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Abstract
We present the first version of a new declarative pro-
gramming language. Dyna has many uses but was de-
signed especially for rapid development of new statis-
tical NLP systems. A Dyna program is a small set of
equations, resembling Prolog inference rules, that spec-
ify the abstract structure of a dynamic programming al-
gorithm. It compiles into efficient, portable, C++ classes
that can be easily invoked from a larger application. By
default, these classes run a generalization of agenda-
based parsing, prioritizing the partial parses by some
figure of merit. The classes can also perform an exact
backward (outside) pass in the service of parameter train-
ing. The compiler already knows several implementation
tricks, algorithmic transforms, and numerical optimiza-
tion techniques. It will acquire more over time: we in-
tend for it togeneralizeandencapsulatebest practices,
and serve as a testbed for new practices. Dyna is now be-
ing used for parsing, machine translation, morphological
analysis, grammar induction, and finite-state modeling.

1 Introduction
Computational linguistics has become a more experi-
mental science. One often uses real-world data to test
one’s formal models (grammatical, statistical, or both).

Unfortunately, as in other experimental sciences, test-
ing each new hypothesis requires much tedious lab
work: writing and tuning code until parameter estimation
(“training”) and inference over unknown variables (“de-
coding”) are bug-free and tolerably fast. This is intensive
work, given complex models or a large search space (as
in modern statistical parsing and machine translation). It
is a major effort to break into the field with a new system,
and modifying existing systems—even in aconceptually
simple way—can require significant reengineering.

Such “lab work” mainly consists of reusing or rein-
venting various dynamic programming architectures. We
propose that it is time to jump up a level of abstraction.
We offer a new programming language, Dyna, that al-
lows one to quickly and easily specify a model’s com-
binatorial structure. We also offer a compiler,dynac ,
that translates from Dyna into C++ classes. The com-
piler does all the tedious work of writing the training and
decoding code. It is intended to do as good a job as a
clever graduate student who already knows the tricks of
the trade (and is willing to maintain hand-tuned C++).
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2 A Basic Example: PCFG Parsing
We believe Dyna is a flexible and intuitive specification
language for dynamic programs. Such a program spec-
ifies how to combine partial solutions until a complete
solution is reached.

2.1 The Inside Algorithm, in Dyna
Fig. 1 shows a simple Dyna program that corresponds
to the inside algorithm for PCFGs (i.e., the probabilis-
tic generalization of CKY parsing). It may be regarded
as a system of equations over an arbitrary number of
unknowns, which havestructured namessuch ascon-
stit(s,0,3). These unknowns are calleditems. They re-
semble variables in a C program, but we usevariable
instead to refer to the capitalized identifiersX, I, K, . . . in
lines 2–4.1

At runtime, a user must provide an input sentence and
grammar byasserting values for certain items. If the
input is John loves Mary, the user should assert values
of 1 for word(John,0,1), word(loves,1,2), word(Mary,2,3),
andend(3). If the PCFG contains a rewrite rulenp →
Mary with probability p(Mary | np) = 0.003, the user
should assert thatrewrite(np,Mary) has value0.003.

Given these base cases, the equations in Fig. 1 en-
able Dyna to deduce values for other items. The de-
duced value ofconstit(s,0,3) will be the inside probability
βs(0, 3),2 and the deduced value ofgoal will be the total
probability of all parses of the input.

Lines 2–4 are equational schemas that specify how to
compute the value of items such asconstit(s,0,3) from
the values of other items. By using the summation op-
erator +=, lines 2–3 jointly say that for anyX, I, and
K, constit(X,I,K) is defined by summation over the re-
maining variables, as

∑
W rewrite(X,W)*word(W,I,K) +∑

Y,Z,J rewrite(X,Y,Z)*constit(Y,I,J)*constit(Z,J,K). For
example,constit(s,0,3) is a sum of quantities such as
rewrite(s,np,vp)*constit(np,0,1)*constit(vp,1,3).

2.2 The Execution Model
Dyna’s declarative semantics state only that it will find
values such that all the equations hold.3 Our implemen-
tation’s default strategy is to propagate updates from an
equation’s right-hand to its left-hand side, until the sys-
tem converges. Thus, by default, Fig. 1 yields a bottom-
up or data-driven parser.

1Much of our terminology (item, chart, agenda) is inherited from
the parsing literature. Other terminology (variable, term, inference rule,
antecedent/consequent, assert/retract, chaining) comes from logic pro-
gramming. Dyna’s syntax borrows from both Prolog and C.

2That is, the probability thats would stochastically rewrite to the
first three words of the input. If this can happen in more than one way,
the probability sums over multiple derivations.

3Thus, future versions of the compiler are free to mix any efficient
strategies, even calling numerical equation solvers.



1. :- valtype(term, real). % declares that all item values are real numbers
2. constit(X,I,K) += rewrite(X,W) * word(W,I,K). % a constituent is either a word . . .
3. constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K). % . . . or a combination of two adjacent subconstituents
4. goal += constit(s,0,N) * end(N). % a parse is anys constituent that covers the input string

Figure 1: A probabilistic CKY parser written in Dyna.

Dyna may be seen as a new kind of tabled logic
programming language in which theorems are not just
proved, but carry values. This suggests some terminol-
ogy. Lines 2–4 of Fig. 1 are calledinference rules. The
items on the right-hand side areantecedents, and the
item on the left-hand side is theirconsequent. Asser-
tions can be regarded asaxioms. And the default strategy
(unlike Prolog’s) isforward chaining from the axioms,
as in some theorem provers.

Supposeconstit(verb,1,2) increases by∆. Then
the program in Fig. 1 must find all the instantiated
rules that haveconstit(verb,1,2) as an antecedent,
and must update their consequents. For example,
since line 3 can be instantiated asconstit(vp,1,3) +=
rewrite(vp,verb,np)*constit(verb,1,2) *constit(np,2,3),
then constit(vp,1,3) must be increased by
rewrite(vp,verb,np) * ∆ * constit(np,2,3).

Line 3 actually requires infinitely many such up-
dates, corresponding to all rule instantiations of
the form constit(X,1,K) += rewrite(X,verb,Z)*con-
stit(verb,1,2) *constit(Z,2,K).4 However, most of these
updates would have no effect. We only need to consider
the finitely many instantiations whererewrite(X,verb,Z)
and constit(Z,2,K) have nonzero values (because they
have been asserted or updated in the past).

The compiled Dyna program rapidly computes this set
of needed updates and adds them to a worklist of pend-
ing updates, theagenda. Updates from the agenda are
processed in some prioritized order (which can strongly
affect the speed of the program). When an update is car-
ried out (e.g.,constit(vp,1,3) is increased), any further
updates thatit triggers (e.g., toconstit(s,0,3)) are placed
back on the agenda in the same way. Multiple updates
to the same item are consolidated on the agenda. This
cascading update process begins with axiom assertions,
which are treated like other updates.

2.3 Closely Related Algorithms

We now give some examples of variant algorithms.
Fig. 1 provides lattice parsing for free. Instead of

being integer positions in an string,I, J and K can be
symbols denoting states in a finite-state automaton. The
code does not have to change, only the input. Axioms
should now correspond to weighted lattice arcs, e.g.,
word(loves,q,r) with value p(portion of speech signal|
loves).

To find the probability of the best parse instead of the
total probability of all parses, simply change the value
type: replacereal with viterbi in line 1. If a and b are
viterbi values,a+b is implemented asmax(a, b).5

4As well as instantiationsconstit(X,I,2) += rewrite(X,Y,
verb)*constit(Y,I,1)*constit(verb,1,2) .

5Also, a*b is implemented asa + b, asviterbi values actually rep-
resent log probabilities (for speed and dynamic range).

Similarly, replacingreal with boolean obtains an un-
weighted parser, in which a constituent is either derived
(true value) or not (false value) Thena*b is implemented
asa ∧ b, anda+b asa ∨ b.

The Dyna programmer can declare theagenda disci-
pline—i.e., the order in which updates are processed—to
obtain variant algorithms. Although Dyna supports stack
and queue (LIFO and FIFO) disciplines, its default is to
use a priority queue prioritized by the size of the update.
When parsing withreal values, this quickly accumulates
a good approximation of the inside probabilities, which
permits heuristicearly stopping before the agenda is
empty. Withviterbi values, it amounts to uniform-cost
search for the best parse, and an item’s value is guaran-
teed not to change once it is nonzero. Dyna will soon al-
low user-defined priority functions (themselves dynamic
programs), which can greatly speed up parsing (Cara-
ballo and Charniak, 1998; Klein and Manning, 2003).

2.4 Parameter Training
Dyna provides facilities for training parameters. For ex-
ample, from Fig. 1, it automatically derives the inside-
outside (EM) algorithm for training PCFGs.

How is this possible? Once the program of Fig. 1 has
run, goal’s value is the probability of the input sentence
under the grammar. This is a continuous function of
the axiom values, which correspond to PCFG parame-
ters (e.g., the weight ofrewrite(np,Mary)). The function
could be written out explicitly as a sum of products of
sums of products of . . . of axiom values, with the details
depending on the sentence and grammar.

Thus, Dyna can be regarded as computing a function
F (~θ), where~θ is a vector of axiom values andF (~θ) is an
objective function such as the probability of one’s train-
ing data. In learning, one wishes to repeatedly adjust~θ

so as to increaseF (~θ).
Dyna can be told to evaluate the gradient of the func-

tion with respect to the current parameters~θ: e.g., if
rewrite(vp,verb,np) were increased byε, what would hap-
pen to goal? Then any gradient-based optimization
method can be applied, using Dyna to evaluate bothF (~θ)
and its gradient vector. Also, EM can be applied where
appropriate, since it can be shown that EM’s E counts can
be derived from the gradient. Dyna’s strategy for com-
puting the gradient is automatic differentiation in the re-
verse mode (Griewank and Corliss, 1991), known in the
neural network community as back-propagation.

Dyna comes with a constrained optimization module,
DynaMITE,6 that can locally optimizeF (~θ). At present,
DynaMITE provides the conjugate gradient and variable
metric methods, using the Toolkit for Advanced Opti-
mization (Benson et al., 2000) together with a softmax

6DynaMITE = Dyna Module for Iterative Training and Estimation.



technique to enforce sum-to-one constraints. It supports
maximum-entropy training and the EM algorithm.7

DynaMITE provides an object-oriented API that al-
lows independent variation of such diverse elements of
training as the model parameterization, optimization al-
gorithm, smoothing techniques, priors, and datasets.

How about supervised or partly supervised training?
The role of supervision is to permit some constituents
to be built but not others (Pereira and Schabes, 1992).
Lines 2–3 of Fig. 1 can simply be extended with an addi-
tional antecedentpermitted(X,I,K), which must be either
asserted or derived forconstit(X,I,K) to be derived. In
“soft” supervision, thepermitted axioms may have val-
ues between 0 and 1.8

3 C++ Interface and Implementation
A Dyna program compiles to a set of portable C++
classes that manage the items and perform inference.
These classes can be used in a larger C++ application.9

This strategy keeps Dyna both small and convenient.
A C++ chart object supports the computation of item

values and gradients. It keeps track of built items, their
values, and their derivations, which form a proof for-
est. It also holds an ordered agenda of pending updates.
Some built items may be “transient,” meaning that they
are not actually stored in the chart at the moment but will
be transparently recomputed upon demand.

The Dyna compiler generates a hard-coded decision
tree that analyzes the structure of each item popped from
the agenda to decide which inference rules apply to it.
To enable fast lookup of the other items that participate
in these inference rules, it generates code to maintain ap-
propriate indices on the chart.

Objects such asconstit(vp,1,3) are calledterms and
may be recursively nested to any depth. (Items are just
terms with values.) Dyna has a full first-order type sys-
tem for terms, including primitive and disjunctive types,
and permitting compile-time type inference. These types
are compiled into C++ classes that support construc-
tors and accessors, garbage-collection, subterm sharing
(which may lead toasymptoticspeedups, as in CCG pars-
ing (Vijay-Shanker and Weir, 1990)), and interning.10

Dyna can import new primitive term types and value
types from C++, as well as C++ functions to combine
values and to user-define the weights of certain terms.

In the current implementation, every rule must have
the restricted formc += a1*a2* · · · *ak (where eachai

is an item or side condition and(X, +, *) is a semiring
of values). The design for Dyna’s next version lifts this
restriction to allow arbitrary, type-heterogeneous expres-
sions on the right-hand side of an inference rule.11

7It will eventually offer additional methods, such as deterministic
annealing, simulated annealing, and iterative scaling.

8Such item values are not probabilities. We are generally interested
in log-linear models for parsing (Riezler et al., 2000) and other tasks.

9We are also now developing a default application: a visual debug-
ger that allows a user to assert axioms and explore the proof forest
created during inference.

10Interned values are hashed so that equal values are represented by
equal pointers. It is very fast to compare and hash such representations.

11That will make Dyna useful for a wider variety of non-NLP algo-

4 Some Further Applications
Dyna is useful for any problem where partial hypothe-
ses are assembled, or where consistency has to be main-
tained. It is already being used for parsing, syntax-based
machine translation, morphological analysis, grammar
induction, and finite-state operations.

It is well known that various parsing algorithms for
CFG and other formalisms can be simply written in terms
of inference rules. Fig. 2 renders one such example
in Dyna, namely Earley’s algorithm. Two features are
worth noting: the use of recursively nested subterms such
as lists, and theSIDE function, which evaluates to 1 or 0
according to whether its argument has a defined value
yet. Theseside conditionsare used here to prevent hy-
pothesizing a constituent until there is a possible left con-
text that calls for it.

Several recent syntax-directed statistical machine
translation models are easy to build in Dyna. The sim-
plest (Wu, 1997) usesconstit(np,3,5,np,4,8) to denote a
NP spanning positions 3–5 in the English string that is
aligned with an NP spanning positions 4–8 in the Chi-
nese string. When training or decoding, the hypotheses
of better-trained monolingual parsers can provide either
hard or soft partial supervision (section 2.4).

Dyna can manipulate finite-state transducers. For in-
stance, the weighted arcs of the composed FSTM1 ◦M2

can be deduced from the arcs ofM1 andM2. Training
M1 ◦M2 back-propagates to train the original weights in
M1 andM2, as in (Eisner, 2002).

5 Speed and Code Size
One of our future priorities is speed. Comparing infor-
mally to the best hand-written C++ code we found online
for inside-outside and Dijkstra’s algorithms, Dyna (like
Java) currently runs up to 5 times slower. We mainly un-
derstand the reasons (memory layout and overreliance on
hashing) and are working actively to close the gap.12

Programmer time is also worth considering. Our
inside-outside and Dijkstra’s algorithms are each about
5 lines of Dyna code (plus a short C driver program),
but were compared in the previous paragraph against ef-
ficient C++ implementations of 5500 and 900 lines.13

Our colleague Markus Dreyer, as his first Dyna pro-
gram, decided to replicate the Collins parser (3400 lines
of C). His implementation used under 40 lines of Dyna
code, plus a 300-line C++ driver program that mostly
dealt with I/O. One of us (Smith) has written substan-
tially more complex Dyna programs (e.g., 56 types +
46 inference rules), enabling research that he would not
have been willing to undertake in another language.

6 Related Work
This project tries to synthesize much folk wisdom. For
NLP algorithms, three excellent longer papers have at-

rithms (e.g., neural networks, constraint programming, clustering, and
dynamic graph algorithms). However, it introduces several interesting
design complications in the Dyna language and the implementation.

12Dyna spends most of its time manipulating hash tables and the
priority queue. Inference is very fast because it is compiled.

13The code size comparisons are rough ones, because of mismatches
between the programs being compared.



1. need(s,0) = 1. % begin by looking for ans that starts at position 0
2. constit(Nonterm/Needed,I,I) += SIDE(need(Nonterm,I)) * rewrite(Nonterm,Needed). % traditionalpredict step
3. constit(Nonterm/Needed,I,K) += constit(Nonterm/cons(W,Needed),I,J) * word(W,J,K). % traditionalscanstep
4. constit(Nonterm/Needed,I,K) += constit(Nonterm,cons(X,Needed),I,J) * constit(X/nil,J,K). % traditionalcompletestep
5. goal += constit(s/nil,0,N) * end(N). % we want a completes constituent covering the sentence
6. need(Nonterm,J) += constit( /cons(Nonterm, ), ,J). % Note: underscore matches anything (anonymous wildcard)

Figure 2: An Earley parser in Dyna.np/Needed is syntactic sugar forslash(np,Needed), which is the label of a partial
np constituent that is still missing thelist of subconstituents inNeeded. In particular,np/nil is a completenp. (A list
[n,pp] is encoded here ascons(n,cons(pp,nil)), although syntactic sugar for lists is also available.)need(np,3) is derived
if some partial constituent seeks annp subconstituent starting at position 3. As usual, probabilistic, agenda-based
lattice parsing comes for free, as does training.

tempted similar syntheses (though without covering vari-
ant search and storage strategies, which Dyna handles).

Shieber et al. (1995) (already noting that “many of the
ideas we present are not new”) showed that severalun-
weightedparsing algorithms can be specified in terms of
inference rules, and used Prolog to implement an agenda-
based interpreter for such rules. McAllester (1999) made
a similar case for static analysis algorithms, with a more
rigorous discussion of indexing the chart.

Goodman (1999) generalized this line of work
to weighted parsing, using rules of the form
c += a1*a2* · · · *ak (with side conditions allowed);
he permitted values to fall in any semiring, and gen-
eralized the inside-outside algorithm. Our approach
extends this to a wider variety of processing orders, and
in particular shows how to use a prioritized agenda in
the general case, using novel algorithms. We also extend
to a wider class of formulas (e.g., neural networks).

The closestimplementedwork we have found is
PRISM (Zhou and Sato, 2003), a kind of probabilis-
tic Prolog that claims to be efficient (thanks to tabling,
compilation, and years of development) and can handle
a subset of the cases described by Goodman. It is in-
teresting because it inherits expressive power from Pro-
log. On the other hand, its rigid probabilistic framework
does not permit side conditions (Fig. 2), general semir-
ings (Goodman), or general formulas (Dyna). PRISM
does not currently seem practical for statistical NLP re-
search: in CKY parsing tests, it was only able to handle
a small fraction of the Penn Treebank ruleset (2400 high-
probability rules) and tended to crash on sentences over
50 words. Dyna, by contrast, is designed for real-world
use: it consistently parses over 10x faster than PRISM,
scales to full-sized problems, and attempts to cover real-
world necessities such as prioritization, bottom-up infer-
ence, pruning, smoothing, underflow avoidance, maxent,
non-EM optimization techniques, etc.

7 Conclusions
Dyna is a declarative programming language for building
efficient systems quickly. As a language, it is inspired
by previous work in deductive parsing, adding weights
in a particularly general way. Dyna’s compiler has been
designed with an eye toward low-level issues (indexing,
structure-sharing, garbage collection, etc.) so that the
cost of this abstraction is minimized.

The goal of Dyna is to facilitate experimentation: a
new model or algorithm automatically gets a new mem-

ory layout, indexing, and training code. We hope this
will lower the barrier to entry in the field, in both research
and education. In Dyna we seek to exploit as many al-
gorithmic tricks as we can, generalizing them to as many
problems as possible on behalf of future Dyna programs.
In turn the body of old programs can provide a unified
testbed for new training and decoding techniques.

Our broader vision is to unify a problem’s possible al-
gorithms by automatically deriving all of them and their
possible training procedures from a single high-level
Dyna program, using source-to-source program transfor-
mations and compiler directives. We plan to choose auto-
matically among these variants by machine learning over
runs on typical data. This involves, for example, auto-
matically learning a figure of merit to guide decoding.

The Dyna compiler, documentation, and examples can
be found atwww.dyna.org . The compiler is available
under an open-source license. The commented C++ code
that it generates is free to modify.
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