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Abstract

The paper describes a particular approach to multi-
engine machine translation (MEMT), where we
make use of voted language models to selectively
combine translation outputs from multiple off-the-
shelf MT systems. Experiments are done using
large corpora from three distinct domains. The
study found that the use of voted language models
leads to an improved performance of MEMT sys-
tems.

1 Introduction

As the Internet grows, an increasing number of
commercial MT systems are getting on line ready
to serve anyone anywhere on the earth. An inter-
esting question we might ponder is whether it is not
possible to aggregate the vast number of MT sys-
tems available on the Internet into one super MT
which surpasses in performance any of those MTs
that comprise the system. And this is what we
will be concerned with in the paper, with somewhat
watered-down settings.

People in the speech community pursued the idea
of combining off-the-shelf ASRs (automatic speech
recognizers) into a super ASR for some time, and
found that the idea works (Fiscus, 1997; Schwenk
and Gauvain, 2000; Utsuro et al., 2003). In IR (in-
formation retrieval), we find some efforts going (un-
der the name of distributed IR or meta-search) to se-
lectively fuse outputs from multiple search engines
on the Internet (Callan et al., 2003). So it would be
curious to see whether we could do the same with
MTs.

Now back in machine translation, we do find
some work addressing such concern: Frederking
and Nirenburg (1994) develop a multi-engine MT
or MEMT architecture which operates by com-
bining outputs from three different engines based
on the knowledge it has about inner workings of

each of the component engines. Brown and Fred-
erking (1995) is a continuation of Frederking and
Nirenburg (1994) with an addition of a ngram-
based mechanism for a candidate selection. Nomoto
(2003), however, explores a different line of re-
search whose goal is to combine black box MTs us-
ing statistical confidence models. Similar efforts are
also found in Akiba et al. (2002).

The present paper builds on the prior work by
Nomoto (2003). We start by reviewing his ap-
proach, and go on to demonstrate that it could be im-
proved by capitalizing on dependence of the MEMT
model there on language model. Throughout the
paper, we refer to commercial black box MT sys-
tems as OTS (off-the-shelf) systems, or more sim-
ply, OTSs.

2 Confidence Models

We take it here that the business of MEMT is about
choosing among translation outputs from multiple
MT systems, whether black box or not, for each in-
put text. Therefore the question we want to address
is, how do we go about choosing among MT outputs
so that we end up with a best one?

What we propose to do is to use some confidence
models for translations generated by OTSs, and let
them decide which one we should pick. We essen-
tially work along the lines of Nomoto (2003). We
review below some of the models proposed there,
together with some motivation behind them.

Confidence models he proposes come in two va-
rieties: Fluency based model (FLM) and Alignment
based model (ALM), which is actually an extension
of FLM. Now suppose we have an English sentence
e and its Japanese translationj generated by some
OTS. (One note here: throughout the paper we work
on English to Japanese translation.) FLM dictates
that the quality ofj as a translation ofe be deter-



mined by:

FLM(e, j) = logPl(j) (1)

Pl(j) is the probability ofj under a particular lan-
guage model (LM)l.1 What FLM says is that the
quality of a translation essentially depends on its log
likelihood (or fluency) and has nothing to do with
what it is a translation of.

ALM extends FLM to include some information
on fidelity. That is, it pays some attention to how
faithful a translation is to its source text. ALM does
this by using alignment models from the statistical
machine translation literature (Brown et al., 1993).
Here is what ALM looks like.

ALM(e, j) = logPl(j)Q(e | j)

Q(e | j) is the probability estimated using IBM
Model 1. ALM takes into account the fluency of
a translation output (given byPl(j)) and the degree
of association betweene andj (given byQ(e | j)),
which are in fact two features generally agreed in
the MT literature to be most relevant for assessing
the quality of translations (White, 2001).

One problem with FLM and ALM is that they fail
to take into account the reliability of an OTS sys-
tem. As Nomoto (2003) argues, it is reasonable to
believe that some MT systems could inherently be
more prone to error and outputs they produce tend
to be of less quality than those from other systems,
no matter what the outputs’ fluency or translation
probability may be. ALM and FLM work solely
on statistical information that can be gathered from
source and target sentences, dismissing any opera-
tional bias that an OTS might have on a particular
task.

Nomoto (2003) responds to the problem by intro-
ducing a particular regression model known as Sup-
port Vector regression (SVR), which enables him to
exploit bias in performance of OTSs. What SVR
is intended to do is to modify confidence scores
FLM and ALM produce for MT outputs in such a
way that they may more accurately reflect their in-
dependent evaluation involving human translations
or judgments. SVR is a multi-dimensional regres-
sor, and works pretty much like its enormously pop-
ular counterpart, Support Vector classification, ex-
cept that we are going to work with real numbers for
target values and construct the margin, using Vap-
nik’s ε-insensitive loss function (Schölkopf et al.,
1998).

1Note thatPl(j) = P (l)
Qm
i P (wi | wi−2, wi−1, l) where

j = w1 · · ·wm. Assume a uniform prior forl.

SVR looks something like this.

h(~x) = ~w · ~x+ b,

with input data~x = (x1, . . . , xm) and the corre-
sponding weights~w = (w1, . . . , wm). ‘x · y’ de-
notes the inner product ofx andy. ~x could be a set
of features associated withe andj. Parameters~w
andb are something determined by SVR.

It is straightforward to extend the ALM and FLM
with SVR, which merely consists of plugging in ei-
ther model as an input variable in the regressor. This
would give us the following two SVR models with
m = 1.

Regressive FLM (rFLM)

h(FLM(e, j)) = w1 · FLM(e, j) + b

Regressive ALM (rALM)

h(ALM(e, j)) = w1 ·ALM(e, j) + b

Notice thath(·) here is supposed to relate FLM or
ALM to some independent evaluation metric such
as BLEU (Papineni et al., 2002), not the log likeli-
hood of a translation.

With confidence models in place, define a MEMT
modelΨ by:

Ψ(e, J, l) = arg maxj∈J(θ(e, j | l))

Heree represents a source sentence,J a set of trans-
lations fore generated by OTSs, andθ denotes some
confidence model under an LMl. Throughout the
rest of the paper, we let FLMψ and ALMψ denote
MEMT systems based on FLM and ALM, respec-
tively, and similarly for others.

3 Notes on Evaluation
We assume here that the MEMT works on a
sentence-by-sentence basis. That is, it takes as in-
put a source sentence, gets it translated by several
OTSs, and picks up the best among translations it
gets. Now a problem with usingBLEU in this setup
is that translations often end up with zero because
model translations they refer to do not contain n-
grams of a particular length.2 This would make im-
possible a comparison and selection among possible
translations.

2In their validity study ofBLEU, Reeder and White (2003)
finds that its correlation with human judgments increases with
the corpus size, and warns that to get a reliable score forBLEU,
one should run it on a corpus of at least 4,000 words. Also Tate
et al. (2003) reports about some correlation betweenBLEU and
task based judgments.



One way out of this, Nomoto (2003) suggests,
is to back off to a somewhat imprecise yet robust
metric for evaluating translations, which he callsm-
precision.3 The idea of m-precision helps define
what an optimal MEMT should look like. Imagine
a system which operates by choosing, among can-
didates, a translation that gives a best m-precision.
We would reasonably expect the system to outper-
form any of its component OTSs. Indeed Nomoto
(2003) demonstrates empirically that it is the case.
Moreover, since rFLMψ and rALMψ work on a sen-
tence, not on a block of them, whath(·) relates to is
not BLEU, but m-precision.

Hogan and Frederking (1998) introduces a new
kind of yardstick for measuring the effectiveness
of MEMT systems. The rationale for this is that
it is often the case that the efficacy of MEMT sys-
tems does not translate into performance of outputs
that they generate. We recall that withBLEU, one
measures performance of translations, not how of-
ten a given MEMT system picks the best translation
among candidates. The problem is, even if a MEMT
is right about its choices more often than a best com-
ponent engine,BLEU may not show it. This happens
because a best translation may not always get a high
score inBLEU. Indeed, differences inBLEU among
candidate translations could be very small.

Now what Hogan and Frederking (1998) suggest
is the following.

d(ψm) =

∑N
i δ(ψ

m
(e),max{σe1 · · ·σeM })

N

whereδ(i, j) is the Kronecker delta function, which
gives 1 if i = j and 0 otherwise. Hereψm rep-
resents some MEMT system,ψm(e) denotes a par-
ticular translationψm chooses for sentencee, i.e.,
ψm(e) = Ψ(e, J, l). σe1 . . . σeM ∈ J denotes a set
of candidate translations.max here gives a transla-
tion with the highest score in m-precision.N is the
number of source sentences.δ(·) says that you get
1 if a particular translation the MEMT chooses for a
given sentences happens to rank highest among can-

3For a reference translationr and a machine-generated
translationt, m-precisionis defined as:

m-precision=
NX
i

P
v∈Si

t
C(v, r)

P
v∈Si

t
C(v, t)

,

which is nothing more than Papineni et al. (2002)’smodified
n-gram precisionapplied to a pair of a single reference and the
associated translation.Sit here denotes a set ofi-grams int,
v an i-gram. C(v, t) indicates the count ofv in t. Nomoto
(2003) finds that m-precision strongly correlates withBLEU,
which justifies the use of m-precision as a replacement ofBLEU

at the sentence level.

didates.d(ψm) gives the average ratio of the times
ψm hits a right translation. Let us calld(ψm) HF
accuracy(HFA) for the rest of the paper.

4 LM perplexity and MEMT performance

Now the question we are interested in asking is
whether the choice of LM really matters. That is,
does a particular choice of LM gives a better per-
forming FLMψ or ALMψ than something else, and
if it does, do we have a systematic way of choosing
one LM over another?

Let us start with the first question. As a way of
shedding some light on the issue, we ran FLMψ and
ALM ψ using a variety of LMs, derived from various
domains with varying amount of training data. We
worked with 24 LMs from various genres, with vo-
cabulary of size ranging from somewhere near 10K
to 20K in words (see below and also Appendix A
for details on train sets). LMs here are trigram based
and created using an open source speech recognition
tool calledJULIUS.4

Now train data for LMs are collected from five
corpora, which we refer to as CPC, EJP, PAT, LIT,
NIKMAI for the sake of convenience. CPC is a
huge set of semi-automatically aligned pairs of En-
glish and Japanese texts from a Japanese news pa-
per which contains as many as 150,000 sentences
(Utiyama and Isahara, 2002), EJP represents a rel-
atively small parallel corpus of English/Japanese
phrases (totaling 15,187) for letter writing in busi-
ness (Takubo and Hashimoto, 1999), PAT is a bilin-
gual corpus of 336,971 abstracts from Japanese
patents filed in 1995, with associated translations
in English (a.k.a NTCIR-3 PATENT).5 LIT contains
100 Japanese literary works from the early 20th cen-
tury, and NIKMAI 1,536,191 sentences compiled
from several Japanese news paper sources. Both
LIT and NIKMAI are monolingual.

Fig.1 gives a plot of HF accuracy by perplexity
for FLMψ ’s on test sets pulled out of PAT, EJP and
CPC.6 Each dot there represents an FLMψ with a
particular LM plugged into it. TheHFA of each
FLMψ in Fig.1 represents a 10-fold cross validated
HFA score, namely anHFA averaged over evenly-

4http://julius.sourceforge.jp
5A bibliographic note. NTCIR-3 PATENT: NII Test Col-

lection for Information Retrieval Systems distributed through
National Institute of Informatics (www.nii.ac.jp).

6A test set from EJP and CPC each contains 7,500 bilingual
sentences, that from PAT contains 4,600 bilingual abstracts (ap-
proximately 9,200 sentences). None of them overlaps with the
remaining part of the corresponding data set. Relevant LMs are
built on Japanese data drawn from the data sets. We took care
not to train LMs on test sets. (See Section 6 for further details.)



•

•
•

••

•

•
•
••

•
•
•

• ••
•

•
•

• •• •

•

LM Perplexity

H
F

 A
cc

ur
ac

y

500 1000 1500 2000

0.
55

0.
65

0.
75

PAT
••
•

• •
• ••

•

•

•

•

•

••
•

•
•

•

•
•

•

•

LM Perplexity

H
F

 A
cc

ur
ac

y

500 1000 1500

0.
38

0.
40

0.
42

0.
44 CPC

•
•••

••
•

•

•

•

•
•

•

••

•

••

•

•

•

•

•

LM Perplexity

H
F

 A
cc

ur
ac

y

500 1000 1500 2000

0.
28

0.
32

0.
36

0.
40 EJP

Figure 1: HF accuracy-by-perplexity plots for FLMψ with four OTSs, Ai, Lo, At, Ib, on PAT (left), CPC
(center) and EJP (right). Dots represent FLMψ ’s with various LMs .

split 10 blocks of a test set. The perplexity is that
of Pl(j) averaged over blocks, with a particular LM
plugged in forl (see Equation 1).

We can see there an apparent tendency for an LM
with lower perplexity to give rise to an FLMψ with
higher HFA, indicating that the choice of LM does
indeed influence the performance of FLMψ. Which
is somewhat surprising given that the perplexity of
a machine generated translation should beindepen-
dent of how similar it is to a model translation,
which dictates theHFA.7

Now let us turn to the question of whether there
is any systematic way of choosing an LM so that
it gives rise to a FLMψ with high HFA. Since we
are working with multiple OTS systems here, we
get multiple outputs for a source text. Our idea
is to let them vote for an LM to plug into FLMψ

or for that matter, any other forms of MEMT dis-
cussed earlier. Note that we could take an alternate
approach of letting a model (or human) translation
(associated with a source text) pick an LM by alone.
An obvious problem with this approach, however,
is that a mandatory reference to model translations
would compromise the robustness of the approach.
We would want the LM to work for MEMT regard-
less of whether model translations are available. So
our concern here is more with choosing an LM in
theabsenceof model translations, to which we will
return below.

5 Voting Language Model

We consider here a simple voting schemeà la
ROVER (Fiscus, 1997; Schwenk and Gauvain,
2000; Utsuro et al., 2003), which works by picking

7Recall that theHFA does not represent the confidence score
such as one given by FLM (Equation 1), but the average ratio
of the times that an MEMT based on FLM picks a translation
with the best m-precision.

Table 1: A MEMT algorithm implementing V-by-
M. S represents a set of OTS systems,L a set of
language models.θ is some confidence model such
(r)FLM or (r)ALM. V-by-M chooses a most-voted-
for LM among those inL, given the setJ of trans-
lations fore.

MEMT(e,S,L)
begin
J = {j | j is a translation ofe generated bys ∈ S.}
l = V-by-M(J, L)
jk = arg maxj∈J(θ(e, j | l))
return jk
end

up an LM voted for by the majority. More specif-
ically, for each output translation for a given input,
we first pick up an LM which gives it the smallest
perplexity, and out of those LMs, one picked by the
majority of translations will be plugged into MEMT.
We call the selection scheme voting-by-majority or
simply V-by-M. The V-by-M scheme is motivated
by the results in Fig.1, where perplexity is found to
be a reasonably good predictor ofHFA.

Formally, we could put the V-by-M scheme as
follows. For each of the translation outputsje1 . . . j

e
n

associated with a given input sentencee, we want to
find some LMM from a setL of LMs such that:

Mi = arg minm∈LPP (jei | m),

wherePP (j | m) is the perplexity ofj underm.
Now assumeM1 . . .Mn are such LMs forje1 . . . j

e
n.

Then we pick up anM with the largest frequency



and plug it intoθ such as FLM.8

Suppose, for instance, thatMa, Mb, Ma andMc

are lowest perplexity LMs found for translations
je1,je2,je3 andje4, respectively. Then we chooseMa

as an LM most voted for, because it gets two votes
from je1 andje3, meaning thatMa is nominated as
an LM with lowest perplexity byje1 andje3, while
Mb andMc each collect only one vote. In case of
ties, we randomly choose one of the LMs with the
largest count of votes.

6 Experiment Setup and Procedure

Let us describe the setup of experiments we have
conducted. The goal here is to learn how the V-
by-M affects the overall MEMT performance. For
test sets, we carry over those from the perplexity
experiments (see Footnote 6, Section 4), which are
derived from CPC, EJP, and PAT. (Call them tCPC,
tEJP, and tPAT hereafter.)

In experiments, we begin by splitting a test set
into equal-sized blocks, each containing 500 sen-
tences for tEJP and tCPC, and 100 abstracts (ap-
proximately 200 sentences) for tPAT.9 We had the
total of 15 blocks for tCPC and tEJP, and 46 blocks
for tPAT. We leave one for evaluation and use the
rest for training alignment models, i.e.,Q(e | j),
SV regressors and some inside-data LMs. (Again
we took care not to inadvertently train LMs on test
sets.) We send a test block to OTSs Ai, Lo, At, and
Ib, for translation and combine their outputs using
the V-by-M scheme, which may or may not be cou-
pled with regression SVMs. Recall that the MEMT
operates on a sentence by sentence basis. So what
happens here is that for each of the sentences in a
block, the MEMT works the four MT systems to
get translations and picks one that produces the best
score underθ.

We evaluate the MEMT performance by run-
ning HFA andBLEU on MEMT selected translations
block by block,10 and giving average performance
over the blocks. Table 1 provides algorithmic de-
tails on how the MEMT actually operates.

8It is worth noting that the voted language model readily
lends itself to a mixture model:P (j) =

P
m∈M λmP (j | m)

whereλm = 1 if m is most voted for and 0 otherwise.
9tCPC had the average of 15,478 words per block, whereas

tEJP had about 11,964 words on the average in each block.
With tPAT, however, the average per block word length grew
to 16,150.

10We evaluate performance by block, because of some re-
ports in the MT literature that warn thatBLEU behaves errati-
cally on a small set of sentences (Reeder and White, 2003). See
also Section 3 and Footnote 2 for the relevant discussion.

Table 2: HF accuracy of MEMT models with V-by-
M.

Model tCPC tEJP tPAT avg.
rFLMψ 0.4230 0.4510 0.8066 0.5602
rALM ψ 0.4194 0.4346 0.8093 0.5544
FLMψ 0.4277 0.4452 0.7342 0.5357
ALM ψ 0.4453 0.4485 0.7702 0.5547

Table 3: HF accuracy of MEMT models with ran-
domly chosen LMs. Note how FLMψ and ALMψ

drop in performance.

Model tCPC tEJP tPAT avg.
rFLMψ 0.4207 0.4186 0.8011 0.5468
rALM ψ 0.4194 0.4321 0.8095 0.5537
FLMψ 0.4126 0.3520 0.6350 0.4665
ALM ψ 0.4362 0.3597 0.6878 0.4946

7 Results and Discussion

Now let us see what we found from the experiments.
We ran the MEMT on a test set with (r)FLM or
(r)ALM embedded in it. Recall that our goal here
is to find how the V-by-M affects performance of
MEMT on tCPC, tEJP, and tPAT.

First, we look at whether the V-by-M affects in
any way, theHFA of the MEMT, and if it does, then
how much. Table 2 and Table 3 give summaries of
results onHFA versus V-by-M. Table 2 shows how
things are with V-by-M on, and Table 3 shows what
happens toHFA when we turn off V-by-M, that is,
when we randomly choose an LM from the same set
that the V-by-M chooses from. The results indicate
a clear drop in performance of FLMψ and ALMψ

when one chooses an LM randomly.11

Curiously, however, rFLMψ and rALMψ are af-
fected less. They remain roughly at the same level
of HFA over Table 2 and Table 3. What this means

11Another interesting question to ask at this point is, how
does one huge LM trained across domains compare to the V-
by-M here? By definition of perplexity, the increase in size of
the training data leads to an increase in perplexity of the LM.
So if general observations in Fig.1 hold, then we would expect
the “one-huge-LM” approach to perform poorly compared to
the V-by-M, which is indeed demonstrated by the following
results. HFLMψ below denotes a FLMψ based on a composite
LM trained over CPC, LIT, PAT, NIKMAI, and EJP. The testing
procedure is same as that described in Sec.6

Model tCPC tEJP tPAT avg.
HFLMψ (HFA) 0.4182 0.4081 0.6927 0.5063
HFLMψ (BLEU) 0.1710 0.2619 0.1874 0.2067



Table 4: Performance inBLEU of MEMT models
with V-by-M.

Model tCPC tEJP tPAT avg.
rFLMψ 0.1743 0.2861 0.1954 0.2186
rALM ψ 0.1735 0.2869 0.1954 0.2186
FLMψ 0.1736 0.2677 0.1907 0.2107
ALM ψ 0.1763 0.2622 0.1934 0.2106

Table 5: Performance inBLEU of MEMT models
with randomly chosen LMs.

Model tCPC tEJP tPAT avg.
rFLMψ 0.1738 0.2717 0.1950 0.2135
rALM ψ 0.1735 0.2863 0.1954 0.2184
FLMψ 0.1710 0.2301 0.1827 0.1946
ALM ψ 0.1745 0.2286 0.1871 0.1967

is that there is some discrepancy in the effective-
ness of V-by-M between the fluency based and re-
gression based models. We have no explanation for
the cause of the discrepancy at this time, though we
may suspect that in learning, as long as there is some
pattern to exploit in m-precision and the probability
estimates of test sentences, how accurate those esti-
mates are may not matter much.

Table 4 and Table 5 give results inBLEU.12 The
results tend to replicate what we found withHFA.
rFLMψ and rALMψ keep the edge over FLMψ

and ALMψ whether or not V-by-M is brought into
action. The differences in performance between
rFLMψ and rALMψ with or without the V-by-M
scheme are rather negligible. However, if we turn
to FLMψ and ALMψ, the effects of the V-by-M are
clearly visible. FLMψ scores 0.2107 when coupled
with the V-by-M. However, when disengaged, the
score slips to 0.1946. The same holds for ALMψ.

Table 6: HF accuracy of OTS systems

Model tCPC tEJP tPAT avg.
Ai 0.2363 0.4319 0.0921 0.2534
Lo 0.1718 0.2124 0.0504 0.1449
At 0.4211 0.1681 0.8037 0.4643
Ib 0.1707 0.1876 0.0537 0.1373
OPM 1.0000 1.0000 1.0000 1.0000

12The measurements inBLEU here take into account up to
trigrams.

Table 7: Performance of OTS systems inBLEU.

Model tCPC tEJP tPAT avg.
Ai 0.1495 0.2874 0.1385 0.1918
Lo 0.1440 0.1711 0.1402 0.1518
At 0.1738 0.1518 0.1959 0.1738
Ib 0.1385 0.1589 0.1409 0.1461
OPM 0.2111 0.3308 0.1995 0.2471

Leaving the issue of MEMT models momentar-
ily, let us see how the OTS systems Ai, Lo, At, and
Ib are doing on tCPC, tEJP, and tPAT. Note that the
whole business of MEMT would collapse if it slips
behind any of the OTS systems that compose it.

Table 6 and Table 7 show performance of the
four OTS systems plus OPM, byHFA and byBLEU.
OPM here denotes an oracle MEMT which operates
by choosing in hindsight a translation that gives the
best score in m-precision, among those produced
by OTSs. It serves as a practical upper bound for
MEMT while OTSs serve as baselines.

First, let us look at Table 6 and compare it to Ta-
ble 2. A good news is that most of the OTS sys-
tems do not even come close to the MEMT mod-
els. At, a best performing OTS system, gets 0.4643
on the average, which is about 20% less than that
scored by rFLMψ. Turning toBLEU, we find again
in Table 7 that a best performing system among the
OTSs, i.e., Ai, is outperformed by FLMψ, ALMψ

and all their varieties (Table 4). Also something of
note here is that on tPAT, (r)FLMψ and (r)ALMψ

in Table 4, which operate by the V-by-M scheme,
score somewhere from 0.1907 to 0.1954 inBLEU,
coming close to OPM, which scores 0.1995 on tPAT
(Table 7).

It is interesting to note, incidentally, that there is
some discrepancy betweenBLEU and HFA in per-
formance of the OTSs: A top performing OTS in
Table 6, namely At, achieves the averageHFA of
0.4643, but scores only 0.1738 forBLEU (Table 7),
which is worse than what Ai gets. Apparently,
high HFA does not always mean a highBLEU score.
Why? The reason is that a best MT output need
not mark a highBLEU score. Notice that ‘best’ here
means the best among translations by the OTSs. It
could happen that a poor translation still gets chosen
as best, because other translations are far worse.

To return to the discussion of (r)FLMψ and
(r)ALM ψ, an obvious fact about their behavior is
that regressor based systems rFLMψ and rALMψ,
whether V-by-M enabled or not, surpass in per-
formance their less sophisticated counterparts (see



Table 8: HF accuracy of MEMTs with perturbed SV
regressor in the V-by-M scheme.

Model tCPC tEJP tPAT avg.
rFLMψ 0.4230 0.4353 0.6712 0.5098
rALM ψ 0.4195 0.4302 0.5582 0.4693
FLMψ 0.4277 0.4452 0.7342 0.5357
ALM ψ 0.4453 0.4485 0.7702 0.5547

Table 9: Performance inBLEU of MEMTs with per-
turbed SV regressor in the V-by-M scheme.

Model tCPC tEJP tPAT avg.
rFLMψ 0.1743 0.2823 0.1835 0.2134
rALM ψ 0.1736 0.2843 0.1696 0.2092
FLMψ 0.1736 0.2677 0.1907 0.2107
ALM ψ 0.1763 0.2622 0.1934 0.2106

Table 2,4 and also Table 3,5). Regression allows
the MEMT models to correct themselves for some
domain-specific bias of the OTS systems. But the
downside of using regression to capitalize on their
bias is that you may need to be careful about data
you train a regressor on.

Here is what we mean. We ran experiments using
SVM regressors trained on a set of datarandomly
sampled from tCPC, tEJP, and tPAT. (In contrast,
rFLMψ and rALMψ in earlier experiments had a re-
gressor trained separately on each data set.) They
all operated in the V-by-M mode. The results are
shown in Table 8 and Table 9. What we find there
is that with regressors trained on perturbed data,
both rFLMψ and rALMψ are not performing as well
as before; in fact they even fall behind FLMψ and
ALM ψ in HFA and their performance inBLEU turns
out to be just about as good as FLMψ and ALMψ.
So regression may backfire when trained on wrong
data.

8 Conclusion
Let us summarize what we have done and learned
from the work. We started with a finding that the
choice of language model could affect performance
of MEMT models of which it is part. The V-by-M
was introduced as a way of responding to the prob-
lem of how to choose among LMs so that we get
the best MEMT. We have shown that the V-by-M
scheme is indeed up to the task, predicting a right
LM most of the time. Also worth mentioning is that
the MEMT models here, when coupled with V-by-
M, are all found to surpass component OTS systems

by a respectable margin (cf., Tables 4, 7 forBLEU,
2, 6 for HFA).

Regressive MEMTs such as rFLMψ and rALMψ,
are found to be not affected as much by the choice
of LM as their non-regressive counterparts. We sus-
pect this happens because they have access to ex-
tra information on the quality of translation derived
from human judgments or translations, which may
cloud effects of LMs on them. But we also pointed
out that regressive models work well only when they
are trained on right data; if you train them across
different sources of varying genres, they could fail.

An interesting question that remains to be ad-
dressed is how we might deal with translations from
a novel domain. One possible approach would be
to use a dynamic language model which adapts it-
self for a new domain by re-training itself on data
sampled from the Web (Berger and Miller, 1998).
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Appendix

A Language Models
Table 10 lists language models used in the voting
based MEMTs discussed in the paper. They are
more or less arbitrarily built from parts of the co-
pora CPC, EJP, NIKMAI, EJP, and LIT. ‘Train size’
indicates the number of sentences, given in kilo,
in a corpus on which a particular model is trained.
Under ‘Voc(abulary)’ is listed the number of type
words for each LM (also given in kilo). Notice
the difference in the way the train set and vocabu-
lary are measured. ‘Genre’ indicates the genre of
a trainig data used for a given LM:PAT stands for
patents (from PAT),LIT literary texts (from LIT),
NWS news articles (from CPC and NIKMAI), and
BIZ business related texts (from EJP).


