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Abstract

This paper describes a Verb Phrase El-
lipsis (VPE) detection system, built for
robustness, accuracy and domain inde-
pendence. The system is corpus-based,
and uses machine learning techniques
on free text that has been automatically
parsed. Tested on a mixed corpus com-
prising a range of genres, the system
achieves a 70% F1-score. This system is
designed as the first stage of a complete
VPE resolution system that is input free
text, detects VPEs, and proceeds to find
the antecedents and resolve them.

1 Introduction

Ellipsis is a linguistic phenomenon that has re-
ceived considerable attention, mostly focusing on
its interpretation. Most work on ellipsis (Fiengo
and May, 1994; Lappin, 1993; Dalrymple et al.,
1991; Kehler, 1993; Shieber et al., 1996) is aimed
at discerning the procedures and the level of lan-
guage processing at which ellipsis resolution takes
place, or ambiguous and difficult cases. The detec-
tion of elliptical sentences or the identification of
the antecedent and elided clauses within them are
usually not dealt with, but taken as given. Noisy or
missing input, which is unavoidable in NLP appli-
cations, is not dealt with, and neither is focusing
on specific domains or applications. It therefore
becomes clear that a robust, trainable approach is
needed.

An example of Verb Phrase Ellipsis (VPE),
which is detected by the presence of an auxiliary
verb without a verb phrase, is seen in example 1.
VPE can also occur with semi-auxiliaries, as in ex-
ample 2.

(1) John3 {loves his3 wife}2. Bill 3 does1 too.

(2) But although he was terse, he didn’t{rage at
me}2 the way I expected him to1.

Several steps of work need to be done for ellip-
sis resolution :

1. Detecting ellipsis occurrences. First, elided
verbs need to be found.

2. Identifying antecedents. For most cases of
ellipsis, copying of the antecedent clause is
enough for resolution (Hardt, 1997).

3. Resolving ambiguities. For cases where am-
biguity exists, a method for generating the
full list of possible solutions, and suggesting
the most likely one is needed.

This paper describes the work done on the first
stage, the detection of elliptical verbs. First, pre-
vious work done on tagged corpora will be sum-
marised. Then, new work on parsed corpora will
be presented, showing the gains possible through
sentence-level features. Finally, experiments us-
ing unannotated data that is parsed using an auto-
matic parser are presented, as our aim is to pro-
duce a stand-alone system.

We have chosen to concentrate on VP ellipsis
due to the fact that it is far more common than



other forms of ellipsis, but pseudo-gapping, an ex-
ample of which is seen in example 3, has also been
included due to the similarity of its resolution to
VPE (Lappin, 1996).Do so/it/thatandso doing
anaphora are not handled, as their resolution is dif-
ferent from that of VPE (Kehler and Ward, 1999).

(3) John writes plays, and Bill does novels.

2 Previous work

Hardt’s (1997) algorithm for detecting VPE in the
Penn Treebank (see Section 3) achieves precision
levels of 44% and recall of 53%, giving an F11

of 48%, using a simple search technique, which
relies on the parse annotation having identified
empty expressions correctly.

In previous work (Nielsen, 2003a; Nielsen,
2003b) we performed experiments on the British
National Corpus using a variety of machine learn-
ing techniques. These earlier results are not di-
rectly comparable to Hardt’s, due to the differ-
ent corpora used. The expanded set of results are
summarised in Table 1, for Transformation Based
Learning (TBL) (Brill, 1995), GIS based Max-
imum Entropy Modelling (GIS-MaxEnt) (Ratna-
parkhi, 1998), L-BFGS based Maximum Entropy
Modelling (L-BFGS-MaxEnt)2 (Malouf, 2002),
Decision Tree Learning (Quinlan, 1993) and
Memory Based Learning (MBL) (Daelemans et
al., 2002).

Algorithm Recall Precision F1
TBL 69.63 85.14 76.61
Decision Tree 60.93 79.39 68.94
MBL 72.58 71.50 72.04
GIS-MaxEnt 71.72 63.89 67.58
L-BFGS-MaxEnt 71.93 80.58 76.01

Table 1: Comparison of algorithms

1Precision, recall and F1 are defined as :

Recall =
No(correct ellipses found)

No(all ellipses in test)
(1)

Precision =
No(correct ellipses found)

No(all ellipses found)
(2)

F1 =
2× Precision×Recall

Precision + Recall
(3)

2Downloadable from
http://www.nlplab.cn/zhangle/maxenttoolkit.html

For all of these experiments, the training fea-
tures consisted of lexical forms and Part of Speech
(POS) tags of the words in a three word for-
ward/backward window of the auxiliary being
tested. This context size was determined empir-
ically to give optimum results, and will be used
throughout this paper. The L-BFGS-MaxEnt uses
Gaussian Prior smoothing which was optimized
for the BNC data, while the GIS-MaxEnt has a
simple smoothing option available, but this dete-
riorates results and is not used. MBL was used
with its default settings.

While TBL gave the best results, the software
we used (Lager, 1999) ran into memory problems
and proved problematic with larger datasets. Deci-
sion trees, on the other hand, tend to oversimplify
due to the very sparse nature of ellipsis, and pro-
duce a single rule that classifies everything as non-
VPE. This leaves Maximum Entropy and MBL for
further experiments.

3 Corpus description

The British National Corpus (BNC) (Leech, 1992)
is annotated with POS tags, using the CLAWS-4
tagset. A range of V sections of the BNC, contain-
ing around 370k words3 with 645 samples of VPE
was used as training data. The separate test data
consists of around 74k words4 with 200 samples
of VPE.

The Penn Treebank (Marcus et al., 1994) has
more than a hundred phrase labels, and a number
of empty categories, but uses a coarser tagset. A
mixture of sections from the Wall Street Journal
and Brown corpus were used. The training sec-
tion5 consists of around 540k words and contains
522 samples of VPE. The test section6 consists of
around 140k words and contains 150 samples of
VPE.

4 Experiments using the Penn Treebank

To experiment with what gains are possible
through the use of more complex data such as

3Sections CS6, A2U, J25, FU6, H7F, HA3, A19, A0P,
G1A, EWC, FNS, C8T

4Sections EDJ, FR3
5Sections WSJ 00, 01, 03, 04, 15, Brown CF, CG, CL,

CM, CN, CP
6Sections WSJ 02, 10, Brown CK, CR



parse trees, the Penn Treebank is used for the sec-
ond round of experiments. The results are pre-
sented as new features are added in a cumulative
fashion, so each experiment also contains the data
contained in those before it.

Words and POS tags

The Treebank, besides POS tags and category
headers associated with the nodes of the parse
tree, includes empty category information. For the
initial experiments, the empty category informa-
tion is ignored, and the words and POS tags are
extracted from the trees. The results in Table 2
are seen to be considerably poorer than those for
BNC, despite the comparable data sizes. This can
be accounted for by the coarser tagset employed.

Algorithm Recall Precision F1
MBL 47.71 60.33 53.28
GIS-MaxEnt 34.64 79.10 48.18
L-BFGS-MaxEnt 60.13 76.66 67.39

Table 2: Initial results with the Treebank

Close to punctuation

A very simple feature, that checks for auxiliaries
close to punctuation marks was tested. Table 3
shows the performance of the feature itself, char-
acterised by very low precision, and results ob-
tained by using it. It gives a 2% increase in F1 for
MBL, 3% for GIS-MaxEnt, but a 1.5% decrease
for L-BFGS-MaxEnt.

This brings up the point that the individual suc-
cess rate of the features will not be in direct cor-
relation with gains in overall results. Their contri-
bution will be high if they have high precision for
the cases they are meant to address, and if they
produce a different set of results from those al-
ready handled well, complementing the existing
features. Overlap between features can be useful
to have greater confidence when they agree, but
low precision in the feature can increase false pos-
itives as well, decreasing performance. Also, the
small size of the test set can contribute to fluctua-
tions in results.

Heuristic Baseline

A simple heuristic approach was developed to
form a baseline. The method takes all auxiliaries

Algorithm Recall Precision F1
close-to-punctuation 30.06 2.31 4.30
MBL 50.32 61.60 55.39
GIS-MaxEnt 37.90 79.45 51.32
L-BFGS-MaxEnt 57.51 76.52 65.67

Table 3: Effects of using the close-to-punctuation
feature

(SINV
(ADVP-PRD-TPC-2 (RB so) )
(VP (VBZ is)

(ADVP-PRD (-NONE- *T*-2) ))
(NP-SBJ (PRP$ its)

(NN balance) (NN sheet) ))

Figure 1: Fragment of sentence from Treebank

as possible candidates and then eliminates them
using local syntactic information in a very simple
way. It searches forwards within a short range of
words, and if it encounters any other verbs, adjec-
tives, nouns, prepositions, pronouns or numbers,
classifies the auxiliary as not elliptical. It also does
a short backwards search for verbs. The forward
search looks 7 words ahead and the backwards
search 3. Both skip ‘asides’, which are taken to be
snippets between commas without verbs in them,
such as : “... papers do, however, show ...”. This
feature gives a 4.5% improvement for MBL (Table
4), 4% for GIS-MaxEnt and 3.5% for L-BFGS-
MaxEnt.

Algorithm Recall Precision F1
heuristic 48.36 27.61 35.15
MBL 55.55 65.38 60.07
GIS-MaxEnt 43.13 78.57 55.69
L-BFGS-MaxEnt 62.09 77.86 69.09

Table 4: Effects of using the heuristic feature

Surrounding categories

The next feature added is the categories of the pre-
vious branch of the tree, and the next branch. So in
the example in Figure 1, the previous category of
the elliptical verb is ADVP-PRD-TPC-2, and the
next category NP-SBJ. The results of using this
feature are seen in Table 5, giving a 3.5% boost to
MBL, 2% to GIS-MaxEnt, and 1.6% to L-BFGS-
MaxEnt.



Algorithm Recall Precision F1
MBL 58.82 69.23 63.60
GIS-MaxEnt 45.09 81.17 57.98
L-BFGS-MaxEnt 64.70 77.95 70.71

Table 5: Effects of using the surrounding cate-
gories

Auxiliary-final VP

For auxiliary verbs parsed as verb phrases (VP),
this feature checks if the final element in the VP
is an auxiliary or negation. If so, no main verb
can be present, as a main verb cannot be followed
by an auxiliary or negation. This feature was used
by Hardt (1993) and gives a 3.5% boost to perfor-
mance for MBL, 6% for GIS-MaxEnt, and 3.4%
for L-BFGS-MaxEnt (Table 6).

Algorithm Recall Precision F1
Auxiliary-final VP 72.54 35.23 47.43
MBL 63.39 71.32 67.12
GIS-MaxEnt 54.90 77.06 64.12
L-BFGS-MaxEnt 71.89 76.38 74.07

Table 6: Effects of using the Auxiliary-final VP
feature

Empty VP

Hardt (1997) uses a simple pattern check to search
for empty VP’s identified by the Treebank, (VP
(-NONE- *?*)), which achieves 60% F1 on our
test set. Our findings are in line with Hardt’s, who
reports 48% F1, with the difference being due to
the different sections of the Treebank used.

It was observed that this search may be too re-
strictive to catch some examples of VPE in the cor-
pus, and pseudo-gapping. Modifying the search
pattern to be ‘(VP (-NONE- *?*)’ instead im-
proves the feature itself by 10% in F1 and gives
the results seen in Table 7, increasing MBL’s F1 by
10%, GIS-MaxEnt by 14% and L-BFGS-MaxEnt
by 11.7%.

Algorithm Recall Precision F1
Empty VP 54.90 97.67 70.29
MBL 77.12 77.63 77.37
GIS-MaxEnt 69.93 88.42 78.10
L-BFGS-MaxEnt 83.00 88.81 85.81

Table 7: Effects of using the improved Empty VP
feature

Empty categories

Finally, including empty category information
completely, such that empty categories are treated
as words and included in the context. Table 8
shows that adding this information results in a 4%
increase in F1 for MBL, 4.9% for GIS-MaxEnt,
and 2.5% for L-BFGS-MaxEnt.

Algorithm Recall Precision F1
MBL 83.00 79.87 81.41
GIS-MaxEnt 76.47 90.69 82.97
L-BFGS-MaxEnt 86.27 90.41 88.29

Table 8: Effects of using the empty categories

5 Experiments with Automatically
Parsed data

The next set of experiments use the BNC and
Treebank, but strip POS and parse information,
and parse them automatically using two different
parsers. This enables us to test what kind of per-
formance is possible for real-world applications.

5.1 Parsers used

Charniak’s parser (2000) is a combination prob-
abilistic context free grammar and maximum en-
tropy parser. It is trained on the Penn Treebank,
and achieves a 90.1% recall and precision average
for sentences of 40 words or less.

Robust Accurate Statistical Parsing (RASP)
(Briscoe and Carroll, 2002) uses a combination of
statistical techniques and a hand-crafted grammar.
RASP is trained on a range of corpora, and uses
a more complex tagging system (CLAWS-2), like
that of the BNC. This parser, on our data, gener-
ated full parses for 70% of the sentences, partial
parses for 28%, while 2% were not parsed, return-
ing POS tags only.

5.2 Reparsing the Treebank

The results of experiments using the two parsers
(Table 9) show generally similar performance.
Compared to results on the original treebank with
similar data (Table 6), the results are 4-6% lower,
or in the case of GIS-MaxEnt, 4% lower or 2%
higher, depending on parser. This drop in per-
formance is not surprising, given the errors in-
troduced by the parsing process. As the parsers



do not generate empty-category information, their
overall results are 14-20% lower, compared to
those in Table 8.

The success rate for the features used (Table
10) stay the same, except for auxiliary-final VP,
which is determined by parse structure, is only half
as successful for RASP. Conversely, the heuristic
baseline is more successful for RASP, as it relies
on POS tags, which is to be expected as RASP has
a more detailed tagset.

Feature Rec Prec F1
Charniak close-to-punct 34.00 2.47 4.61

heuristic baseline 45.33 25.27 32.45
auxiliary-final VP 51.33 36.66 42.77

RASP close-to-punct 71.05 2.67 5.16
heuristic baseline 74.34 28.25 40.94
auxiliary-final VP 22.36 25.18 23.69

Table 10: Performance of features on re-parsed
Treebank data

5.3 Parsing the BNC

Experiments using parsed versions of the BNC
corpora (Table 11) show similar results to the orig-
inal results (Table 1) - except L-BFGS-MaxEnt
which scores 4-8% lower - meaning that the added
information from the features mitigates the errors
introduced in parsing. The performance of the fea-
tures (Table 12) remain similar to those for the re-
parsed treebank experiments.

Feature Rec Prec F1
Charniak close-to-punct 48.00 5.52 9.90

heuristic baseline 44.00 34.50 38.68
auxiliary-final VP 53.00 42.91 47.42

RASP close-to-punct 55.32 4.06 7.57
heuristic baseline 84.77 35.15 49.70
auxiliary-final VP 16.24 28.57 20.71

Table 12: Performance of features on parsed BNC
data

5.4 Combining BNC and Treebank data

Combining the re-parsed BNC and Treebank data
diversifies and increases the size of the test data,
making conclusions drawn empirically more reli-
able, and the wider range of training data makes
it more robust. This gives a training set of 1167
VPE’s and a test set of 350 VPE’s. The results
in Table 13 show little change from the previous
experiments.

6 Conclusion and Future work

This paper has presented a robust system for VPE
detection. The data is automatically tagged and
parsed, syntactic features are extracted and ma-
chine learning is used to classify instances. Three
different machine learning algorithms, Memory
Based Learning, GIS-based and L-BFGS-based
maximum entropy modeling are used. They give
similar results, with L-BFGS-MaxEnt generally
giving the highest performance. Two parsers were
used, Charniak’s and RASP, achieving similar re-
sults.

To summarise the findings :

• Using the BNC, which is tagged with a com-
plex tagging scheme but has no parse data, it
is possible to get 76% F1 using lexical forms
and POS data alone

• Using the Treebank, the coarser tagging
scheme reduces performance to 67%.
Adding extra features, including sentence-
level ones, raises this to 74%. Adding empty
category information gives 88%, compared
to previous results of 48% (Hardt, 1997)

• Re-parsing the Treebank data , top perfor-
mance is 63%, raised to 68% using extra fea-
tures

• Parsing the BNC, top performance is 71%,
raised to 72% using extra features

• Combining the parsed data, top performance
is 67%, raised to 71% using extra features

The results demonstrate that the method can be
applied to practical tasks using free text. Next,
we will experiment with an algorithm (Johnson,
2002) that can insert empty-category information
into data from Charniak’s parser, allowing replica-
tion of features that need this. Cross-validation ex-
periments will be performed to negate the effects
the small test set may cause.

As machine learning is used to combine vari-
ous features, this method can be extended to other
forms of ellipsis, and other languages. However,
a number of the features used are specific to En-
glish VPE, and would have to be adapted to such
cases. It is difficult to extrapolate how successful



MBL GIS-MaxEnt L-BFGS-MaxEnt
Rec Prec F1 Rec Prec F1 Rec Prec F1

Charniak Words + POS 54.00 62.30 57.85 38.66 79.45 52.01 56.66 71.42 63.19
+ features 58.00 65.41 61.48 50.66 73.78 60.07 65.33 72.05 68.53

RASP Words + POS 55.92 66.92 60.93 43.42 56.89 49.25 51.63 79.00 62.45
+ features 57.23 71.31 63.50 61.84 72.30 66.66 62.74 73.84 67.84

Table 9: Results on re-parsed data from the Treebank

MBL GIS-MaxEnt L-BFGS-MaxEnt
Rec Prec F1 Rec Prec F1 Rec Prec F1

Charniak Words + POS 66.50 63.63 65.03 55.00 75.86 63.76 71.00 70.64 70.82
+ features 67.50 67.16 67.33 65.00 75.58 69.89 71.00 73.19 72.08

RASP Words + POS 61.92 63.21 62.56 64.46 54.04 58.79 65.34 70.96 68.04
+ features 71.06 73.29 72.16 73.09 61.01 66.51 70.29 67.29 68.76

Table 11: Results on parsed data from the BNC

MBL GIS-MaxEnt L-BFGS-MaxEnt
Rec Prec F1 Rec Prec F1 Rec Prec F1

Charniak Words + POS 62.28 69.20 65.56 54.28 77.86 63.97 65.14 69.30 67.15
+ features 65.71 71.87 68.65 63.71 72.40 67.78 70.85 69.85 70.35

RASP Words + POS 63.61 67.47 65.48 59.31 55.94 57.37 57.46 71.83 63.84
+ features 68.48 69.88 69.17 67.61 71.47 69.48 70.14 72.17 71.14

Table 13: Results on parsed data using the combined dataset

such approaches would be based on current work,
but it can be expected that they would be feasible,
albeit with lower performance.
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