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Abstract each of the component engines. Brown and Fred-

The paper describes a particular approach to muIti(-erking (1995) is a continuation of Frederking and

engine machine translation (MEMT), where we Nirenburg (1994) with an "’.‘dd't'on of a ngram-
make use of voted language models to selectivel ased mechanlsmforacandldat'e selectlpn. Nomoto
combine translation outputs from multiple off-the- 2003), however, gxplores a different line of re-
shelf MT systems. Experiments are done usin earch whose goal is to combine black box MTs us-

large corpora from three distinct domains. The ng statistical confidence models. Similar efforts are

study found that the use of voted language model§lISO found in Akiba etal. _(2002)' )
leads to an improved performance of MEMT sys- The present paper builds on the prior work by

tems. Nomoto (2003). We start by reviewing his ap-
proach, and go on to demonstrate that it could be im-

1 Introduction proved by capitalizing on dependence of the MEMT
model there on language model. Throughout the

As the Internet grows, an increasing number of
t

. . ) ypaper, we refer to commercial black box MT sys-
commercial MT systems are getting on line readyiams as OTS (off-the-shelf) systems, or more sim-
to serve anyone anywhere on the earth. An inter

esting question we might ponder is whether it is notply’ OTSs.

possible to aggregate the vast number of MT sys-

tems available on the Internet into one super MT2 Confidence Models

which surpasses in performance any of those MTs i i i

that comprise the system. And this is what we Ve take it here that the business of MEMT is about

will be concerned with in the paper, with somewhat€hoosing among translation outputs from muItipIe
watered-down settings. MT systems, whether black t_)ox or not, for each in-
People in the speech community pursued the ideBUt text. Therefore the questl_on we want to address
of combining off-the-shelf ASRs (automatic speech!S: Now do we go about choosing among MT outputs
recognizers) into a super ASR for some time, and© that we end up with a best one?
found that the idea works (Fiscus, 1997; Schwenk What we propose to do is to use some confidence
and Gauvain, 2000; Utsuro et al., 2003). In IR (in-models for translations generated by OTSs, and let
formation retrieval), we find some efforts going (un- them decide which one we should pick. We essen-
der the name of distributed IR or meta-search) to setially work along the lines of Nomoto (2003). We
lectively fuse outputs from multiple search enginesreview below some of the models proposed there,
on the Internet (Callan et al., 2003). So it would betogether with some motivation behind them.
curious to see whether we could do the same with Confidence models he proposes come in two va-
MTs. rieties: Fluency based model (FLM) and Alignment
Now back in machine translation, we do find based model (ALM), which is actually an extension
some work addressing such concern: Frederkingf FLM. Now suppose we have an English sentence
and Nirenburg (1994) develop a multi-engine MT e and its Japanese translatiprgenerated by some
or MEMT architecture which operates by com- OTS. (One note here: throughout the paper we work
bining outputs from three different engines basedon English to Japanese translation.) FLM dictates
on the knowledge it has about inner workings ofthat the quality ofj as a translation o be deter-



mined by: SVR looks something like this.
FLM(e, j) = log Py(j) (1) h(T) =0T+,

P,(j) is the probability ofj under a particular lan- With input dataz = (x1,...,z,) and the corre-
guage model (LM).1 What FLM says is that the sponding weightsi = (w1, ...,wy). ‘= -y’ de-
quality of a translation essentially depends on its loghotes the inner product efandy. # could be a set
likelihood (or fluency) and has nothing to do with of features associated withand j. Parametersj
what it is a translation of. andb are something determined by SVR.

ALM extends FLM to include some information Itis Straightforward to extend the ALM and FLM
on fidelity. That is, it pays some attention to how With SVR, which merely consists of plugging in ei-
faithful a translation is to its source text. ALM does ther model as an input variable in the regressor. This
this by using alignment models from the statisticalwould give us the following two SVR models with
machine translation literature (Brown et al., 1993).m = 1.

Here is what ALM looks like. Regressive FLM (rFLM)

ALM(e, j) = log Fi(j)Q(e | j) h(FLM(e,j)) = w1 - FLM(e,j) +b

Q(e | j) is the probability estimated using IBM Regressive ALM (rALM)

Model 1. ALM takes into account the fluency of

a translation output (given b, (j)) and the degree h(ALM(e,j)) = w1 - ALM(e,j)+b

of association betweenand; (given byQ(e | j)),

which are in fact two features generally agreed inNotice thath(-) here is supposed to relate FLM or

the MT literature to be most relevant for assessingA\LM to some independent evaluation metric such

the quality of translations (White, 2001). asBLEU (Papineni et al., 2002), not the log likeli-
One problem with FLM and ALM is that they fail hood of a translation.

to take into account the reliability of an OTS sys- With confidence models in place, define a MEMT

tem. As Nomoto (2003) argues, it is reasonable tgnodel¥ by:

believe that some MT systems could inherently be

more prone to error and outputs they produce tend Y(e, J,1) = arg max ;(6(e, j | 1))

to be of less quality than those from other systemsH
no matter what the outputs’ fluency or translation™1€ree represents a source sententa,set of trans-

probability may be. ALM and FLM work solely Iationsfore generated by OTSs, afidlenotes some
on statistical information that can be gathered fromfonfidence model under an L# Throu%hout the
source and target sentences, dismissing any operiSt Of the paper, we let FLMand ALM” denote

tional bias that an OTS might have on a particula™EMT systems based on FLM and ALM, respec-
task. tively, and similarly for others.

Nomoto (2003) responds to the problem by intro- .
ducing a particular regression model known as Sup?’ Notes on Evaluation
port Vector regression (SVR), which enables him toWe assume here that the MEMT works on a
exploit bias in performance of OTSs. What SVR sentence-by-sentence basis. That is, it takes as in-
is intended to do is to modify confidence scoresput a source sentence, gets it translated by several
FLM and ALM produce for MT outputs in such a OTSs, and picks up the best among translations it
way that they may more accurately reflect their in-gets. Now a problem with usingLEU in this setup
dependent evaluation involving human translationds that translations often end up with zero because
or judgments. SVR is a multi-dimensional regres-model translations they refer to do not contain n-
sor, and works pretty much like its enormously pop-grams of a particular lengthThis would make im-
ular counterpart, Support Vector classification, ex-ossible a comparison and selection among possible
cept that we are going to work with real numbers fortranslations.

target values and construct the margin, using Vap=2cir aiidity study ofsLeu, Reeder and White (2003)

nik’s e-insensitive loss function (Sékkopf et al.,  finds that its correlation with human judgments increases with

1998). the corpus size, and warns that to get a reliable scoretLipv,

one should run it on a corpus of at least 4,000 words. Also Tate
'Note thatP; (j) = P(1) [T P(w; | wi—2,wi—1,1) where  etal. (2003) reports about some correlation betwaezu and

j = w1 - wm. Assume a uniform prior fok. task based judgments.




One way out of this, Nomoto (2003) suggests,didates.d(¢'"") gives the average ratio of the times
is to back off to a somewhat imprecise yet robust))™ hits a right translation. Let us call(y"™) HF
metric for evaluating translations, which he cafls ~ accuracy(HFA) for the rest of the paper.
precision® The idea of m-precision helps define
what an optimal MEMT should look like. Imagine 4 LM perplexity and MEMT performance

3_§yftem v;/hlchlotperattﬁst by choozlngt, among caryq; the guestion we are interested in asking is
dates, a transiation that gives a best M-precision; u o ner the choice of LM really matters. That is,
We would reasonably expect the system to OUtPery e 4 particular choice of LM gives a better per-
Eorm a)mcyl/ of its component OTITC.s.hIndeed Eomomforming FLMY or ALM? than something else, and
2003) demonstrates empirically that it is the case,, . . r
Moreover, since rELM and rALM? work on a sen- if it does, do we have a systematic way of choosing

?
tence, not on a block of them, whiat.) relates to is Onl?el;hljlso‘s/'?arr?r\:v?:m;]é first question. As a way of
notBLEU, but m-precision. q : y

Hoga and Frederking (1968) invoduces a neIS07 S0 97107 e S e an L0
kind of yardstick for measuring the effectiveness g y ’

of MEMT systems. The rationale for this is that domains \.Nith varying amounF of training daFa. We
it is often the case that the efficacy of MEMT sys- worked with .24 LMs f_rom various genres, with vo-

tems does not translate into performance of output abulary of size ranging from somewhere near 10K
that they generate. We recall that wiheu, one 0 20K in words (see below and also Appendix A

measures performance of translations, not how ofg)nr dds:zgfe?jnut’iir:n zitz).eLnMSSoE?crz sree(ter(l:%r?er?::aﬁizgn

ten a given MEMT system picks the best translation,[Ool CalledJULIUSg4 P P 9

among candidates. The problem is, even ifa MEMT ) ' ,
Now train data for LMs are collected from five

is right about its choices more often than a best com- .
ponent engineBLEU may not show it. This happens C?lr<p|\c/l)zil’ ]:Nh'chh we lzeferfto as CI.DC' E‘JP&:E?‘:T’. LIT,
because a best translation may not always get a hi or the sake of convenience. CPC Is a
score inBLEU. Indeed, differences iBLEU among uge set of semi-automatically aligned pairs of En-
candidate translations could be very small. glish and Japanese texts from a Japanese news pa-

N hat H d Erederking (1998 er which contains as many as 150,000 sentences
is chV}IOVI\IIO\?\.IingOgan and Frederking ( ) sugges Utiyama and Isahara, 2002), EJP represents a rel-

atively small parallel corpus of English/Japanese

N s(m phrases (totaling 15,187) for letter writing in busi-
) e1 " Oe ; . -
(™) = 2 OWWiey max{oe, -+ oey }) ness (Takubo and Hashimoto, 1999), PAT is a bilin-
N gual corpus of 336,971 abstracts from Japanese

patents filed in 1995, with associated translations
in English (a.k.a NTCIR-3 PATENT)LIT contains

100 Japanese literary works from the early 20th cen-
tury, and NIKMAI 1,536,191 sentences compiled
from several Japanese news paper sources. Both

wherej(i, j) is the Kronecker delta function, which
gives 1 ifi = j and O otherwise. Heré™ rep-
resents some MEMT systenng) denotes a par-
ticular translationy)™ chooses for sentencg i.e.,

m j—
vie = ,\P(e’ U Oy ---Oey € J Qenotes aSel | |T and NIKMAI are monolingual.
of candidate translationsnax here gives a transla- Fig.1 gives a plot of HF accuracy by perplexity
tion with the highest score in m-precisiof. is the for FLM?’s on test sets pulled out of PAT, EJP and

number of source sentencel:) says that you get cpc6 Each dot there represents an FEMith a
1 if a particular translation the MEMT chooses foragarticular LM plugged into it. TheiFa of each

given sentences happens to rank highest among capy v i Fig.1 represents a 10-fold cross validated

3For a reference translation and a machine-generated HFA score, namely amiFA averaged over evenly-
translationt, m-precisionis defined as:

“http://julius.sourceforge.jp

. Y D vesi Clv,r) 5A bibliographic note. NTCIR-3 PATENT: NII Test Col-
m-precision= Z > vegi Cut)’ lection for Information Retrieval Systems distributed through
‘ vest National Institute of Informatics (www.nii.ac.jp).
which is nothing more than Papineni et al. (2002)isdified 5A test set from EJP and CPC each contains 7,500 bilingual
n-gram precisiorapplied to a pair of a single reference and the sentences, that from PAT contains 4,600 bilingual abstracts (ap-
associated translationS; here denotes a set ofgrams int, proximately 9,200 sentences). None of them overlaps with the
v ani-gram. C(v,t) indicates the count of in . Nomoto  remaining part of the corresponding data set. Relevant LMs are
(2003) finds that m-precision strongly correlates wstteu, built on Japanese data drawn from the data sets. We took care

which justifies the use of m-precision as a replacement afs not to train LMs on test sets. (See Section 6 for further details.)
at the sentence level.
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Figure 1: HF accuracy-by-perplexity plots for Fl¥Mwith four OTSs, Ai, Lo, At, Ib, on PAT (left), CPC
(center) and EJP (right). Dots represent F{2Mwith various LMs .

split 10 blocks of a test set. The perplexity is that

of P,(j) a}veraged over blopks, with a particular LM M. S represents a set of OTS systeniisa set of

plugged in forl (see Equation 1). language modeld! is some confidence model such
We can see there an apparent tendency for an L )FLM or (NALM. V-by-M chooses a most-voted-

W.ith lower p_erp_lexi.ty to give rise to_ an FLNMwith for LM among those in., given the set/ of trans-
higherHFa, indicating that the choice of LM does lations fore ’

indeed influence the performance of FEMWhich

is somewhat surprising given that the perplexity of

a machine generated translation shouldrigepen-  MEMT(e,S,L)

dent of how similar it is to a model translation, pegin

which dictates theira.’ J = {j | j is atranslation ot generated by < S.}
Now let us turn to the question of whether therel = V-by-M(J, L)

is any systematic way of choosing an LM so thatj, = arg max.;(6(e,j | 1))

it gives rise to a FLM with high HFA. Since we  return Ik

are working with multiple OTS systems here, weend

get multiple outputs for a source text. Our idea

is to let them vote for an LM to plug into FLNI

or for that matter, any other forms of MEMT dis-

cussed earlier. Note that we could take an alternate

approach of letting a model (or human) translatlonup an LM voted for by the majority. More specif-

(associated with a source text) pick an LM by alone.. ! . .
An obvious problem with this approach, however, ically, for each output translation for a given input,

is that a mandatory reference to model translationg\':r ﬂlr:;itp Icznlfjpoirt] (;‘hgh\évgécrh/?éviig tri]szr;?liite
would compromise the robustness of the approach pexity, ' X y

We would want the LM to work for MEMT regard- majority of translations will be plugged into MEMT.

less of whether model translations are available. Sé\i/ri Cﬁ”&‘g :c,'\e/lleitt;c;nvs_ Ehi\rﬂnigﬁg;%'?g'mgiﬁg?égr
our concern here is more with choosing an LM in Ply V-Dy-M. y

theabsenceof model translations, to which we will by the results in Fig.1, Whe.re perplexity is found to
return below. be a reasonably good predictoriefA.

Formally, we could put the V-by-M scheme as
follows. For each of the translation outpyts . . j;,
associated with a given input sentercgve want to
We consider here a simple voting scheraela find some LMM from a setL of LMs such that:
ROVER (Fiscus, 1997; Schwenk and Gauvain,

2000; Utsuro et al., 2003), which works by picking M; = arg min,, ., PP(j¢ | m),

Table 1: A MEMT algorithm implementing V-by-

5 Voting Language Model

"Recall that theira does not represent the confidence score . . . .
such as one given by FLM (Equation 1), but the average ratioWherePP(] | m) is the perplexity ofj U'QdeI'?.?;L.
of the times that an MEMT based on FLM picks a translation NOW assuméwl oMy are such LMs fopiy . .. j;.
with the best m-precision. Then we pick up anV/ with the largest frequency



and plug itinto? _SUCh as FLM: Table 2: HF accuracy of MEMT models with V-by-
Suppose, for instance, thad,, M, M, andM. .

are lowest perplexity LMs found for translations

Ji.35.95 andjg, respectively. Then we choosgd, Model tCPC tEJP tPAT avg.
as an LM most voted for, because it gets two votes rFLMY 0.4230 0.4510 0.8066 0.5602
from j{ andj5, meaning thatV/, is nominated as  rALMY 0.4194 0.4346 0.8093 0.5544
an LM with lowest perplexity byj and j§, while FLM¥ 0.4277 0.4452 0.7342 0.5357
M, and M, each collect only one vote. Incase of A MY 04453 04485 07702 0.5547
ties, we randomly choose one of the LMs with the

largest count of votes.

i Table 3: HF accuracy of MEMT models with ran-
6 Experiment Setup and Procedure domly chosen LMs. Note how FLMand ALMY

i . drop in performance.
Let us describe the setup of experiments we have pinp

conducted. The goal here is to learn how the V- Model tCPC {EIP {PAT avg

by-M affects the overall MEMT performance. For [FLM? 04207 04186 0.8011 O 5468

xperiments (see Foofnote 8. Section &) which are ALM* 04194 04321 08095 05537
] y w

derived from CPC, EJP, and PAT. (Call themtCPC, | "M g-‘%ég 82530 8-2252 8-4862

tEJP, and tPAT hereafter.) ALM 4 .3597 0.687 494

In experiments, we begin by splitting a test set
into equal-sized blocks, each containing 500 sen- _ _
tences for tEJP and tCPC, and 100 abstracts (ap? Results and Discussion
proximately 200 sentences) for tPATWe had the -
total of 15 blocks for tCPC and tEJP, and 46 bIocks\%Zerr: utﬁ : el\j I\évl\})l‘?ll.t \(’)Vr? f: lf[ggtfrseT wi(tahe)((sgtmeg:&

for tPAT. V\_/e_Ieave_ one for evaluathn and use the(r)ALM embedded in it. Recall that our goal here
rest for training alignment models, i.&(e | j),

SV regressors and some inside-data LMs. (Agair'ﬁlé?\ﬂllngnrlocvgéh%z\g_gyéwd?gz.?ts performance of

we took care not to inadvertently train LMs on test
sets.) We send a test block to OTSs A, Lo, At, and
Ib, for translation and combine their outputs using
the V-by-M scheme, which may or may not be cou-
pled with regression SVMs. Recall that the MEMT
operates on a sentence by sentence basis. Sow
happens here is that for each of the sentences in
block, the MEMT works the four MT systems to

get translations and picks one that produces the be
score unde#.

We evaluate the MEMT performance by run-
ning HFA andBLEU on MEMT selected translations ¢,
block by block!® and giving average performance
over the blocks. Table 1 provides algorithmic de-

tails on how the MEMT actually operates. “Another interesting question to ask at this point is, how
does one huge LM trained across domains compare to the V-
by-M here? By definition of perplexity, the increase in size of
. . s ) the training data leads to an increase in perplexity of the LM.
lends itself to a mixture modeP(7) = 3_,cpr AmP(G [ M)  gq it general observations in Fig.1 hold, then we would expect
where),,, = 1 if m is most voted for and 0 otherwise. the “one-huge-LM" approach to perform poorly compared to
®tCPC had the average of 15,478 words per block, wherea ioh ic i ;

g , per block, the V-by-M, which is indeed demonstrated by the following
tEJP had about 11,964 words on the average in each blockegts HFLM below denotes a FLM based on a composite
With tPAT, however, the average per block word Iength greWLM trained over CPC, LIT, PAT, NIKMAI, and EJP. The testing

First, we look at whether the V-by-M affects in
any way, thedFa of the MEMT, and if it does, then
how much. Table 2 and Table 3 give summaries of
results onHFA versus V-by-M. Table 2 shows how
Qi[ngs are with V-by-M on, and Table 3 shows what

appens taiFA when we turn off V-by-M, that is,
when we randomly choose an LM from the same set
EQat the V-by-M chooses from. The results indicate
a clear drop in performance of FLMand ALMY
when one chooses an LM randomly.

Curiously, however, rFLM and rALMY are af-
cted less. They remain roughly at the same level
of HFA over Table 2 and Table 3. What this means

81t is worth noting that the voted language model readily

to 506’150- procedure is same as that described in Sec.6
We evaluate performance by block, because of some re-  \jodel tCPC tEJP tPAT avg.
ports in the MT literature that warn that Eu behaves errati- HFLMY (HFA) 04182 04081 06927 05063

cally on a small set of sentences (Reeder and White, 2003). See HFLM? (BLEU) 0.1710 0.2619 0.1874 0.2067
also Section 3 and Footnote 2 for the relevant discussion. ' ' ' '



Table 4. Performance iBLEU of MEMT models Table 7: Performance of OTS systemsirEuU.
with V-by-M.
Model tCPC  tEJP tPAT avg.

Model tCPC tEJP tPAT avg. Ai 0.1495 0.2874 0.1385 0.1918
rELMY  0.1743 0.2861 0.1954 0.2186 Lo 0.1440 0.1711 0.1402 0.1518
rALMY 0.1735 0.2869 0.1954 0.2186 At 0.1738 0.1518 0.1959 0.1738

FLMY 0.1736 02677 0.1907 0.2107 Ib 0.1385 0.1589 0.1409 0.1461
ALMY 0.1763 0.2622 0.1934 0.2106 OPM 0.2111 0.3308 0.1995 0.2471

Table 5: Performance iBLEU of MEMT models Leaving the issue of MEMT models momentar-
with randomly chosen LMs. ily, let us see how the OTS systems Ai, Lo, At, and

Ib are doing on tCPC, tEJP, and tPAT. Note that the
Model tCPC tEJP tPAT avg. whole business of MEMT would collapse if it slips
rELMY 0.1738 0.2717 0.1950 0.2135 behind any of the OTS systems that compose it.
rALMY 0.1735 0.2863 0.1954 0.2184 Table 6 and Table 7 show performance of the
FLM¥ 0.1710 0.2301 0.1827 0.1946 four OTS systems plus OPM, FA and byBLEU.
ALMY 0.1745 0.2286 0.1871 0.1967 OPM here denotes an oracle MEMT which operates
by choosing in hindsight a translation that gives the
best score in m-precision, among those produced

. . . , . by OTSs. It serves as a practical upper bound for
is that there is some discrepancy in the effectivejemT while OTSs serve as baselines.

ness Qf V-by-M between the fluency based and re- First, let us look at Table 6 and compare it to Ta-
gression based models. We have no explanation fcgIe 5 A good news is that most of the OTS Svs-
the cause of the discrepancy at this time, though we - A9 y

may suspect that in learning, as long as there is some, do not even come close to the MEMT mod-
y Susp - 9. 9 >OM&s. At, a best performing OTS system, gets 0.4643
pattern to exploit in m-precision and the probability

) n the average, which is about 20% less than that
estimates of test sentences, how accurate those es(sfl-

mates are mav not matter much cored by rFLM. Turning toBLEU, we find again
Table 4 dyT ble 5 ai 'It . 12 Th in Table 7 that a best performing system among the
resatseten?jnto erl?catgl\\:\?h;?Svl\J/esfﬂo‘tig.wi{iP;Ae OTSs, i.e., A is outperformed by FLK ALM *
: Il thei ieties (Table 4). Al hi f
(FLM? and rALM? keep the edge over FLWI and all their varieties (Table 4). Also something o

i Y
and ALMY whether or not V-by-M is brought into note here s that on tPAT, (NFLMand (NALM

action. The differences in performance beMeer‘Ln Table 4, which operate by the V-by-M scheme,
; X : h f .1907 to 0.1954Bi ,
rFLMY and rALMY with or without the V-by-M core somewhere from 0.1907 to 0.195/BIrEU

- ; coming close to OPM, which scores 0.1995 on tPAT
scheme are rather negligible. However, if we turn

to FLMY and ALMY, the effects of the V-by-M are (Table 7). _ .
clearly visible. FLM scores 0.2107 when coupled Itis Interesting to note, incidentally, th"?‘t there is
with the V-by-M. However, when disengaged, the SOMe discrepancy betweemEU and HFA in per-

score slips to 0.1946. The same holds for ALM formance of the OTSs: A top performing OTS in
Table 6, namely At, achieves the averagen of

0.4643, but scores only 0.1738 fBreu (Table 7),

Table 6: HF accuracy of OTS systems which is worse than what Ai gets. Apparently,
high HFA does not always mean a highEu score.
Model tCPC tEJP tPAT avg. Why? The reason is that a best MT output need
Al 02363 0.4319 0.0921 0.2534 not mark a highsLEU score. Notice that ‘best’ here

Lo 01718 0.2124 0.0504 0.1449 Means the best among translations by the OTSs. It
At 04211 0.1681 08037 0.4643 could happen that a poor translation still gets chosen
b 0.1707 0.1876 0.0537 0.1373 as best, because other translations are far worse.
OPM__ 1.0000 1.0000 1.0000 1.0000 To return to the discussion of (r)FL# and
(NALM ¥, an obvious fact about their behavior is
that regressor based systems rPLNd rALMY,
12The measurements BLEU here take into account up to Whether V-by-M enabled or not, surpass in per-
trigrams. formance their less sophisticated counterparts (see




Table 8: HF accuracy of MEMTs with perturbed SV by a respectable margin (cf., Tables 4, 7 bueu,

regressor in the V-by-M scheme 2, 6 Tor HFA).
9 y ' Regressive MEMTs such as rFLl*Mand rALM?,
Model tCPC tEIP tPAT avg. are found to be not affected as much by the choice

of LM as their non-regressive counterparts. We sus-
pect this happens because they have access to ex-
tra information on the quality of translation derived
from human judgments or translations, which may
cloud effects of LMs on them. But we also pointed
out that regressive models work well only when they
are trained on right data; if you train them across
Table 9: Performance iBLEU of MEMTs with per-  different sources of varying genres, they could fail.

rFLMY 0.4230 0.4353 0.6712 0.5098
rALMY 0.4195 0.4302 0.5582 0.4693
FLMY 0.4277 0.4452 0.7342 0.5357
ALM?¥ 0.4453 0.4485 0.7702 0.5547

turbed SV regressor in the V-by-M scheme. An interesting question that remains to be ad-
dressed is how we might deal with translations from
Model tCPC tEJP tPAT avg. a novel domain. One possible approach would be

rELMY 0.1743 0.2823 0.1835 0.2134 to use a dynamic language model which adapts it-
rALMY 0.1736 0.2843 0.1696 0.2092 self for a new domain by re-training itself on data
FLMY 0.1736 0.2677 0.1907 0.2107 sampled from the Web (Berger and Miller, 1998).

ALMY 0.1763 0.2622 0.1934 0.2106
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