Exploiting Unannotated Corpora for Tagging and Chunking

Rie Kubota Ando
IBM T.J. Watson Research Center
19 Skyline Dr., Hawthorne, NY 10532
rielQus.ibm.com

Abstract

We present a method that exploits unannotated
corpora for compensating the paucity of anno-
tated training data on the chunking and tagging
tasks. It collects and compresses feature fre-
quencies from a large unannotated corpus for
use by linear classifiers. Experiments on two
tasks show that it consistently produces signifi-
cant performance improvements.

1 Introduction

This paper presents a method for exploiting
large unannotated corpora for the tagging and
chunking tasks. We report experiments on
entity mention detection' and part-of-speech
(POS) tagging. To apply classification tech-
niques to chunking tasks, a common approach
is to cast the task to that of token tagging,
where token tags encode chunk information,
e.g., ‘B-PERSON’ (beginning of person chunk),
‘I-PERSON’ (inside of person chunk), and ‘O’
(outside of any entity chunk). The challenge
for a classifier is to learn unknown relationships
between token tags and features (such as token
strings and context information) from tagged
examples. To achieve reasonable performance,
a sufficiently large number of representative ex-
amples are required. Our goal is to compensate
for the paucity of tagged examples or their dif-
ferences from test data, by using untagged ex-
amples.

One type of approaches to this problem in-
volves iterative and automatic tagging of the
untagged data such as bootstrapping or co-
training. Expectation Mazimization (EM) also
uses untagged data for iteratively improving
model parameters. Another type uses untagged

!The task objective of entity mention detection is to
detect and classify text spans that mention (or refer to)
certain types of entities in the real world such as per-
sons and organizations. We experiment with the data
from the ACE (Automatic Content Extraction) program
(http://www.nist.gov/speech/index.htm).

corpora for improving feature representation,
e.g. (Schiietze, 1992). We take the latter ap-
proach.

To see how unannotated corpora may help
tagging, consider the following examples:

the president/B-PERSON and
our chairman/B-PERSON is

Suppose that “president” appeared in the train-
ing data, but “chairman” didn’t, and that in
a large corpus, both words (“chairman” and
“president”) often appear as the subject of
“said”, “visited”, etc., and that both are of-
ten modified by “vice”, “powerful”, etc. It is
intuitive that such corpus statistics would help
a classifier to tag “chairman” correctly even if
“chairman” did not appear in the training data.

Given some set of features designed for the
task (see Figure 1 for example), we count fea-
ture occurrences in all the word instances in
the unannotated corpus to generate feature-by-
word co-occurrence frequency matrices. When
we encounter a training or test instance of word
w, we generate two kinds of features. One
is the features observed in that instance (as
usual). The other is the features derived from
the columns (corresponding to w) of the feature-
by-word co-occurrence matrices — collections of
w’s context in the untagged corpus — which we
call corpus-context features.

Our experiments show that the corpus-
context features consistently improve perfor-
mance on the two tasks. There are two im-
portant elements for achieving such effective-
ness in this simple framework. One is a high-
performance linear classifier, Robust Risk Mini-
mization (RRM) (Zhang et al., 2002), which has
an ability to ignore irrelevant features while cop-
ing with mutually-dependent features. (RRM
learns feature weights by minimizing classifica-
tion errors with regularization on the tagged
training data.) Therefore, we take a ‘feature-
rich’ strategy to use a variety of types of cor-

pus context information. To enable classifier
training with many types of corpus statistics,
such vast amounts of information from a large
corpus must be compressed. Hence, the sec-
ond key element is a dimension reduction tech-
nique. We adapt a variation of LSI, specifi-
cally designed for feature occurrence frequen-
cies (Ando, 2004). As such, the objective of
this paper is to show that a right combination
of techniques produces a useful tool for coping
with the paucity of tagged training data.

2 Method

2.1 Collecting corpus statistics

From a given set of features designed for the
task (see Figure 1 and Figure 6 for example),
we use context features only (i.e., excluding fea-
tures that strongly depend on words?) to gener-
ate feature-by-word co-occurrence matrices. We
generate one matrix for each type, e.g., a ‘left
adjacent word’-by-word matrix, a ‘right adja-
cent word’-by-word matrix, and so forth.

2.2 Vector compression

To compress feature-by-word matrices, we
adapt a procedure proposed for semantic lexi-
con construction (Ando, 2004). That is to ap-
ply singular value decomposition (SVD) only to
a smaller matrix consisting of several selected
columns of the co-occurrence matrix and to ‘fold
in’ the rest of the columns to the reduced di-
mensions. The choice of columns is important.
The columns corresponding to the most frequent
words should be selected. The intuition be-
hind its theoretical justification (Ando, 2004) is
that more reliable statistics from high-frequency
words should produce a better representation
space, which should result in improving statis-
tically ‘poor’ vectors for low-frequency words.
Thus, we choose k most frequent words and re-
duce the dimensions to h. The dimensionality A
should be no smaller than the number of target
classes?.

We compress each of feature-by-word co-
occurrence matrix independently of one another.
This is important, as it gives more freedom to

*For instance, it is useless to count ‘co-occurrences’
of words and their endings. Moreover, features that are
nearly conditionally independent of words given classes
are more useful for the purpose, since ultimately we want
to capture correlations of words to classes (through their
co-occurrences with features) rather than their correla-
tions to specific features.

3Intuitively, there need at least h dimensions to ex-
press correlations to h classes.

- token, capitalization, POS in 3-token window

- bi-grams of adjacent words in 5-token window

- words in the same syntactic chunk.

- head words in 3-chunk window

- word uni- and bi-grams based on subject-verb-
object and preposition-noun constructions.

- syntactic chunk types

- tags in 2-token window to the left

- tri-grams of POS, capitalization, and word ending

- tri-grams of POS, capitalization, and left tag

Figure 1: Features for entity detection

sophisticated classifiers to weight relevant types
of features more heavily than irrelevant ones.
If all are compressed together, the classifiers
can not tear them apart. For efficient training,
though optionally, we further reduce non-zero
entries by zeroing out all but n entries that have
the largest absolute values in each compressed
vector. We call the entries of the resultant vec-
tors corpus-context features. For a training or
test instance of word w, we have two kinds of
features: features derived from the instance (as
usual), and the corpus-context features gener-
ated from w’s context in the corpus.

For our experiments, we set (k,h,n) =
(1000, 50,6) using held-out data (the develop-
ment set described below). Performance is rel-
atively insensitive to the changes of these pa-
rameters®. We use the same parameter setting
for both entity mention detection and part-of-
speech tagging experiments.

3 Entity mention detection
experiments

3.1 Experimental framework

Entity classes and evaluation metric We
experiment with 10 classes from the ACE entity
classes — obtained by combining five entity types
(Person, Organization, Facility, GPE, Location)
and two mention types (Name, Nominal), which
make 21-way classification when chunk bound-
ary information is encoded into token tags. Pro-
posed mention chunks are counted as correct
only if both mention boundaries and classes are
correct. We combine precision and recall into
F-measure with equal weight.

Features Figure 1 describes features used for
entity mention detection experiments. We gen-
erate corpus-context features from the features

“On the held-out data, k € [1000,5000] produced es-
sentially similar performance, and so did h € [30,60] and
n € [6,10].

annotated unannotated
type | training dev test -
ACE 185K 21K 52K WSJ: 40M
(21K) (24K) | (5.5K)
CNS - - 32K CNS: 3M
(4.5K)

Figure 2: Data statistics. # of tokens and # of
mentions in parentheses.

(42
o

RRM+-corpus-ctx RRM | Baseline
WSJ CNS - -
7K || 63.8 (+15.4) | 59.6 | 48.4 31.9
11K || 69.1 (+14.2) | 62.5 | 54.9 30.0
22K || 71.3 (+10.4) | 67.2 | 60.9 46.4
40K || 73.1 (+7.9) | 69.7 | 65.2 50.4
76K || 74.3 (+6.0) | 72.6 | 68.3 54.4
185K || 77.0 (+2.6) | 75.5 | T74.4 60.5

Figure 4: Entity detection F-measure results on
the ACE test set. Numbers in parentheses are
differences from RRM without corpus-context fea-
tures.

S 40 A
o
VAN
T 2
10
0 1 1 1 1 1 1 = % |

Per GPE Per Org Org GPE Fac Lloc Fac Loc

Name Name nom Name nom nom nom Name Name nom
Figure 3: Target class proportions. The line with
circles is on the CNS corpus. The other two lines
(almost overlapping) are on the ACE training and
test sets.

in the first five lines of the figure excluding those
overlapping with the current word. The rest are
not suitable either because they have strong de-
pendency on the word, or because they require
token tags, which are not available in the un-
tagged corpus.

Data We use two annotated corpora. Data
statistics is summarized in Figure 2. The first
annotated corpus is the ACE phase-2 data avail-
able from Linguistic Data Consortium. The
sources of the documents are newswire, news-
papers and broadcasts. The data consists of the
training set (January—June 1998), and the test
set (52K words; October-December 1998). We
held out one tenth of the training set for the
development purpose, and used the remaining
nine tenth as tagged training data. The sec-
ond annotated corpus is part of the CNS cor-
pus, a collection of reports on the development
of nuclear technologies from Center for Nonpro-
liferation Studies. We manually annotated 32K
words of this corpus for generating test data,
and use the rest (3 million words) as an unan-
notated corpus. Figure 3 plots the proportions
of target entity classes annotated in the ACE
corpus and in the above 32K words of the CNS
corpus. The ACE training and test sets have al-
most identical distributions while the CNS test
set exhibits clearly different class distributions.
Our interest is in whether use of the unanno-
tated portion of the CNS corpus can compen-
sate for such differences between the ACE train-

RRM+-corpus-ctx RRM | Baseline
WSJ CNS - -
TK || 52.5 | 58.6 (+19.2) | 39.4 27.9
11K || 60.9 | 65.0 (+19.6) | 454 34.5
22K || 63.9 | 69.4 (+19.3) | 50.1 39.6
40K || 66.7 | 71.2 (+15.4) | 55.8 48.4
76K || 69.2 | 74.2 (+11.2) | 63.0 56.0
185K || 70.2 | 76.2 (+10.9) | 65.3 60.8

Figure 5: Entity detection F-measure results on
the CNS test set. Numbers in parentheses are
differences from RRM without corpus-context fea-
tures.

ing set and the CNS test set. As for an ACE-
type unannotated corpus, we use Wall Street
Journal (WSJ) articles (January 1991 through
March 1992; 40 million words).

3.2 Results

In all the experiments in this section, annotated
training examples are randomly drawn from the
ACE training set.

Results on the similar test data Figure 4
shows F-measure results on the ACE test set
in relation to the number of tagged training
examples (the left-most column). The right-
most column shows the baseline performance,
obtained by choosing the tag most frequently
assigned to the word if that word appears in the
training data, and chooses ‘O’ (outside of en-
tity chunks) otherwise. The best performance is
achieved when corpus-context features are gen-
erated from the untagged corpus similar to test
data (WSJ). It outperforms the RRM classi-
fier that does not use corpus-context features
by 2.6% to 15.4%.

Results on the dissimilar test data The
results on the CNS test set (Figure 5) indicate
that an untagged domain corpus (the CNS cor-

- token, capitalization in 5-token windows

- ending (length 1 to 4)

- uni- and bi-grams of tags at the left

- tag-word bi-grams in 3-token windows

- bi-grams of adjacent words in 5-token windows

Figure 6: Features for POS tagging

RRM HMM

Corpus-ctx | — with BW | w/o

5K || 90.2 (+7.4) | 82.8 || 82.1 (+5.0) | 77.1
9K || 92.7 (+5.0) | 87.7 || 84.9 (+2.7) | 82.2
19K || 93.7 (+2.8) | 90.9 || 87.1 (+0.3) | 86.8
38K || 94.7 (+1.8) | 92.9 || 89.8 (-0.2) | 89.6
75K || 95.2 (+1.6) | 93.6 || 91.2 (-0.6) | 91.8
149K || 95.6 (+0.9) | 94.7 || 92.3 (-1.0) | 93.3

Figure 7: POS tagging accuracy results. Num-
bers in parentheses are differences from their coun-
terparts that do not use the untagged corpus.

pus), indeed, compensates for the differences
between tagged training data (ACE) and test
data (CNS). The other classifiers are apparently
suffering from the dissimilarity.

4 POS Tagging Experiments

Features Figure 6 shows the features we use
for POS tagging. Among them, we use word
uni- and bi-grams that do not overlap with the
current word, to generate corpus-context fea-
tures.

Baseline As our baseline, we implement an
HMM tagger with and without Baum-Welch
reestimation (EM for HMM). We smooth transi-
tion probabilities by deleted interpolation. For
unseen and low-frequency words, word emission
probabilities are estimated as Weischedel et al.
(1993) do while interpolating emission proba-
bilities of words and endings (length 1 to 4).
We estimate these probabilities by relative fre-
quencies in tagged training corpora, and per-
form 10 EM iterations using unannotated data.
To avoid underestimating the baseline, we re-
port its best performance among the iterations.

POS tagging results We report results on
the standard Brown corpus. The test data
was fixed to arbitrarily-drawn one fifth of the
corpus (230K words). We use the rest (930K
words) as tagged and untagged training data:
all 930K words as untagged data for collect-
ing corpus context and for the BW reestima-
tion; and arbitrarily-drawn various portions as
tagged training data. Figure 7 shows accu-
racy (# of correctly tagged words divided by

of words) in relation to the number of tagged
training examples. The performance differ-
ences between HMM and RRM mainly derive
from the differences in the ‘richness’ of infor-
mation they make use of. The additional fea-
tures® used by RRM are apparently effective
for compensating for the paucity of the tagged
data. Corpus-context features further improve
the performance up to 7.4%. This is in contrast
to the Baum-Welch reestimation, which some-
times rather degrades performance.

5 Conclusion

The method we present is intended for the
chunking/tagging tasks in which words serve
as strongly effective features. Performance im-
provements obtained by corpus-context features
are especially large when tagged training is
small or different from test data, which is useful
for expediting the adaptation of the system to
new domains.

Acknowledgements

This work was supported by the Advanced Re-
search and Development Activity under the
Novel Intelligence and Massive Data (NIMD)
program PNWD-SW-6059.

References

Rie Kubota Ando. 2004. Semantic lexicon con-
struction: Learning from unlabeled data via
spectral analysis. In Proceedings of CoNLL-
2004.

Hinrich Schietze. 1992. Dimensions of mean-
ing. In Proceedings of Supercomputing’92,
pages 787-796.

Ralph Weischedel, Marie Meteer, Richard
Schwartz, Lance Ramshaw, and Jeff Pal-
mucci. 1993. Coping with ambiguity and un-
known words through probabilistic models.
Computational Linguistics, 19(2):359-382.

Tong Zhang, Fred Damerau, and David John-
son. 2002. Text chunking based on a gen-
eralization of Winnow. Journal of Machine
Learning Research, 2:615-637.

As many of the features used with RRM are mutu-
ally dependent, there is no easy way to exploit them with
HMM. However, we note that when trained with over
one million tagged examples, RRM (with and without
corpus context) and HMM taggers produce essentially
similar high accuracy. That is, the mutually-dependent
features become redundant once sufficiently large tagged
data becomes available.

