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Abstract English sentenceis modeled as:

- (1) argmaxP(e| f) = arg maxP(e, f)
We present a statistical phrase-based transla- e e

tion model that use_:i;lierarchical phrases- 2) = arg maxP(e) x P(f | €))
phrases that contain subphrases. The model e

is formally a synchronous context-free gram- . i

mar but is learned from a bitext without any The translation modé¥(f | €) “encodes’einto f by
syntactic information. Thus it can be seen as  the following steps:

a shift to theformal machinery of syntax- . _ _ ) .
based translation systems without aliiy- 1. segmeng into phrases; --- &, typically with

guistic commitment. In our experiments us- a uniform diStI’ibutiOI’l over Segmentations;

ing BLEU as a metric, the hierarchical phrase-
based model achieves a relative improve-
ment of 7.5% over Pharaoh, a state-of-the-art model;
phrase-based system.

2. reorder theg according to some distortion

3. translate each of the _|T1to French phrases ac-
cording to a modeP(f | €) estimated from the

) training data.
1 Introduction

Other phrase-based models model the joint distribu-
The alignment template translation model (Och angon P(e, f) (Marcu and Wong, 2002) or madee)
Ney, 2004) and related phrase-based models aghdP(f | €) into features of a log-linear model (Och
vanced the previous state of the art by movingind Ney, 2002). But the basic architecture of phrase
from words tophrasesas the basic unit of transla- segmentation (or generation), phrase reordering, and
tion. Phrases, which can be any substring and nghrase translation remains the same.
necessarily phrases in any syntactic theory, allow Phrase-based models can robustly perform trans-
these models to learn local reorderings, translatioations that are localized to substrings that are com-
of short idioms, or insertions and deletions that armon enough to have been observed in training. But
sensitive to local context. They are thus a simple andoehn et al. (2003) find that phrases longer than
powerful mechanism for machine translation. three words improve performance little, suggesting

The basic phrase-based model is an instance thfat data sparseness takes over for longer phrases.

the noisy-channel approach (Brown et al., 199B), Above the phrase level, these models typically have
which the translation of a French senterfc@to an a simple distortion model that reorders phrases in-

dependently of their content (Och and Ney, 2004;

Throughout this paper, we follow the convention of BrownKoehn et al. 2003), or not at all (Zens and Ney
et al. of designating the source and target languages as “French’ ~ .. ' ’ '
and “English,” respectively. The variabldsand e stand for 65004’ Ku_mar etal., 2905)' .
source and target sentencds;stands for the substring of But it is often desirable to capture translations

from positioni to position] inclusive, and similarly fog/. whose scope is larger than a few consecutive words.
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Consider the following Mandarin example and itausually modify VP on the right. Because it gener-

English translation: alizes over possible prepositional objects and direct

O mM B kB SRS b s s s e
Aozhou shiyu Bei Han you bangjiao P 9 ’

Australiais with North Koreahavedipl. rels. ablSyirrr?i?arr(T powerful than a conventional phrase pair.
oo EHR 2 v
de shaoshwguojia  zhiyi (6) (@ de, the thatm)
thatfew countriesone of
‘Australia is one of the few countries that haveWOUI.d capture the fact that Chinese rela}t|ve clagses
. . . . , modify NPs on the left, whereas English relative
diplomatic relations with North Korea . .
clauses modify on the right; and
If we countzhiyi, lit. ‘of-one,” as a single token, then
translating this sentence correctly into English re(7) (@ zhiyi, one of @)

quires reversing a sequence of five elements. When o ]
we run a phrase-based system, Pharaoh (Koehn"lé(i’md render the constructiarhiyiin English word

al., 2003: Koehn, 2004a), on this sentence (using tr?éder. These thr_ee rules, along with some conven-
experimental setup described below), we get the fofional ph.rase pairs, dice to translate the sentence
lowing phrases with translations: correctly:

(4) [Aozhou] [shi] [yu] [Bei Han] [you] (8) [Aozhou] [shi] [[[yu [Bei Hanjh you

[bangjiao] [de shaoshu guojia zhiyi] [bangjiao}] de [shaoshu guojig] zhiyi]
[Australia] [is] [dipl. rels.) [with] [North [Australia] [is] [one of [the [few countrieg]
Koreal] [is] [one of the few countries] that [have [dipl. relsg with [North Korea}]]]

where we have used subscripts to indicate the r@he system we describe below uses rules like this,
ordering of phrases. The phrase-based model d@hd in fact is able to learn them automatically from
able to order “diplomatic .Korea” correctly (using a bitext without syntactic annotation. It translates the
phrase reordering) and “onecountries” correctly above example almost exactly as we have shown, the
(using a phrase translation), but does not accononly error being that it omits the word ‘that’ from (6)
plish the necessary inversion of those two groups&nd therefore (8).
A lexicalized phrase-reordering model like that in  These hierarchical phrase pairs are formally pro-
use in ISI's system (Och et al., 2004) might be ableluctions of a synchronous context-free grammar
to learn a better reordering, but simpler distortiorfdefined below). A move to synchronous CFG can
models will probably not. be seen as a move towards syntax-based MT; how-
We propose a solution to these problems thagver, we make a distinction here betwdermmally
does not interfere with the strengths of the phraseyntax-based anléhguistically syntax-based MT. A
based approach, but rather capitalizes on them: sinsgstem like that of Yamada and Knight (2001) is
phrases are good for learning reorderings of wordgpth formally and linguistically syntax-based: for-
we can use them to learn reorderings of phrasesally because it uses synchronous CFG, linguisti-
as well. In order to do this we neduderarchical cally because the structures it is defined over are (on
phrasesthat consist of both words and subphraseshe English side) informed by syntactic theory (via
For example, a hierarchical phrase pair that miglthe Penn Treebank). Our system is formally syntax-
help with the above example is: based in that it uses synchronous CFG, but not nec-
essarily linguistically syntax-based, because it in-
duces a grammar from a parallel text without relying
whered and@ are placeholders for subphrases. Thisn any linguistic annotations or assumptions; the re-
would capture the fact that Chinese PPs almost adult sometimes resembles a syntactician’s grammar
ways modify VP on the left, whereas English PP&ut often does not. In this respect it resembles Wu's

(5) (yu @ you @, havez with @)
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bilingual bracketer (Wu, 1997), but ours uses a difThese give the model the option to build only par-
ferent extraction method that allows more than ongal translations using hierarchical phrases, and then
lexical item in a rule, in keeping with the phrase-combine them serially as in a standard phrase-based
based philosophy. Our extraction method is basimodel. For a partial example of a synchronous CFG
cally the same as that of Block (2000), except welerivation, see Figure 1.
allow more than one nonterminal symbol in a rule, Following Och and Ney (2002), we depart from
and use a more sophisticated probability model. the traditional noisy-channel approach and use a

In this paper we describe the designh and implemore general log-linear model. The weight of each
mentation of our hierarchical phrase-based modetjle is:
and report on experiments that demonstrate that hi- N
erarchical phrases indeed improve translation. (15)  wWX—=(y.2) = l—[ $i(X = (y,@))"

|

2 The model where theg; are features defined on rules. For our

Our model is based on a weighted synchronous CFexperiments we used the following features, analo-
(Aho and Ullman, 1969). In a synchronous CFG th&ous to Pharaoh’s default feature set:
elementary structures are rewrite rules with aligned

s of riaht-hand sid e P(y | @) andP(«a | ), the latter of which is not
pairs of right-hand sides:

found in the noisy-channel model, but has been
@) X = (y,a,~) previously found to be a helpful feature (Och
and Ney, 2002);

whereX is a nonterminaly anda are both strings
of terminals and nonterminals, ards a one-to-one
correspondence between nonterminal occurrences
in v and nonterminal occurrences in Rewriting
begins with a pair of linked start symbols. At each e a phrase penalty exp(l), which allows the
step, two coindexed nonterminals are rewritten us- model to learn a preference for longer or
ing the two components of a single rule, such that  shorter derivations, analogous to Koehn's
none of the newly introduced symbols is linked to  phrase penalty (Koehn, 2003).
any symbols already present. )

Thus the hierarchical phrase pairs from our above | "€ €xceptions to the above are the two glue rules,

example could be formalized in a synchronous CF@?’_)’h‘;"hiCh has weight one, and (14), which has
. weig
as:

e the lexical weightsPy(y | @) andPy(a | )
(Koehn et al., 2003), which estimate how well
the words ine translate the words in;?

(10) X — (yu Xg you Xg, have Xz with X ) (16) WS~ (SgXg, SzX@) = expt-g)

(11) X = (X de Xz, the Xg that Xg) the idea being thaty controls the model's prefer-

(12) X — (Xg zhiyi, one of Xg) ence for hierarchical phrases over serial combination
of phrases.

where we have used boxed indices to indicate which |et D be a derivation of the grammar, and féD)

occurrences of X are linked by. ande(D) be the French and English strings gener-

Note that we have used only a single nonterminalted byD. Let us represenD as a set of triples
symbol X instead of assigning syntactic categorieg i, j), each of which stands for an application of
to phrases. In the grammar we extract from a bitex§ grammar rule to rewrite a nonterminal that spans

(described below), all of our rules use only X, ex-f(D)ij on the French sid&.Then the weight oD

cept for two special “glue” rules, which combine ant dal Cinformati hichis i
. is feature uses word alignment information, which is dis-

sequence of Xs to forman S: carded in the final grammar. If a rule occurs in training with

more than one possible word alignment, Koehn et al. take the

(13) S— (SgXz. SgXm) maximum lexical weight; we take a weighted average.
3This representation is not completely unambiguous, but is
(14) S— Xm, Xm) sufficient for defining the model.
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(Sm, S@) = (SpXE.SgXg)
= (SaXpXe, SaXgX@)
= XpXpXe, XgXpX@)
= (Aozhou Xg X, Australia Xz Xg)
= (Aozhou shi Xz, Australia is Xz)
= (Aozhou shi Xz zhiyi, Australia is one of X;)
= (Aozhou shi Xg de Xg zhiyi, Australia is one of the 3 that Xg)
= (Aozhou shi yu Xg you X de Xg zhiyi, Australia is one of the » that have X with X)

Figure 1: Example partial derivation of a synchronous CFG.

is the product of the weights of the rules used in ththe phrase translation parameters from the hypoth-
translation, multiplied by the following extra factors:esized distribution. To do this, we first identiifyi-
tial phrasepairs using the same criterion as previous

(17) w(D) = | | W(r) X pim(€)*™ X exp-Awplél)  systems (Och and Ney, 2004; Koehn et al., 2003):
(ri,j)eD . . . .
Definition 1. Given a word-aligned sentence pair

wherepim is the language model, and expiplel),  (f,e ~), a rule(f!,el’) is an initial phrase pair of
the word penalty, gives some control over the lengthf e ~) iff:
of the English output. o o

We have separated these factors out from the rulel- fk ~ & for somek € [i, jl andk’ € [I", J'];
weights for notational convenience, but it is concep- 5 f + @ forall k e [i, j] andk’ ¢ [i’, |']:
tually cleaner (and necessary for polynomial-time
decoding) to integrate them into the rule weights, 3. fx » e¢ forallk ¢ [i, j] andk’ € [i’, j’].
so that the whole model is a weighted synchronous .
CFG. The word penalty is easy; the language model Next, we form all possible dierences of phrase
is integrated by intersecting the English-side cF@ars:
with the language model, which is a weighted finiteDefinition 2. The set of rules off,e ~) is the
state automaton. smallest set satisfying the following:

3 Training 1If <fij,e|j,') is an initial phrase pair, then

The training process begins with a word-aligned cor- X —s (f_j, ej,')

pus: a set of triplegf, e ~), wheref is a French b

sentencegis an English sentence, ards a (many- is arule.

to-many) binary relation between positionsfodnd i i

positions ofe. We obtain the word alignments using 2 " = X = (r.@) is arule andfi, &) is an

the method of Koehn et al. (2003), which is based  Initial phrase pair such that= 71fv2 anda =

on that of Och and Ney (2004). This involves run- 1€ ay, then

ning GIZA++ (Och and Ney, 2000) on the corpus in

both directions, and applying refinement rules (the X = (rXgyz e1Xge2)

variant they designate “final-and”) to obtain a single

many-to-many word alignment for each sentence.
Then, following Och and others, we use heuris- The above scheme generates a very large num-

tics to hypothesize a distribution of possible derivaber of rules, which is undesirable not only because

tions of each training example, and then estimatié makes training and decoding very slow, but also

is arule, wheré is an index not used in
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because it createspurious ambiguity-a situation for somee. Note that we find the English yield of the
where the decoder produces many derivations thaighest-probability single derivation
are distinct yet have the same model feature vectors
and give the same translation. This can result-in (18) e(
best lists with very few dferent translations or fea-
ture vectors, which is problematic for the algorithm
we use to tune the feature weights. Therefore wand not necessarily the highest-probabiétyvhich
filter our grammar according to the following prin-would require a more expensive summation over
ciples, chosen to balance grammar size and perfdierivations.
mance on our development set: We prune the search space in several ways. First,
S _ ~an item that has a score worse thatimes the best
1. _Ifthere are multiple |n|F|aI phrase pairs contaiNgeore in the same cell is discarded: second, an item
ing the same set of alignment points, we kKeeg 4t is worse than thith best item in the same cell is
only the smallest. discarded. Each cell contains all the items standing

vy f
2. Initial phrases are limited to a length of 10 orf" X Spanningf;’. We chooseb and to balance
the French side, and rule to five (nonterminal§P€ed and performance on our development set. For

plus terminals) on the French right-hand side. 4 experiments, we sbt= 40,4 = 10~* for X cells,
_ andb = 15 8 = 101 for S cells. We also prune rules
3. In the subtraction stepf,iJ must have length that have the same French sitee< 100).
greater than one. The rationale is that litle The parser only operates on the French-side gram-
would be gained by creating a new rule that isnar; the English-side grammaffects parsing only
no shorter than the original. by increasing the féective grammar size, because
. there may be multiple rules with the same French
4. Ru_les can _have at most tVYO nontermmalsside but diferent English sides, and also because in-
V'\\//Ih'Ch simplifies thﬁbqteCOd?r 'm.plelm?r?t?t'ontersecting the language model with the English-side
Oreover, we prohibit nonterminals that are {ammar introduces many states into the nontermi-
adjacent on the French side, a major cause aal alphabet, which are projected over to the French

spurious ambiguity. side. Thus, our decoder’s search space is many times

5. A rule must have at least one pair of aligned@rger than a monolingual parser’s would be. To re-

words, making translation decisions alway$luce this &ect, we apply the following heuristic
based on some lexical evidence. when f|”|ng a cell: if an item falls outside the beam,

then any item that would be generated using a lower-
Now we must hypothesize weights for all the derivascoring rule or a lower-scoring antecedent item is
tions. Och's method gives equal weight to all they|so assumed to fall outside the beam. This heuristic
extracted phrase occurences. However, our methggeatly increases decoding speed, at the cost of some
may extract many rules from a single initial phrasgearch errors.
pair; therefore we distribute weight equally among Finally, the decoder has a constraint that pro-
initial phrase pairs, but distribute that weight equallyjpits any X from spanning a substring longer than
among the rules extracted from each. Treating thigg on the French side, corresponding to the maxi-
distribution as our observed data, we use relativenm length constraint on initial rules during train-
frequency estimation to obtal(y | @) andP(e [ ¥).  jng. This makes the decoding algorithm asymptoti-
cally linear-time.

The decoder is implemented in Python, an inter-
Our decoder is a CKY parser with beam searcpreted language, with-€+ code from the SRI Lan-
together with a postprocessor for mapping Frenchuage Modeling Toolkit (Stolcke, 2002). Using the
derivations to English derivations. Given a Frenclsettings described above, on a 2.4 GHz Pentium 1V,
sentencef, it finds the best derivation (an best it takes about 20 seconds to translate each sentence
derivations, with little overhead) that generatés) (average length about 30). This is faster than our

arg max W(D)]
Dstf(D)=f

4 Decoding
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Python implementation of a standard phrase-based

decoder, so we expect that a future optimized imple-  Rank Chinese English
mentation of the hierarchical decoder will run at a 1 ., .
speed competitive with other phrase-based systems. 3 B the
14 #* in

5 Experiments 23 's

. . . 577 X E/] X the X of X
Our experiments were on Mandarin-to-English 735 Xg i1 Xg the Xg Xg
translation. We compared a baseline system, 763 Xg 2 — one of
the state-of-the-art phrase-based system Pharaoh 15091 s president Xg
(Koehn et al., 2003; Koehn, 2004a), against our sys- 1240 %50 $ Xg
tem. For all three systems we trained the transla- 2091 44 Xg X this year
tion model on the FBIS corpus (7.2M.2M words); 3253 E4r 2 Xg X percent
for the language model, we used the SRI Language 1508 & Xg T under
Modeling Toolkit to train a trigram model with mod- 28426 1F Xg Hi before

ified Kneser-Ney smoothing (Chen and Goodman, 47015 i X the Xg that Xg

1998) on 155M words of English newswire text, 1752457 5 Xg B Xg have Xg with X
mostly from the Xinhua portion of the Gigaword

corpus. We used the 2002 NIST MT evaluation test

set as our development set, and the 2003 test setfgure 2: A selection of extracted rules, with ranks
our test set. Our evaluation metric was BLEU (papafter filtering for the development set. All have X for
ineni et al., 2002), as calculated by the NIST scriptheir left-hand sides.

(version 11a) with its default settings, which is to

perform case-insensitive matchingmefyrams upto 5.2 Hierarchical model

n =4, andto use the shortest (as_opposed to neare\m) ran the training process of Section 3 on the same
reference sentence for the brevity penalty. The reata obtaining a grammar of 24M rules. When fil-
sults of the experiments are summarized in Table ]tlereo’l for the development set, the grammar has 2.2M
rules (see Figure 2 for examples). We then ran the
minimume-error rate trainer with our decoder to tune
The baseline system we used for comparison wale feature weights, yielding the values shown in Ta-
Pharaoh (Koehn et al., 2003; Koehn, 2004a), as pubte 2. Note thatly penalizes the glue rule much less
licly distributed. We used the default feature set: |anthan/lpp does ordinary rules. This suggests that the
guage model (same as above(f | €), p(e| ), lex- model will prefer serial combination of phrases, un-
ical weighting (both directions), distortion model,less some other factor supports the use of hierarchi-
word penalty, and phrase penalty. We ran the traingal phrases (e.qg., a better language model score).
with its default settings (maximum phrase length 7), We then tested our system, using the settings de-
and then used Koehn's implementation of minimumscribed abové.0Our system achieves an absolute im-
error-rate training (Och, 2003) to tune the featur@rovement of M2 over the baseline F% relative),
weights to maximize the system's BLEU score onwithout using any additional training data. This dif-
our development set, yielding the values shown iference is statistically significanp(< 0.01)> See
Table 2. Finally, we ran the decoder on the test seTable 1, which also shows that the relative gain is
pruning the phrase table with= 100, pruning the higher for highen-grams.
chart withb = 1003 = 10°°, and limiting distor- T e— . .

Note that we gave Pharaoh wider beam settings than we

tions to 4. These are the default settings, except fgged on our own decoder; on the other hand, since our decoder’s

the phrase table’s, which was raised from 20, and chart has more cells, itslimits do not need to be as high.

the distortion limit. Both of these changes, made by °We used Zhangs significance tester (Zhang et al., 2004),
, . . . hich uses bootstrap resampling (Koehn, 2004b); it was mod-

Koehn's minimum-error-rate trainer by default, IM-ified to conform to NIST’s current definition of the BLEU

prove performance on the development set. brevity penalty.

5.1 Baseline
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BLEU-n n-gram precisions
System 4 1 2 3 4| 5 6 7 8
Pharaoh 0.2676 | 0.72 0.37 0.19 0.100.052 0.027 0.014 0.0075
hierarchical 0.2877 | 0.74 0.39 0.21 0.110.060 0.032 0.017 0.0084
+constituent| 0.2881 | 0.73 0.39 0.21 0.110.062 0.032 0.017 0.0088

Table 1: Results on baseline system and hierarchical system, with and without constituent feature.

~ Features

System Pm(€) P(yla) Plaly) Pw(yle) Pu(aly) Word Phr 13 g A

Pharaoh 0.19 0095 Q030 Q14 0029 -020 022 011 — —

hierarchical 0.15 0036 Q074 Q037 Q076 -032 022 — 009 —
+constituent 0.11 0026 Q062 Q025 Q029 -023 021 — 011 020

Table 2: Feature weights obtained by minimum-error-rate training (normalized so that absolute values sum
to one). Word= word penalty; Phe phrase penalty. Note that we have inverted the sense of Pharaoh's
phrase penalty so that a positive weight indicates a penalty.

5.3 Adding a constituent feature 6 Conclusion

The use of hierarchical structures opens the pogjierarchical phrase pairs, which can be learned
sibility of making the model sensitive to syntac-yithout any syntactically-annotated training data,
tic structure. Koehn et al. (2003) mention Germagmrove translation accuracy significantly compared
(es gibtthere is as an example of a good phrasgyjth g state-of-the-art phrase-based system. They

pair which is not a syntactic phrase pair, and repogjs,, facilitate the incorporation of syntactic informa-
that favoring syntactic phrases does notimprove agyn, which, however, did not provide a statistically
curacy. But in our model, the rule significant gain.

(19) X — (es gibt X, there is %) Our primary goal for the future is to move towards
a more syntactically-motivated grammar, whether

would indeed respect syntactic phrases, becauseyf} aytomatic methods to induce syntactic categories,
builds a pair of Ss out of a pair of NPs. Thus, favoryy py petter integration of parsers trained on an-

ing subtrees in our model that are syntactic phrasggytated data. This would potentially improve both
might provide a fairer way of testing the hypotheS|solccuracy and ficiency. Moreover, reducing the

that syntactic phrases are better phrases. grammar size would allow more ambitious train-
This feature adds a factor to (17), ing settings. The maximum initial phrase length
1 if fij is a constituent is currently 10; preliminary experiments show that

increasing this limit to as high as 15 does im-
prove accuracy, but requires more memory. On the
as determined by a statistical tree-substitutiorether hand, we have successfully trained on almost
grammar parser (Bikel and Chiang, 2000), traine80M+30M words by tightening the initial phrase
on the Penn Chinese Treebank, version 3 (250kngth limit for part of the data. Streamlining the
words). Note that the parser was run only on thgrammar would allow further experimentation in
test data and not the (much larger) training data. Réhese directions.

running the minimume-error-rate trainer with the new In any case, future improvements to this system
feature yielded the feature weights shown in Table 2vill maintain the design philosophy proven here,
Although the feature improved accuracy on the dethat ideas from syntax should be incorporated into
velopment set (from.814 to 0322), it gave no sta- statistical translation, but not in exchange for the
tistically significant improvement on the test set.  strengths of the phrase-based approach.

0 otherwise

(20)  cfi, }) = {
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