
rithm. For both training and test, we consider all 
pairs of entity mentions where there is at most one 
other mention between the heads of the two men-

tions of interest1.  Each training / test example con-
sists of the pair of mentions and the sequence of 
intervening words. Associated with each training 
example is either one of the ACE relation types or 
no relation at all. We defined a distance metric be-
tween two examples based on 

 whether the heads of the mentions match 
 whether the ACE types of the heads of the mentions 

match (for example, both are people or both are or-
ganizations) 

 whether the intervening words match 
To tag a test example, we find the k nearest 

training examples (where k = 3) and use the dis-
tance to weight each neighbor, then select the most 
common class in the weighted neighbor set. 

To provide a crude measure of the confidence of 
our relation tagger, we define two thresholds, Dnear 
and Dfar.  If the average distance d to the nearest 
neighbors d < Dnear, we consider this a definite re-
lation.  If Dnear < d < Dfar, we consider this a possi-
ble relation.  If d > Dfar, the tagger assumes that no 
relation exists (regardless of the class of the nearest 
neighbor). 

5 Information from Coreference and Re-
lations 

Our system is processing a document consisting of 
multiple sentences.  For each sentence, the name 
recognizer generates multiple hypotheses, each of 
which is an NE tagging of the entire sentence. The 
names in the hypothesis, plus the nouns in the 
categories of interest constitute the mention set for 
that hypothesis. Coreference resolution links these 
mentions, assigning each to an entity.  In symbols: 

 Si  is the i-th sentence in the document. 
Hi  is the hypotheses set for Si  
 hij

 is the j-th hypothesis in Si  

Mij
 is the mention set for hij

 

mijk
 is the k-th mention in Mij

 

eijk
 is the entity which mijk

belongs to according to 
the current reference resolution results 

5.1 Coreference Features 

For each mention we compute seven quantities 
based on the results of name tagging and reference 
resolution: 
                                                           
1 This constraint is relaxed for parallel structures such as “mention1, mention2, 
[and] mention3….”; in such cases there can be more than one intervening men-
tion. 
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CorefNumijk  is the number of mentions in eijk  

WeightSumijk  is the sum of all the link weights be-

tween mijk and other mentions in eijk , 0.8 for 
name-name coreference; 0.5 for apposition;  
0.3 for other name-nominal coreference 

FirstMentionijk  is 1 if mijk is the first name mention 
in the entity; otherwise 0 

Headijk  is 1 if mijk includes the head word of name; 
otherwise 0 

Withoutidiomijk  is 1 if mijk is not part of an idiom; 
otherwise 0 

PERContextijk  is the number of PER context words 
around a PER name such as a title or an ac-
tion verb involving a PER 

ORGSuffixijk  is 1 if ORG mijk includes a suffix word; 
otherwise 0 

The first three capture evidence of the correct-
ness of a name provided by reference resolution; 
for example, a name which is coreferenced with 
more other mentions is more likely to be correct.  
The last four capture local or name-internal evi-
dence; for instance, that an organization name in-
cludes an explicit, organization-indicating suffix. 

We then compute, for each of these seven quan-
tities, the sum over all mentions k in a sentence, 
obtaining values for CorefNumij, WeightSumij, etc.: 

CorefNum CorefNumij ijk
k

= ∑   etc. 

Finally, we determine, for a given sentence and 
hypothesis, for each of these seven quantities, 
whether this quantity achieves the maximum of its 
values for this hypothesis: 

BestCorefNumij ≡  
 CorefNumij = maxq CorefNumiq   etc. 

We will use these properties of the hypothesis as 
features in assessing the quality of a hypothesis.  

5.2 Relation Word Clusters 

In addition to using relation information for 
reranking name hypotheses, we used the relation 
training corpus to build word clusters which could 
more directly improve name tagging.  Name tag-
gers rely heavily on words in the immediate con-
text to identify and classify names; for example, 
specific job titles, occupations, or family relations 
can be used to identify people names.  Such words 
are learned individually from the name tagger’s 
training corpus.  If we can provide the name tagger 
with clusters of related words, the tagger will be 

able to generalize from the examples in the training 
corpus to other words in the cluster. 

The set of ACE relations includes several in-
volving employment, social, and family relations.  
We gathered the words appearing as an argument 
of one of these relations in the training corpus, 
eliminated low-frequency terms and manually ed-
ited the ten resulting clusters to remove inappro-
priate terms.  These were then combined with lists 
(of titles, organization name suffixes, location suf-
fixes) used in the baseline tagger. 

5.3 Relation Features 

Because the performance of our relation tagger 
is not as good as our coreference resolver, we have 
used the results of relation detection in a relatively 
simple way to enhance name detection.  The basic 
intuition is that a name which has been correctly 
identified is more likely to participate in a relation 
than one which has been erroneously identified. 

For a given range of margins (from the HMM), 
the probability that a name in the first hypothesis is 
correct is shown in the following table, for names 
participating and not participating in a relation: 

 
Margin In Relation(%) Not in Relation(%)

<4 90.7 55.3 
<3 89.0 50.1 
<2 86.9 42.2 

<1.5 81.3 28.9 
<1.2 78.8 23.1 
<1 75.7 19.0 

<0.5 66.5 14.3 
Table 1 Probability of a name being correct 

 
Table 1 confirms that names participating in re-

lations are much more likely to be correct than 
names that do not participate in relations.  We also 
see, not surprisingly, that these probabilities are 
strongly affected by the HMM hypothesis margin 
(the difference in log probabilities) between the 
first hypothesis and the second hypothesis.  So it is 
natural to use participation in a relation (coupled 
with a margin value) as a valuable feature for re-
ranking name hypotheses. 

Let mijk be the k-th name mention for hypothe-
sis hij of sentence; then we define: 
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Inrelationijk  = 1 if mijk  is in a definite relation 
   = 0 if mijk is in a possible relation 
   = -1 if mijk is not in a relation  

 Inrelation Inrelationij ijk
k

= ∑  

Mostrelated Inrelation Inrelationij ij q iq≡ =( max )
  Finally, to capture the interaction with the margin, 
we let zi  = the margin for sentence Si and divide 
the range of values of zi into six intervals Mar1, … 
Mar6.  And we define the hypothesis ranking in-
formation: FirstHypothesisij = 1 if j =1; otherwise 0. 

We will use as features for ranking hij the con-
junction of Mostrelatedij, zi ∈ Marp (p = 1, …, 6), 
and FirstHypothesisij . 

6 Using the Information from Corefer-
ence and Relations 

6.1 Word Clustering based on Relations 

As we described in section 5.2, we can generate 
word clusters based on relation information. If a 
word is not part of a relation cluster, we consider it 
an independent (1-word) cluster.  

The Nymble name tagger (Bikel et al., 1999) re-
lies on a multi-level linear interpolation model for 
backoff. We extended this model by adding a level 
from word to cluster, so as to estimate more reli-
able probabilities for words in these clusters. Table 
2 shows the extended backoff model for each of 
the three probabilities used by Nymble.  

 
Transition  
Probability 

First-Word 
Emission  

Probability 

Non-First-Word
Emission  

Probability 
P(NC2|NC1, 
 <w1, f1>) 

P(<w2,f2>| 
NC1, NC2) 

P(<w2,f2>| 
<w1,f1>, NC2) 

 P(<Cluster2,f2>| 
NC1, NC2) 

P(<Cluster2,f2>|
<w1,f1>, NC2) 

P(NC2|NC1,  
<Cluster1, 
f1>) 

P(<Cluster2,f2>| 
<+begin+, other>, 
NC2) 

P(<Cluster2,f2>|
<Cluster1,f1>, 
NC2) 

P(NC2|NC1) P(<Cluster2, f2>|NC2) 
P(NC2)  P(Cluster2|NC2) * P(f2|NC2) 
1/#(name 
classes) 

1/#(cluster)  *  1/#(word features) 

Table2 Extended Backoff Model 
 

6.2 Pre-pruning by Margin 

The HMM tagger produces the N best hypotheses 
for each sentence.2  In order to decide when we 
need to rely on global (coreference and relation) 
information for name tagging, we want to have 
some assessment of the confidence that the name 
tagger has in the first hypothesis.  In this paper, we 
use the margin for this purpose. A large margin 
indicates greater confidence that the first hypothe-
sis is correct.3  So if the margin of a sentence is 
above a threshold, we select the first hypothesis, 
dropping the others and by-passing the reranking. 

6.3 Re-ranking based on Coreference 

We described in section 5.1, above, the coreference 
features which will be used for reranking the hy-
potheses after pre-pruning. A maximum entropy 
model for re-ranking these hypotheses is then 
trained and applied as follows: 
 
Training 

1. Use K-fold cross-validation to generate multi-
ple name tagging hypotheses for each docu-
ment in the training data Dtrain (in each of the K 
iterations, we use K-1 subsets to train the 
HMM and then generate hypotheses from the 
Kth subset). 

2. For each document d in Dtrain, where d includes 
n sentences S1…Sn 

For i = 1…n, let m = the number of hy-
potheses for Si 
(1) Pre-prune the candidate hypotheses us-

ing the HMM margin 
(2) For each hypothesis hij, j = 1…m 

(a) Compare hij with the key, set the 
prediction Valueij “Best” or “Not 
Best” 

(b) Run the Coreference Resolver on 
hij and the best hypothesis for each 
of the other sentences, generate 
entity results for each candidate 
name in hij 

(c) Generate a coreference feature vec-
tor Vij for hij 

(d) Output Vij and Valueij 
                                                           
2 We set different N = 5, 10, 20 or 30 for different margin ranges, by cross-
validation checking the training data about the ranking position of the best 
hypothesis for each sentence.  With this N, optimal reranking (selecting the best 
hypothesis among the N best) would yield Precision = 96.9 Recall = 94.5 F = 
95.7 on our test corpus. 
3 Similar methods based on HMM margins were used by (Scheffer et al., 2001). 
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3. Train Maxent Re-ranking system on all Vij and 
Valueij 

 
Test 
1. Run the baseline name tagger to generate mul-

tiple name tagging hypotheses for each docu-
ment in the test data Dtest 

2. For each document d in Dtest, where d includes 
n sentences S1…Sn 
(1) Initialize: Dynamic input of coreference re-

solver H = {hi-best | i = 1…n, hi-best is the 
current best hypothesis for Si} 

(2) For i = 1…n, assume m = the number of 
hypotheses  for Si 
(a) Pre-prune the candidate hypotheses us-

ing the HMM margin 
(b) For each hypothesis hij, j = 1…m 

• hi-best = hij  
• Run the Coreference Resolver on H, 

generate entity results for each name 
candidate in hij 

• Generate a coreference feature vec-
tor Vij for hij 

• Run Maxent Re-ranking system on 
Vij, produce Probij of “Best” value 

(c) hi-best = the hypothesis with highest 
Probij of “Best” value, update H and 
output hi-best 

6.4 Re-ranking based on Relations 

From the above first-stage re-ranking by corefer-
ence, for each hypothesis we got the probability of 
its being the best one. By using these results and 
relation information we proceed to a second-stage 
re-ranking. As we described in section 5.3, the in-
formation of “in relation or not” can be used to-
gether with margin as another important measure 
of confidence. 
  In addition, we apply the mechanism of weighted 
voting among hypotheses (Zhai et al., 2004) as an 
additional feature in this second-stage re-ranking. 
This approach allows all hypotheses to vote on a 
possible name output. A recognized name is con-
sidered correct only when it occurs in more than 30 
percent of the hypotheses (weighted by their prob-
ability).  

In our experiments we use the probability pro-
duced by the HMM, probij , for hypothesis hij . We 
normalize this probability weight as: 

W
prob

probij
ij

iq
q

=
∑

exp( )
exp( )

 

For each name mention mijk in hij , we define:  

Occur mq ijk( )  = 1 if mijk occurs in hq  
   = 0 otherwise 
Then we count its voting value as follows: 

Votingijk  is 1 if W Occur miq q ijk
q

×∑ ( ) >0.3;  

  otherwise 0. 
The voting value of hij is:  

Voting Votingij ijk
k

= ∑  

Finally we define the following voting feature: 
BestVoting Voting Votingij ij q iq≡ =( max )  

This feature is used, together with the features 
described at the end of section 5.3 and the prob-
ability score from the first stage, for the second-
stage maxent re-ranking model. 

One appeal of the above two re-ranking algo-
rithms is its flexibility in incorporating features 
into a learning model: essentially any coreference 
or relation features which might be useful in dis-
criminating good from bad structures can be in-
cluded.  

7 System Pipeline 

Combining all the methods presented above, the 
flow of our final system is shown in figure 1.  

8 Evaluation Results 

8.1 Training and Test Data 

We took 346 documents from the 2004 ACE train-
ing corpus and official test set, including both 
broadcast news and newswire, as our blind test set. 
To train our name tagger, we used the Beijing Uni-
versity Insititute of Computational Linguistics cor-
pus – 2978 documents from the People’s Daily in 
1998 – and 667 texts in the training corpus for the 
2003 & 2004 ACE evaluation. Our reference re-
solver is trained on these 667 ACE texts. The rela-
tion tagger is trained on 546 ACE 2004 texts, from 
which we also extracted the relation clusters. The 
test set included 11715 names: 3551 persons, 5100 
GPEs and 3064 organizations. 
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Figure 1  System Flow 

8.2 Overall Performance Comparison 

Table 3 shows the performance of the baseline sys-
tem; Table 4 is the system with relation word clus-
ters; Table 5 is the system with both relation 
clusters and re-ranking based on coreference fea-
tures; and Table 6 is the whole system with sec-
ond-stage re-ranking using relations. 

The results indicate that relation word clusters 
help to improve the precision and recall of most 
name types. Although the overall gain in F-score is 
small (0.7%), we believe further gain can be 
achieved if the relation corpus is enlarged in the 
future. The re-ranking using the coreference fea-
tures had the largest impact, improving precision 
and recall consistently for all types. Compared to 
our system in (Ji and Grishman, 2004), it helps to 
distinguish the good and bad hypotheses without 
any loss of recall. The second-stage re-ranking us-
ing the relation participation feature yielded a 
small further gain in F score for each type, improv-
ing precision at a slight cost in recall. 

The overall system achieves a 24.1% relative re-
duction on the spurious and incorrect tags, and 
14.3% reduction in the missing rate over a state-of-

the-art baseline HMM trained on the same material. 
Furthermore, it helps to disambiguate many name 
type errors: the number of cases of type confusion 
in name classification was reduced from 191 to 
102. 

 
Name Precision Recall F 
PER 88.6 89.2 88.9 
GPE 88.1 84.9 86.5 
ORG 88.8 87.3 88.0 
ALL 88.4 86.7 87.5 

Table 3 Baseline Name Tagger 
 

Name Precision Recall F 
PER 89.4 90.1 89.7 
GPE 88.9 85.8 89.4 
ORG 88.7 87.4 88.0 
ALL 89.0 87.4 88.2 

Table 4 Baseline + Word Clustering by Relation 
 

Name Precision Recall F 
PER 90.1 91.2 90.5 
GPE 89.7 86.8 88.2 
ORG 90.6 89.8 90.2 
ALL 90.0 88.8 89.4 

Table 5 Baseline + Word Clustering by Relation + 
Re-ranking by Coreference 

 
Name Precision Recall F 
PER 90.7 91.0 90.8 
GPE 91.2 86.9 89.0 
ORG 91.7 89.1 90.4 
ALL 91.2 88.6 89.9 

Table 6 Baseline + Word Clustering by Relation +   
Re-ranking by Coreference +  

Re-ranking by Relation 
 
In order to check how robust these methods are, 

we conducted significance testing (sign test) on the 
346 documents. We split them into 5 folders, 70 
documents in each of the first four folders and 66 
in the fifth folder. We found that each enhance-
ment (word clusters, coreference reranking, rela-
tion reranking) produced an improvement in F 
score for each folder, allowing us to reject the hy-
pothesis that these improvements were random at a 
95% confidence level. The overall F-measure im-
provements (using all enhancements) for the 5 
folders were: 2.3%, 1.6%, 2.1%, 3.5%, and 2.1%. 
 

HMM Name Tagger, word 
clustering based on rela-
tions, pruned by margin 

Multiple name 
hypotheses 

Maxent Re-ranking
by coreference 

Single name
 hypothesis 

Post-processing  
by heuristic rules

Input 

Nominal 
Mention 
Tagger 

Nominal 
Mentions

Relation 
Tagger 

Maxent Re-ranking
by relation 

Coreference 
Resolver 
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9 Conclusion 

This paper explored methods for exploiting the 
interaction of analysis components in an informa-
tion extraction system to reduce the error rate of 
individual components.  The ACE task hierarchy 
provided a good opportunity to explore these inter-
actions, including the one presented here between 
reference resolution/relation detection and name 
tagging. We demonstrated its effectiveness for 
Chinese name tagging, obtaining an absolute im-
provement of 2.4% in F-measure (a reduction of 
19% in the (1 – F) error rate). These methods are 
quite low-cost because we don’t need any extra 
resources or components compared to the baseline 
information extraction system. 

Because no language-specific rules are involved 
and no additional training resources are required, 
we expect that the approach described here can be 
straightforwardly applied to other languages.  It 
should also be possible to extend this re-ranking 
framework to other levels of analysis in informa-
tion extraction –- for example, to use event detec-
tion to improve name tagging; to incorporate 
subtype tagging results to improve name tagging; 
and to combine name tagging, reference resolution 
and relation detection to improve nominal mention 
tagging.  For Chinese (and other languages without 
overt word segmentation) it could also be extended 
to do character-based name tagging, keeping mul-
tiple segmentations among the N-Best hypotheses.  
Also, as information extraction is extended to cap-
ture cross-document information, we should expect 
further improvements in performance of the earlier 
stages of analysis, including in particular name 
identification. 

For some levels of analysis, such as name tag-
ging, it will be natural to apply lattice techniques to 
organize the multiple hypotheses, at some gain in 
efficiency. 
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