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Abstract

A crucial step toward the goal of au-
tomatic extraction of propositionalin-
formationfrom naturallanguagetext is
the identificationof semanticrelations
betweenconstituentsin sentences.We
examinethe problemof distinguishing
amongsevenrelationtypesthatcanoc-
curbetweentheentities“treatment”and
“disease” in biosciencetext, and the
problemof identifyingsuchentities.We
comparefive generative graphicalmod-
els anda neuralnetwork, usinglexical,
syntactic,andsemanticfeatures,finding
that thelatterhelpachieve high classifi-
cationaccuracy.

1 Intr oduction

The biosciencesliterature is rich, complex and
continually growing. The National Library of
Medicine’s MEDLINE database1 containsbibli-
ographiccitationsand abstractsfrom more than
4,600biomedicaljournals,andanestimatedhalf a
million new articlesareaddedevery year. Much
of the important, late-breakingbioscienceinfor-
mationis foundonly in textual form, andsometh-
odsareneededto automaticallyextract semantic
entitiesandthe relationsbetweenthemfrom this
text. For example,in thefollowing sentences,hep-
atitis and its variants,which areDISEASES,are
foundin differentsemanticrelationshipswith var-
iousTREATMENTs:

1http://www.nlm.nih.gov/pubs/factsheets/medline.html

(1) Effectof interferonon hepatitisB

(2) A two-dosecombinedhepatitisA andB vac-
cinewouldfacilitate immunizationprograms

(3) TheseresultssuggestthatconA-inducedhep-
atitis was ameliorated by pretreatmentwith
TJ-135.

In (1) thereis anunspecifiedeffect of thetreat-
ment interferon on hepatitisB. In (2) thevaccine
prevents hepatitisA and B while in (3) hepatitis
is curedby thetreatmentTJ-135.

We refer to this problemas RelationClassifi-
cation. A relatedtask is Role Extraction (also
called, in the literature,“information extraction”
or “namedentity recognition”),definedas: given
a sentencesuchas“Thefluoroquinolonesfor uri-
nary tract infections: a review”, extract all and
only thestringsof text thatcorrespondto theroles
TREATMENT (fluoroquinolones) and DISEASE
(urinary tract infections). To make inferences
aboutthe factsin the text we needa systemthat
accomplishesboth thesetasks: the extraction of
thesemanticrolesandtherecognitionof therela-
tionshipthatholdsbetweenthem.

In thispaperwecomparefivegenerativegraph-
ical modelsanda discriminative model (a multi-
layer neuralnetwork) on thesetasks. Recogniz-
ing subtledifferencesamongrelationsis a diffi-
cult task;neverthelesstheresultsachievedby our
modelsarequitepromising:whentherolesarenot
given, the neuralnetwork achieves 79.6% accu-
racy andthebestgraphicalmodelachieves74.9%.
When the rolesaregiven, the neuralnet reaches
96.9% accuracy while the best graphicalmodel
gets91.6% accuracy. Part of the reasonfor the



Relationship Definition and Example
Cure TREAT curesDIS
810(648,162) Intravenousimmuneglobulin for

recurrentspontaneousabortion
Only DIS TREAT notmentioned
616(492,124) Socialtiesandsusceptibilityto the

commoncold
Only TREAT DIS notmentioned
166(132,34) Flucticasonepropionateis safein

recommendeddoses
Prevent TREAT preventstheDIS
63 (50,13) Statinsfor preventionof stroke
Vague Veryunclearrelationship
36 (28,8) Phenylbutazoneandleukemia
SideEffect DIS is a resultof aTREAT
29 (24,5) Malignant mesodermalmixedtu-

morof theuterusfollowingirr adi-
ation

NO Cure TREAT doesnotcureDIS
4 (3, 1) Evidencefor doubleresistanceto

permethrinandmalathionin head
lice

Total relevant: 1724(1377,347)
Irr elevant TREAT andDIS notpresent
1771(1416,355) Patients were followed up for 6

months

Total: 3495(2793,702)

Table 1: Candidatesemanticrelationshipsbe-
tweentreatmentsanddiseases.In parenthesesare
shown thenumbersof sentencesusedfor training
andtesting,respectively.

successof the algorithms is the use of a large
domain-specificlexical hierarchy for generaliza-
tion acrossclassesof nouns.

In theremainderof thispaperwediscussrelated
work, describetheannotateddataset,describethe
models,presentanddiscusstheresultsof running
the modelson the relation classificationand en-
tity extraction tasksand analyzethe relative im-
portanceof thefeaturesused.

2 Relatedwork

While thereis muchwork on role extraction,very
little work hasbeendonefor relationshiprecogni-
tion. Moreover, many papersthatclaim to bedo-
ing relationshiprecognitionin reality addressthe
taskof role extraction: (usually two) entitiesare
extractedandtherelationshipis impliedby theco-
occurrenceof theseentitiesor by thepresenceof
somelinguistic expression.Theselinguistic pat-
ternscouldin principledistinguishbetweendiffer-

ent relations,but insteadareusuallyusedto iden-
tify examplesof onerelation. In therelatedwork
for statisticalmodelstherehasbeen,to thebestof
our knowledge,no attemptto distinguishbetween
differentrelationsthatcanoccurbetweenthesame
semanticentities.

In AgichteinandGravano(2000) thegoal is to
extractpairssuchas(Microsoft,Redmond), where
Redmondis the location of the organizationMi-
crosoft. Their techniquegeneratesandevaluates
lexical patternsthat areindicative of the relation.
Only therelationlocationof is tackledandtheen-
titiesareassumedgiven.

In Zelenko et al. (2002), the task is to ex-
tract the relationships person-affiliation and
organization-location. The classification(done
with SupportVectorMachineandVotedPercep-
tron algorithms)is betweenpositive andnegative
sentences,where the positive sentencescontain
thetwo entities.

In the bioscience NLP literature there are
also efforts to extract entities and relations. In
RayandCraven(2001), Hidden Markov Models
areappliedto MEDLINE text to extract the enti-
tiesPROTEINS andLOCATIONS in therelation-
ship subcellular-location and the entitiesGENE
and DISORDER in the relationship disorder-
association. The authorsacknowledge that the
task of extracting relationsis different from the
taskof extractingentities.Nevertheless,they con-
sider positive examplesto be all the sentences
that simply contain the entities, rather than an-
alyzing which relationshold betweentheseenti-
ties. In Craven(1999), theproblemtackledis re-
lationshipextraction from MEDLINE for the re-
lation subcellular-location. The authorstreat it
as a text classificationproblemand proposeand
comparetwo classifiers: a Naive Bayesclassi-
fier and a relational learning algorithm. This
is a two-way classification,and again there is
no mentionof whetherthe co-occurrenceof the
entities actually representsthe target relation.
Pustejovsky et al. (2002) usea rule-basedsystem
to extractentitiesin the inhibit-relation.Their ex-
perimentsuse sentencesthat contain verbal and
nominal forms of the stem inhibit. Thus the ac-
tual task performedis the extraction of entities
that areconnectedby someform of the stem in-



hibit, which by requiringoccurrenceof this word
explicitly, is not the same as finding all sen-
tencesthattalk aboutinhibiting actions.Similarly,
Rindfleschet al. (1999) identify nounphrasessur-
rounding forms of the stem bind which signify
entitiesthat canenterinto molecularbinding re-
lationships. In SrinivasanandRindflesch(2002)
MeSHtermco-occurrenceswithin MEDLINE ar-
ticlesareusedto attemptto infer relationshipsbe-
tweendifferent concepts,including diseasesand
drugs.

In the biosciencedomainthe work on relation
classificationis primary donethroughhand-built
rules. Feldmanet al. (2002) usehand-built rules
that make use of syntactic and lexical features
andsemanticconstraintsto find relationsbetween
genes,proteins,drugsanddiseases.TheGENIES
system(Friedmanet al., 2001)usesa hand-built
semanticgrammaralong with hand-derived syn-
tactic and semanticconstraints,and recognizes
a wide rangeof relationshipsbetweenbiological
molecules.

3 Data and Features

For our experiments,the text wasobtainedfrom
MEDLINE 20012. An annotatorwith biology ex-
pertiseconsideredthe titles and abstractssepa-
rately and labeledthe sentences(both roles and
relations)basedsolelyon thecontentof the indi-
vidualsentences.Sevenpossibletypesof relation-
shipsbetweenTREATMENT andDISEASEwere
identified.Table1 shows,for eachrelation,its def-
inition, oneexamplesentenceandthe numberof
sentencesfoundcontainingit.

We used a large domain-specificlexical hi-
erarchy (MeSH, Medical SubjectHeadings3) to
map words into semanticcategories. Thereare
about19,000uniquetermsin MeSHand15 main
sub-hierarchies,each correspondingto a major
branchof medical ontology; e.g., tree A corre-
spondsto Anatomy, treeC to Disease,andsoon.
As an example, the word migraine mapsto the
term C10.228,that is, C (a disease),C10 (Ner-
vous SystemDiseases),C10.228 (Central Ner-

2Weusedthefirst 100titlesandthefirst 40abstractsfrom
eachof the 59 files medline01n*.xmlin Medline 2001; the
labeleddatais availableatbiotext.berkeley.edu

3http://www.nlm.nih.gov/mesh/meshhome.html

vous SystemDiseases). When there are multi-
ple MeSHtermsfor oneword, we simply choose
the first one. Thesesemanticfeaturesareshown
to be very useful for our tasks(seeSection4.3).
Rosarioet al. (2002) demonstratethe usefulness
of MeSHfor theclassificationof thesemanticre-
lationshipsbetweennounsin nouncompounds.

Theresultsreportedin thispaperwereobtained
with thefollowing features:theworditself, its part
of speechfrom the Brill tagger(Brill, 1995), the
phraseconstituentthe word belongsto, obtained
by flatteningtheoutputof aparser(Collins,1996),
andthe word’s MeSH ID (if available). In addi-
tion, we identified the sub-hierarchiesof MeSH
thattendto correspondto treatmentsanddiseases,
andconvert theseinto a tri-valuedattribute indi-
cating one of: disease,treatmentor neither. Fi-
nally, we includedorthographicfeaturessuchas
‘is theword anumber’,‘only partof theword is a
number’,‘first letter is capitalized’,‘all lettersare
capitalized’.In Section4.3we analyzetheimpact
of thesefeatures.

4 Modelsand Results

Thissectiondescribesthemodelsandtheirperfor-
manceon bothentity extractionandrelationclas-
sification.Generativemodelslearntheprior prob-
ability of theclassandthe probabilityof the fea-
turesgiven the class;they are the naturalchoice
in caseswith hiddenvariables(partially observed
or missingdata). Sincelabeleddatais expensive
to collect, thesemodelsmay be useful when no
labelsare available. However, in this paperwe
testthe generative modelson fully observed data
andshow that,althoughnotasaccurateasthedis-
criminativemodel,theirperformanceis promising
enoughto encouragetheir usefor thecaseof par-
tially observeddata.

Discriminative modelslearn the probability of
the classgiven the features.Whenwe have fully
observeddataandwe just needto learnthemap-
pingfrom featuresto classes(classification),adis-
criminative approachmay be more appropriate,
asshown in Ng andJordan(2002),but hasother
shortcomingsasdiscussedbelow.

For theevaluationof theroleextractiontask,we
calculatetheusualmetricsof precision,recalland
F-measure.Precisionis ameasureof how many of



the rolesextractedby the systemarecorrectand
recallis themeasureof how many of thetrueroles
wereextractedby the system. The F-measureis
a weightedcombinationof precisionandrecall4.
Ourroleevaluationis verystrict: everytokenisas-
sessedandwe do notassignpartialcreditfor con-
stituentsfor whichonly someof thewordsarecor-
rectly labeled.We reportresultsfor two cases:(i)
consideringonly therelevantsentencesand(ii) in-
cludingalsoirrelevantsentences.For therelation
classificationtask, we report resultsin termsof
classificationaccuracy, choosingoneout of seven
choicesfor (i) andoneoutof eightchoicesfor (ii).
(Most papersreport the resultsfor only the rele-
vantsentences,while somepapersassigncreditto
their algorithmsif their systemextractsonly one
instanceof agivenrelationfrom thecollection.By
contrast,in our experimentswe expectthesystem
to extractall instancesof every relationtype.)For
bothtasks,75%of thedatawereusedfor training
andtherestfor testing.

4.1 GenerativeModels

In Figure1 we show two staticandthreedynamic
models. The nodeslabeled“Role” representthe
entities (in this casethe choicesare DISEASE,
TREATMENT andNULL) and the nodelabeled
“Relation” representsthe relationshippresentin
thesentence.Weassumeherethatthereis asingle
relationfor eachsentencebetweentheentities5.

Thechildrenof therolenodesarethewordsand
their features,thusthereareasmany rolestatesas
therearewordsin thesentence;for thestaticmod-
els, this is depictedby thebox (or “plate”) which
is thestandardgraphicalmodelnotationfor repli-
cation. For eachstate,the features

���
are those

mentionedin Section3.
The simpler static modelsS1 and S2 do not

assumean ordering in the role sequence. The
dynamicmodelswere inspiredby prior work on
HMM-lik e graphicalmodels for role extraction
(Bikel et al., 1999;FreitagandMcCallum,2000;
RayandCraven,2001).Thesemodelsconsistof a

4In thispaper, precisionandrecallaregivenequalweight,
thatis, F-measure= �����	��

����

������������

����

����� .

5We found75 sentenceswhich containmorethanonere-
lationship,often with multiple entitiesor the sameentities
takingpartin severalinterconnectedrelationships;wedid not
includethesein thestudy.
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Figure1: Modelsfor roleandrelationextraction.

Markov sequenceof states(usuallycorresponding
to semanticroles)whereeachstategeneratesone
or multiple observations.Model D1 in Figure1 is
typical of thesemodels,but we have augmentedit
with theRelationnode.

The task is to recover the sequenceof Role
states,given the observed features. Thesemod-
elsassumethat thereis anorderingin theseman-
tic rolesthatcanbecapturedwith theMarkov as-
sumptionandthat the role generatestheobserva-
tions (the words, for example). All our models
make theadditionalassumptionthat thereis a re-
lation thatgeneratestherolesequence;thus,these



Sentences Static Dynamic
S1 S2 D1 D2 D3

No Smoothing
Only rel. 0.67 0.68 0.71 0.52 0.55

Rel. + irrel. 0.61 0.62 0.66 0.35 0.37
Absolutediscounting

Only rel. 0.67 0.68 0.72 0.73 0.73
Rel. + irrel. 0.60 0.62 0.67 0.71 0.69

Table2: F-measuresfor themodelsof Figure1 for
roleextraction.

modelshave theappealingpropertythat they can
simultaneouslyperform role extraction and rela-
tionshiprecognition,giventhesequenceof obser-
vations. In S1 andD1 the observationsareinde-
pendentfrom therelation(giventheroles). In S2
and D2, the observationsare dependenton both
therelationandtherole (or in otherwords,there-
lationgeneratesnotonly thesequenceof rolesbut
also the observations). D2 encodesthe fact that
evenwhentherolesaregiven,theobservationsde-
pendon therelation.For example,sentencescon-
tainingtheword preventaremorelikely to repre-
senta “prevent” kind of relationship. Finally, in
D3 only oneobservationperstateis dependenton
boththerelationandtherole,themotivationbeing
thatsomeobservations(suchasthewords)depend
on therelationwhile othersmightnot (like for ex-
ample, the partsof speech). In the experiments
reportedhere,theobservationswhich have edges
from both the role andthe relationnodesarethe
words.(Werananexperimentin whichthisobser-
vationnodewastheMeSHterm,obtainingsimilar
results.)

Model D1 definesthe following joint probabil-
ity distribution over relations, roles, words and
word features,assumingtheleftmostRolenodeis��� �"!$#

, and % is the numberof wordsin the sen-
tence:
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Model D1 is similar to the model
in Thompsonet al. (2003) for the extraction

of roles, using a different domain. Structurally,
thedifferencesare(i) Thompsonet al. (2003) has
only oneobservation nodeper role and(ii) it has
an additionalnode“on top”, with an edgeto the
relation node, to representa predicator“trigger
word” which is always observed; the predicator
wordsaretakenfrom a fixed list andonemustbe
presentin orderfor asentenceto beanalyzed.

The joint probability distributions for D2
and D3 are similar to Equation (1) where
we substitute the term IJ<KMLON�P � JHQSR �T� �U! Q9V
with IJ<KML N�P � JHQSR �T�W�"! Q9X �T!Y� V for D2 and
N�P � L"Q/R ��� �"! Q6X ��!Y� V IJ<K	Z�N�P � JHQ/R ��� �"! Q6V for D3.
The parametersN�P � JHQ R ��� �"! Q V and N�P � J # R ��� �"! # V
of Equation(1) areconstrainedto beequal.

Theparameterswereestimatedusingmaximum
likelihood on the training set; we also imple-
menteda simpleabsolutediscountingsmoothing
method(Zhai and Lafferty, 2001) that improves
theresultsfor bothtasks.

Table2 shows the results(F-measures)for the
problem of finding the most likely sequenceof
rolesgiventhefeaturesobserved. In this case,the
relationis hiddenandwemarginalizeover it6. We
experimentedwith differentvaluesfor thesmooth-
ing factorrangingfrom a minimumof 0.0000005
to a maximum of 10; the resultsshown fix the
smoothingfactorat its minimumvalue.We found
that for the dynamic models, for a wide range
of smoothingfactors,we achieved almostidenti-
cal results;nevertheless,in future work, we plan
to implementcross-validationto find the optimal
smoothingfactor. By contrast,the staticmodels
weremoresensitive to thevalueof thesmoothing
factor.

Usingmaximumlikelihoodwith nosmoothing,
modelD1 performsbetterthanD2 andD3. This
wasexpected,sincetheparametersfor modelsD2
andD3 aremoresparsethanD1. However, when
smoothingis applied, the threedynamicmodels
achieve similar results. Although the additional
edgesin modelsD2 and D3 did not help much
for the task of role extraction, they did help for
relationclassification,discussednext. Model D2

6To perform inference for the dynamic model, we
used the junction tree algorithm. We used Kevin Mur-
phy’s BNT package,found at http://www.ai.mit.edu/mur-
phyk/Bayes/bnintro.html.



achievesthebestF-measures:0.73for “only rele-
vant” and0.71for “rel. + irrel.”.

It is difficult to compareresultswith therelated
work since the data, the semanticroles and the
evaluationaredifferent;in RayandCraven(2001)
however, theroleextractiontaskis quitesimilar to
oursandthetext is alsofrom MEDLINE. They re-
port approximatelyan F-measureof 32% for the
extractionof the entitiesPROTEINS andLOCA-
TIONS, andanF-measureof 50%for GENEand
DISORDER.

Thesecondtargettaskis to find themostlikely
relation,i.e., to classifya sentenceinto oneof the
possiblerelations.Two typesof experimentswere
conducted.In the first, the true rolesarehidden
and we classify the relationsgiven only the ob-
servable features,marginalizing over the hidden
roles. In thesecond,the rolesaregivenandonly
the relationsneedto be inferred. Table3 reports
theresultsfor bothconditions,bothwith absolute
discountingsmoothingandwithout.

Again model D1 outperformsthe other dy-
namicmodelswhennosmoothingis applied;with
smoothingandwhenthetruerolesarehidden,D2
achievesthe bestclassificationaccuracies.When
therolesaregivenD1 is thebestmodel;D1 does
well in thecaseswhenbothrolesarenot present.
By contrast,D2doesbetterthanD1whenthepres-
enceof specificwordsstronglydeterminestheout-
come(e.g.,thepresence“prevention”or “prevent”
helpsidentify thePreventrelation).

The percentageimprovementsof D2 and D3
versusD1 are,respectively, 10%and6.5%for re-
lation classificationand 1.4% for role extraction
(in the“only relevant”, “only features”case).This
suggeststhat thereis a dependency betweenthe
observationsand the relation that is capturedby
the additionaledgesin D2 and D3, but that this
dependency is morehelpful in relationclassifica-
tion thanin role extraction.

For relationclassificationthestaticmodelsper-
form worsethanfor role extraction;thedecreases
in performancefrom D1 to S1andfrom D2 to S2
are,respectively (in the“only relevant”, “only fea-
tures”case),7.4%and7.3%for roleextractionand
27.1%and 44% for relation classification. This
suggeststheimportanceof modelingthesequence
of rolesfor relationclassification.

To provide an idea of wherethe errorsoccur,
Table4 shows theconfusionmatrix for modelD2
for themostrealisticanddifficult caseof “rel + ir-
rel.”, “only features”.This indicatesthatthealgo-
rithm performspoorly primarily for the casesfor
which thereis little trainingdata,with theexcep-
tion of theONLY DISEASEcase,which is often
mistakenfor CURE.

4.2 Neural Network

To comparetheresultsof thegenerativemodelsof
theprevioussectionwith adiscriminativemethod,
we usea neuralnetwork, usingthe Matlab pack-
ageto trainafeed-forwardnetwork with conjugate
gradientdescent.

The featuresarethesameasthoseusedfor the
modelsin Section4.1,but arerepresentedwith in-
dicatorvariables.That is, for eachfeaturewe cal-
culatedthe numberof possiblevalues[ andthen
representedan observation of the featureasa se-
quenceof [ binaryvaluesin whichonevalueis set
to \ andtheremaining[^]_\ valuesaresetto ` .

The input layerof theNN is theconcatenation
of this representationfor all features. The net-
work hasonehiddenlayer, with a hyperbolictan-
gentfunction.Theoutputlayerusesa logisticsig-
moid function. Thenumberof unitsof theoutput
layer is fixedto bethenumberof relations(seven
or eight) for the relation classificationtask and
thenumberof roles(three)for the role extraction
task.Thenetwork wastrainedfor severalchoices
of numbersof hiddenunits; we chosethe best-
performingnetworks basedon training set error.
We thentestedthesenetworkson held-outtesting
data.

The resultsfor theneuralnetwork arereported
in Table 3 in the column labeledNN. Thesere-
sults arequite strong,achieving 79.6%accuracy
in therelationclassificationtaskwhentheentities
arehiddenand96.9%whentheentitiesaregiven,
outperformingthegraphicalmodels.Two possible
reasonsfor thisare:asalreadymentioned,thedis-
criminativeapproachmaybethemostappropriate
for fully labeleddata;or thegraphicalmodelswe
proposedmaynot betheright ones,i.e., theinde-
pendenceassumptionsthey make may misrepre-
sentunderlyingdependencies.

It mustbe pointedout that the neuralnetwork



Sentences Input B Static Dynamic NN
S1 S2 D1 D2 D3

No Smoothing
Only rel. only feat. 46.7 51.9 50.4 65.4 58.2 61.4 79.8

rolesgiven 51.3 52.9 66.6 43.8 49.3 92.5
Rel. + irrel. only feat. 50.6 51.2 50.2 68.9 58.7 61.4 79.6

rolesgiven 55.7 54.4 82.3 55.2 58.8 96.6
Absolutediscounting

Only rel. only feat. 46.7 51.9 50.4 66.0 72.6 70.3
rolesgiven 51.9 53.6 83.0 76.6 76.6

Rel. + irrel. only feat. 50.6 51.1 50.2 68.9 74.9 74.6
rolesgiven 56.1 54.8 91.6 82.0 82.3

Table3: Accuraciesof relationshipclassificationfor themodelsin Figure1 andfor theneuralnetwork
(NN). For absolutediscounting,thesmoothingfactorwasfixedat theminimumvalue.B is thebaseline
of alwayschoosingthemostfrequentrelation.Thebestresultsareindicatedin boldface.

is muchslower thanthegraphicalmodels,andre-
quiresagreatdealof memory;wewerenotableto
run the neuralnetwork packageon our machines
for therole extractiontask,whenthe featurevec-
tors are very large. The graphicalmodelscan
perform both taskssimultaneously;the percent-
agedecreasein relationclassificationof modelD2
with respectto the NN is of 8.9%for “only rele-
vant” and5.8%for “relevant+ irrelevant”.

4.3 Features

In orderto analyzethe relative importanceof the
differentfeatures,we performedboth tasksusing
the dynamicmodel D1 of Figure 1, leaving out
singlefeaturesandsetsof features(groupingall of
thefeaturesrelatedto theMeSHhierarchy, mean-
ing both the classificationof words into MeSH
IDs andthedomainknowledgeasdefinedin Sec-
tion 3). Theresultsreportedherewerefoundwith
maximumlikelihood (no smoothing)and are for
the“relevantonly” case;resultsfor “relevant+ ir-
relevant” weresimilar.

For the role extraction task, the most impor-
tant feature was the word: not using it, the
GM achievedonly 0.65F-measure(a decreaseof
9.7%from 0.72F-measureusingall thefeatures).
Leaving out the featuresrelatedto MeSH the F-
measureobtainedwas 0.69% (a 4.1% decrease)
andthenext mostimportantfeaturewasthepart-
of-speech(0.70F-measurenot usingthis feature).
For all the other features,the F-measureranged
between0.71and0.73.

For the task of relation classification, the

MeSH-basedfeaturesseemto be the most im-
portant. Leaving out the word again lead to the
biggestdecreasein theclassificationaccuracy for
a single featurebut not so dramaticallyas in the
role extraction task (62.2% accuracy, for a de-
creaseof 4% from theoriginal value),but leaving
out all theMeSH featurescausedthe accuracy to
decreasethemost(a decreaseof 13.2%for 56.2%
accuracy). For both tasks,the impactof the do-
mainknowledgealonewasnegligible.

As describedin Section3,wordscanbemapped
to different levels of the MeSH hierarchy. Cur-
rently, we usethe “second”level, so that, for ex-
ample,surgery is mappedto G02.403(when the
whole MeSH ID is G02.403.810.762). This is
somewhat arbitrary (and mainly chosenwith the
sparsityissuein mind), but in light of the impor-
tanceof theMeSHfeaturesit maybeworthwhile
investigatingtheissueof finding theoptimal level
of description.(This canbeseenasanotherform
of smoothing.)

5 Conclusions

We have addressedtheproblemof distinguishing
betweenseveral different relationsthat can hold
betweentwo semanticentities,a difficult andim-
portant task in natural languageunderstanding.
We have presentedfive graphicalmodelsand a
neuralnetwork for the tasksof semanticrelation
classificationandrole extractionfrom bioscience
text. The methodsproposedyield quite promis-
ing results. We also discussedthe strengthsand
weaknessesof the discriminative and generative



Prediction Num. Sent. Relation
Truth Vague OD NC Cure Prev. OT SE Irr . (Train,Test) accuracy
Vague 0 3 0 4 0 0 0 1 28,8 0
Only DIS (OD) 2 69 0 27 1 1 0 24 492,124 55.6
No Cure (NC) 0 0 0 1 0 0 0 0 3, 1 0
Cure 2 5 0 150 1 1 0 3 648,162 92.6
Prevent 0 1 0 2 5 0 0 5 50,13 38.5
Only TREAT (OT) 0 0 0 16 0 6 1 11 132,34 17.6
Sideeffect (SE) 0 0 0 3 1 0 0 1 24,5 20
Irr elevant 1 32 1 16 2 7 0 296 1416,355 83.4

Table4: Confusionmatrix for thedynamicmodelD2 for “rel + irrel.”, “only features”.In column“Num.
Sent.” the numbersof sentencesusedfor training andtestingandin the last columnthe classification
accuraciesfor eachrelation.Thetotalaccuracy for this caseis 74.9%.

approachesandtheuseof a lexical hierarchy.
Becausethereis no existing gold-standardfor

this problem,we have developedtherelationdef-
initions of Table 1; this however may not be an
exhaustive list. In thefuturewe planto assessad-
ditional relationtypes. It is unclearat this time if
this approachwill work on othertypesof text; the
technicalnatureof biosciencetext maylenditself
well to this typeof analysis.
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