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Abstract

A crucial step toward the goal of au-
tomatic extraction of propositionalin-

formationfrom naturallanguageext is

the identification of semanticrelations
betweenconstituentsn sentencesWe
examinethe problemof distinguishing
amongsevenrelationtypesthatcanoc-
cur betweertheentities“treatment”and
“disease” in biosciencetext, and the
problemof identifying suchentities.We
comparefive generatie graphicalmod-
elsanda neuralnetwork, usinglexical,

syntacticandsemantideaturesfinding

thatthe latterhelp achieve high classifi-
cationaccurag.

1 Intr oduction

The biosciencediterature is rich, comple and
continually growing. The National Library of

Medicine's MEDLINE databask containsbibli-

ographiccitations and abstractsfrom more than
4,600biomedicaljournals,andanestimatechalf a
million new articlesareaddedevery year Much

of the important, late-breakingbioscienceinfor-

mationis foundonly in textual form, andsometh-
ods are neededo automaticallyextract semantic
entitiesandthe relationsbetweenthem from this

text. Forexample,in thefollowing sentencedep-
atitis and its variants,which are DISEASES, are
foundin differentsemantiaelationshipswith var
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(1) Effectof interferonon hepatitisB

(2) Atwo-dosecombinedhepatitisA and B vac-
cinewouldfacilitate immunizatiorprograms

(3) TheseesultssuggestthatconA-inducechep-
atitis was ameliorated by pretreatmentwith
TJ-135.

In (1) thereis anunspecifieceffect of the treat-
mentinterferon on hepatitisB. In (2) the vaccine
prevents hepatitisA and B while in (3) hepatitis
is cured by thetreatmenfl J-135

We refer to this problem as Relation Classifi-
cation A relatedtask is Role Extraction (also
called, in the literature, “information extraction”
or “namedentity recognition”), definedas: given
a sentencesuchas“Thefluoroquinolonedor uri-
nary tract infections: a review”, extract all and
only the stringsof text thatcorrespondo theroles
TREATMENT (fluoroquinolone} and DISEASE
(urinary tract infectiong. To make inferences
aboutthe factsin the text we needa systemthat
accomplishedoth thesetasks: the extraction of
the semantiaolesandthe recognitionof therela-
tionshipthatholdsbetweerthem.

In this paperwe compardive generatie graph-
ical modelsand a discriminatve model (a multi-
layer neuralnetwork) on thesetasks. Recogniz-
ing subtledifferencesamongrelationsis a diffi-
cult task; neverthelesgshe resultsachiezed by our
modelsarequite promising:whentherolesarenot
given, the neural network achieves 79.6% accu-
racy andthebestgraphicalmodelachie/es74.9%.
Whenthe roles are given, the neuralnet reaches
96.9% accurag while the bestgraphicalmodel
gets91.6% accuray. Part of the reasonfor the



Relationship

| Definition and Example

Cure
810(648,162)

TREAT curesDIS
Intravenousimmuneglobulin for
recurrentspontaneousbortion

Only DIS
616(492,124)

TREAT notmentioned
Socialtiesandsusceptibilityto the
commorcold

Only TREAT
166(132,34)

DIS notmentioned
Flucticasonepropionateis safein
recommendedoses

Prevent TREAT preventsthe DIS
63(50,13) Statinsfor preventionof stroke
Vague Very unclearrelationship
36(28,8) Phenyllutazoneandleukemia
SideEffect DISis aresultof a TREAT
29(24,5) Malignant mesodermamixedtu-
mor of theuterusfollowing irr adi-
ation
NO Cure TREAT doesnotcureDIS
4(3,1) Evidencefor doubleresistancdo

permethrinand malathionin head
lice

Total relevant: 1724(1377,347) |
Irr elevant TREAT andDIS not present
1771(1416,355) | Patients were followed up for 6
months

| Total: 3495(2793,702) |

Table 1: Candidatesemanticrelationshipsbe-
tweentreatmentainddiseasesln parentheseare
shavn the numbersof sentencesisedfor training
andtesting,respectiely.

successof the algorithmsis the use of a large
domain-specifidexical hierarcly for generaliza-
tion acrosslasse®f nouns.

In theremaindeof this papemwe discusgelated
work, describethe annotatedlatasetdescribethe
models,presenanddiscusgheresultsof running
the modelson the relation classificationand en-
tity extractiontasksand analyzethe relative im-
portanceof the featuresused.

2 Relatedwork

While thereis muchwork onrole extraction,very
little work hasbeendonefor relationshiprecogni-
tion. Moreover, mary paperghatclaim to be do-
ing relationshiprecognitionin reality addresghe
task of role extraction: (usually two) entitiesare
extractedandtherelationships impliedby the co-
occurrencef theseentitiesor by the presencef
somelinguistic expression. Theselinguistic pat-
ternscouldin principledistinguishbetweerdiffer-

entrelations,but insteadareusuallyusedto iden-

tify examplesof onerelation. In therelatedwork

for statisticalmodelstherehasbeen to the bestof

our knowledge,no attemptto distinguishbetween
differentrelationsthatcanoccurbetweerthesame
semanticentities.

In AgichteinandGravano(2000 thegoalis to
extractpairssuchas(Microsoft,Redmonyl where
Redmonds the location of the organizationMi-
crosoft Their techniquegeneratesand evaluates
lexical patternsthat areindicative of the relation.
Only therelationlocationof is tackledandtheen-
tities areassumedjiven.

In Zelenlo etal. (2002, the task is to ex-
tract the relationships person-afiliation and
organization-location The classification(done
with SupportVector Machineand Voted Percep-
tron algorithms)is betweenpositive and negative
sentenceswhere the positive sentencesontain
thetwo entities.

In the bioscience NLP literature there are
also efforts to extract entities and relations. In
RayandCraven(2001), Hidden Markov Models
areappliedto MEDLINE text to extractthe enti-
tiesPROTEINS andLOCATIONS in therelation-
ship subcellularlocation and the entities GENE
and DISORDER in the relationship disorder
association The authorsacknavledge that the
task of extracting relationsis different from the
taskof extractingentities.Neverthelessthey con-
sider positive examplesto be all the sentences
that simply contain the entities, rather than an-
alyzing which relationshold betweentheseenti-
ties. In Craven(1999, the problemtackledis re-
lationshipextractionfrom MEDLINE for the re-
lation subcellularlocation The authorstreat it
asa text classificationproblemand proposeand
comparetwo classifiers: a Naive Bayes classi-
fier and a relational learning algorithm. This
is a two-way classification,and again there is
no mentionof whetherthe co-occurrenceof the
entities actually representsthe target relation.
Pustejasky etal. (2002 usea rule-basedsystem
to extractentitiesin theinhibit-relation. Their ex-
perimentsuse sentenceghat contain verbal and
nominal forms of the steminhibit. Thusthe ac-
tual task performedis the extraction of entities
that are connectedy someform of the stemin-



hibit, which by requiringoccurrenceof this word
explicitly, is not the sameas finding all sen-
tencedhattalk aboutinhibiting actions.Similarly,
Rindfleschetal. (1999 identify nounphrasesur
rounding forms of the stem bind which signify
entitiesthat can enterinto molecularbinding re-
lationships. In SrinivasanandRindflesch(2002
MeSHtermco-occurrencewithin MEDLINE ar-
ticlesareusedto attemptto infer relationshipse-
tweendifferent concepts,ncluding diseasesand
drugs.

In the biosciencedomainthe work on relation
classificationis primary donethroughhand-uilt
rules. Feldmaretal. (2002 usehand-luilt rules
that make use of syntactic and lexical features
andsemantiaconstraintdo find relationsbetween
genesproteins,drugsanddiseasesThe GENIES
system(Friedmanet al., 2001) usesa hand-huilt
semanticgrammaralong with hand-dened syn-
tactic and semanticconstraints,and recognizes
a wide rangeof relationshipsbetweenbiological
molecules.

3 Dataand Features

For our experiments,the text was obtainedfrom
MEDLINE 200%. An annotatomwith biology ex-
pertise consideredthe titles and abstractssepa-
rately and labeledthe sentencegboth roles and
relations)basedsolely on the contentof the indi-
vidual sentencesSevenpossibletypesof relation-
shipsbetweenTREATMENT andDISEASEwere
identified. Tablel shawvs, for eachrelation,its def-
inition, one examplesentencendthe numberof
sentencefound containingit.

We used a large domain-specificlexical hi-
erarcly (MeSH, Medical SubjectHeading$) to
map words into semanticcateyories. Thereare
about19,000uniguetermsin MeSHand15 main
sub-hierarchiesgach correspondingto a major
branchof medical ontology; e.g., tree A corre-
spondgo Anatomy treeC to Diseaseandsoon.
As an example, the word migraine mapsto the
term C10.228,that is, C (a disease),C10 (Ner
vous System Diseases),C10.228 (Central Ner-

2\We usedthefirst 100titles andthefirst 40 abstractsrom
eachof the 59 files medline01n*.xmlin Medline 2001; the
labeleddatais availableat biotext.berkeley.edu

3http:/ww.nim.nih.ga/mesh/meshhome.html

vous SystemDiseases). When there are multi-
ple MeSH termsfor oneword, we simply choose
the first one. Thesesemanticfeaturesare shavn
to be very usefulfor our tasks(seeSection4.3).
Rosarioetal. (2009 demonstratehe usefulness
of MeSH for the classificationof the semantiae-
lationshipsbetweemounsin nouncompounds.

Theresultsreportedn this paperwereobtained
with thefollowing featurestheworditself, its part
of speechfrom the Brill tagger(Brill, 1995),the
phraseconstituentthe word belongsto, obtained
by flatteningtheoutputof aparseCollins, 1996),
andthe word’s MeSH ID (if available). In addi-
tion, we identified the sub-hierarchieof MeSH
thattendto correspondo treatmentanddiseases,
and corvert theseinto a tri-valuedattribute indi-
catingone of: diseasetreatmentor neither Fi-
nally, we included orthographicfeaturessuchas
‘is theword anumber’,‘only partof thewordis a
number’,first letteris capitalized’,'all lettersare
capitalized'.In Section4.3we analyzetheimpact
of thesefeatures.

4 Models and Results

This sectiondescribeshemodelsandtheir perfor

manceon both entity extractionandrelationclas-
sification. Generatie modelslearnthe prior prob-
ability of the classandthe probability of the fea-
turesgiven the class;they arethe naturalchoice
in caseswith hiddenvariables(partially obsered
or missingdata). Sincelabeleddatais expensve

to collect, thesemodelsmay be useful when no

labels are available. However, in this paperwe

testthe generatre modelson fully obsered data
andshaw that,althoughnot asaccurateasthedis-

criminative model,their performances promising
enoughto encouragéheir usefor the caseof par

tially obseneddata.

Discriminative modelslearnthe probability of
the classgiven the features.Whenwe have fully
obsened dataandwe just needto learnthe map-
ping from featuredo classegclassification)adis-
criminative approachmay be more appropriate,
asshavn in Ng andJordan(2002), but hasother
shortcomingssdiscussedbelow.

For theevaluationof therole extractiontask,we
calculatethe usualmetricsof precisionrecalland
F-measurePrecisioris ameasuref how mary of



the roles extractedby the systemare correctand
recallis themeasuref how mary of thetrueroles
were extractedby the system. The F-measurés
a weightedcombinationof precisionand recalf*.
Ourrole evaluationis very strict: everytokenis as-
sesse@ndwe do not assignpartial creditfor con-
stituentdor which only someof thewordsarecor
rectly labeled.We reportresultsfor two cases{(i)
consideringonly therelevantsentenceand(ii) in-
cluding alsoirrelevantsentenceskFor therelation
classificationtask, we report resultsin terms of
classificatioraccurag, choosingoneout of seven
choicedor (i) andoneout of eightchoicedor (ii).
(Most papersreportthe resultsfor only the rele-
vantsentencesyhile somepapersassigncreditto
their algorithmsif their systemextractsonly one
instancenf agivenrelationfrom thecollection.By
contrastjn our experimentsve expectthe system
to extractall instance®f every relationtype.) For
bothtasks,75% of the datawereusedfor training
andtherestfor testing.

4.1 Generative Models

In Figurel we shav two staticandthreedynamic
models. The nodeslabeled“Role” representhe
entities (in this casethe choicesare DISEASE,
TREATMENT andNULL) andthe nodelabeled
“Relation” representghe relationshippresentin
thesentenceWe assumdéerethatthereis asingle
relationfor eachsentencéetweerthe entities.

Thechildrenof therole nodesarethewordsand
their featuresthusthereareasmary role statesas
therearewordsin thesentencefor thestaticmod-
els, this is depictedby the box (or “plate”) which
is the standardyraphicalmodelnotationfor repli-
cation. For eachstate,the featuresf; arethose
mentionedn Section3.

The simpler static models S1 and S2 do not
assumean orderingin the role sequence. The
dynamicmodelswere inspiredby prior work on
HMM-lik e graphical modelsfor role extraction
(Bikel et al., 1999; Freitagand McCallum, 2000;
RayandCraven,2001). Thesemodelsconsistof a

“In this paper precisionandrecallaregivenequalweight,
thatis, F-measures (2« PRE « REC)/(PRE + REC).

>We found 75 sentencesvhich containmorethanonere-
lationship, often with multiple entitiesor the sameentities
takingpartin severalinterconnectedelationshipswe did not
includethesen the study

Relati
on

D )
ofcHNO]
staticmodel(S1)

. T
staticmodel(S2)

dynamicmodel(D3)

Figurel: Modelsfor role andrelationextraction.

Markov sequencef statequsuallycorresponding
to semanticoles)whereeachstategenerate®ne
or multiple obsenations.Model D1 in Figurelis
typical of thesemodels but we have augmentedk
with the Relationnode.

The task is to recover the sequenceof Role
states,given the obsered features. Thesemod-
elsassumdhatthereis anorderingin the seman-
tic rolesthatcanbe capturedwith the Markov as-
sumptionandthatthe role generateshe obsena-
tions (the words, for example). All our models
make the additionalassumptiorthatthereis a re-
lation thatgeneratesherole sequencethus,these



Sentences Static Dynamic

S1 ] s2 D1 | D2 | D3
No Smoothing

Only rel. 0.67| 0.68 ] 0.71| 0.52 | 0.55
Rel. +irrel. || 0.61 | 0.62 || 0.66 | 0.35 | 0.37

Absolutediscounting
Onlyrel. 0.67] 068 0.72| 0.73 | 0.73
Rel. +irrel. || 0.60 | 0.62 || 0.67 | 0.71 | 0.69

Table2: F-measurefor themodelsof Figurel for
role extraction.

modelshave the appealingpropertythatthey can
simultaneouslyperform role extraction and rela-
tionshiprecognition,giventhe sequencef obser

vations. In S1andD1 the obsenrationsareinde-
pendentrom therelation(giventheroles). In S2
and D2, the obsenationsare dependenbn both

therelationandtherole (or in otherwords,there-

lation generatesot only the sequencef rolesbut

alsothe obsenations). D2 encodeghe fact that
evenwhentherolesaregiven,theobsenationsde-
pendon therelation. For example,sentenceson-
tainingthe word preventaremorelik ely to repre-
senta “prevent” kind of relationship. Finally, in

D3 only oneobsenationper stateis dependenbn

boththerelationandtherole,themotivationbeing
thatsomeobsenations(suchasthewords)depend
ontherelationwhile othersmight not (lik e for ex-

ample, the partsof speech). In the experiments
reportedhere,the obsenationswhich have edges
from both the role andthe relation nodesarethe

words. (Werananexperimentn whichthis obser

vationnodewasthe MeSHterm,obtainingsimilar

results.)

Model D1 definesthe following joint probabil-
ity distribution over relations, roles, words and
word featuresassumingheleftmostRole nodeis
Roley, andT' is the numberof wordsin the sen-
tence:

P(Rel, Roleo, .., Roler, f10, -, fr0, - fiT; -+, faT)

= P(Rel)P(Roleg | Rel) |"| P(fjo | Roleo) (1)
i=1
T

H P(Role; | Role;—1, Rel) H P(f;¢ | Roley)

t—1 j=1

Model D1 is similar to the model
in Thompsoretal. (2003 for the extraction

of roles, using a differentdomain. Structurally
the differencesare (i) Thompsoretal. (2003 has
only oneobsenation nodeperrole and (ii) it has
an additionalnode*“on top”, with an edgeto the
relation node, to representa predicator“trigger
word” which is always obsened; the predicator
wordsaretakenfrom afixedlist andonemustbe
presenin orderfor asentenceo beanalyzed.

The joint probability distributions for D2
and D3 are similar to Equation (1) where
we substitute the term [[7_; P(fj:|Role:)
with  []%_, P(fjt|Rolet, Rel) for D2 and
P(f1t|Rolet, Rel) [[j_o P(fjt| Role:) for D3.
The parametersP( f;;|Role;) and P( fjo|Roleg)
of Equation(1) areconstrainedo beequal.

Theparametersvereestimatedisingmaximum
likelihood on the training set; we also imple-
menteda simple absolutediscountingsmoothing
method(Zhai and Lafferty, 2001) that improves
theresultsfor bothtasks.

Table 2 shavs the results(F-measuresjor the
problem of finding the most likely sequenceof
rolesgiventhefeaturesobsered. In this casethe
relationis hiddenandwe mamginalizeover it®. We
experimentedvith differentvaluesfor thesmooth-
ing factorrangingfrom a minimum of 0.0000005
to a maximum of 10; the resultsshown fix the
smoothingfactoratits minimumvalue. We found
that for the dynamic models, for a wide range
of smoothingfactors,we achieved almostidenti-
cal results;neverthelessjn future work, we plan
to implementcross-alidationto find the optimal
smoothingfactor By contrast,the static models
weremoresensitie to the valueof the smoothing
factor

Usingmaximumlik elihoodwith no smoothing,
modelD1 performsbetterthanD2 and D3. This
wasexpected sincethe parametergor modelsD2
andD3 aremoresparse¢hanD1. However, when
smoothingis applied, the three dynamic models
achieve similar results. Although the additional
edgesin modelsD2 and D3 did not help much
for the task of role extraction, they did help for
relation classificationdiscussediext. Model D2

5To perform inference for the dynamic model, we
used the junction tree algorithm. We used Kevin Mur-
phy’s BNT package,found at http://www.ai.mit.edu/mur
phyk/Bayes/bnintro.html.



achievesthe bestF-measures0.73for “only rele-
vant” and0.71for “rel. +irrel.”.

It is difficult to compareresultswith therelated
work since the data, the semanticroles and the
evaluationaredifferent;in RayandCraven (200])
however, therole extractiontaskis quitesimilarto
oursandthetext is alsofrom MEDLINE. They re-
port approximatelyan F-measuref 32% for the
extractionof the entitiesPROTEINS and LOCA-
TIONS, andan F-measuref 50% for GENE and
DISORDER.

The secondargettaskis to find the mostlikely
relation,i.e., to classifya sentencento oneof the
possiblerelations.Two typesof experimentsvere
conducted.In the first, the true roles are hidden
and we classify the relationsgiven only the ob-
senable features,maminalizing over the hidden
roles. In the secondthe rolesaregivenandonly
the relationsneedto be inferred. Table 3 reports
theresultsfor both conditions,bothwith absolute
discountingsmoothingandwithout.

Again model D1 outperformsthe other dy-
namicmodelswhenno smoothings applied;with
smoothingandwhenthetruerolesarehidden,D2
achievesthe bestclassificationaccuraciesWhen
therolesaregivenD1 is the bestmodel; D1 does
well in the casesvhenbothrolesarenot present.
By contrastD2 doesbetterthanD1 whenthepres-
enceof specificwordsstronglydeterminesheout-
come(e.g.,thepresencéprevention”or “prevent”
helpsidentify the Preventrelation).

The percentageémprovementsof D2 and D3
versusD1 are,respectiely, 10% and6.5%for re-
lation classificationand 1.4% for role extraction
(in the“only relevant”, “only features’case).This
suggestdhat thereis a dependeng betweenthe
obsenationsand the relationthat is capturedby
the additionaledgesin D2 and D3, but that this
dependengis more helpful in relationclassifica-
tion thanin role extraction.

For relationclassificatiorthe staticmodelsper
form worsethanfor role extraction;the decreases
in performancdrom D1 to S1andfrom D2 to S2
are,respectiely (in the“only relevant”, “only fea-
tures’case),/.4%and7.3%for roleextractionand
27.1%and 44% for relation classification. This
suggestsheimportanceof modelingthe sequence
of rolesfor relationclassification.

To provide an idea of wherethe errorsoccur,
Table4 shaws the confusionmatrix for modelD2
for themostrealisticanddifficult caseof “rel + ir-
rel”, “only features”. Thisindicatesthatthe algo-
rithm performspoorly primarily for the casedor
which thereis little training data,with the excep-
tion of the ONLY DISEASE case which is often
mistalenfor CURE.

4.2 Neural Network

To compareheresultsof thegeneratie modelsof
the previoussectionwith adiscriminative method,
we usea neuralnetwork, usingthe Matlab pack-
ageto trainafeed-fornardnetwork with conjucate
gradientdescent.

The featuresarethe sameasthoseusedfor the
modelsin Sectiond.1,but arerepresentewith in-
dicatorvariables.Thatis, for eachfeaturewe cal-
culatedthe numberof possiblevaluesv andthen
representecn obsenation of the featureasa se-
guenceof v binaryvaluesin whichonevalueis set
to 1 andtheremainingv — 1 valuesaresetto 0.

Theinput layer of the NN is the concatenation
of this representatiorfor all features. The net-
work hasonehiddenlayer, with a hyperbolictan-
gentfunction. The outputlayerusesalogistic sig-
moid function. The numberof units of the output
layeris fixedto be the numberof relations(seven
or eight) for the relation classificationtask and
the numberof roles(three)for therole extraction
task. The network wastrainedfor several choices
of numbersof hiddenunits; we chosethe best-
performing networks basedon training seterror.
We thentestedthesenetworks on held-outtesting
data.

The resultsfor the neuralnetwork arereported
in Table 3 in the columnlabeledNN. Thesere-
sults are quite strong, achieving 79.6% accurayg
in therelationclassificatiortaskwhenthe entities
arehiddenand96.9%whenthe entitiesaregiven,
outperforminghegraphicaimodels.Two possible
reasongor thisare:asalreadymentionedthedis-
criminative approachmaybethemostappropriate
for fully labeleddata;or the graphicalmodelswe
proposedmay not betheright ones,i.e., theinde-
pendenceassumptionshey make may misrepre-
sentunderlyingdependencies.

It mustbe pointedout that the neuralnetwork



Sentences Input B Static Dynamic NN
S1 ] S2 D1 | D2 | D3
No Smoothing
Only rel. onlyfeat. | 46.7 || 51.9 | 50.4 || 65.4 | 58.2 | 61.4 || 79.8
rolesgiven 51.3| 529 | 66.6 | 43.8| 49.3 | 92.5
Rel. +irrel. | onlyfeat. | 50.6 || 51.2 | 50.2 || 68.9 | 58.7 | 61.4 || 79.6
rolesgiven 55.7| 54.4 || 82.3 | 55.2 | 58.8 || 96.6
Absolutediscounting
Only rel. onlyfeat. | 46.7 | 51.9] 50.4 ] 66.0 72.6 | 70.3
rolesgiven 51.9| 53.6 || 83.0| 76.6 | 76.6
Rel. +irrel. | onlyfeat. | 50.6 || 51.1 | 50.2 || 68.9| 74.9| 74.6
rolesgiven 56.1| 54.8 || 91.6 | 82.0 | 82.3

Table 3: Accuraciesof relationshipclassificatiorfor the modelsin Figure 1 andfor the neuralnetwork
(NN). For absolutediscountingthe smoothingfactorwasfixed atthe minimumvalue. B is the baseline
of alwayschoosingthe mostfrequentrelation. The bestresultsareindicatedin boldface.

is muchslower thanthe graphicalmodels,andre-

quiresagreatdealof memory;we werenotableto

run the neuralnetwork packageon our machines
for the role extractiontask,whenthe featurevec-

tors are very large. The graphical models can

perform both tasks simultaneously;the percent-
agedecreasn relationclassificatiorof modelD2

with respecto the NN is of 8.9%for “only rele-

vant” and5.8%for “relevant+ irrelevant”.

4.3 Features

In orderto analyzethe relative importanceof the
differentfeatureswe performedboth tasksusing
the dynamicmodel D1 of Figure 1, leaving out
singlefeaturesandsetsof featureggroupingall of
thefeaturegelatedto the MeSH hierarcly, mean-
ing both the classificationof words into MeSH
IDs andthe domainknowledgeasdefinedin Sec-
tion 3). Theresultsreportedherewerefoundwith
maximumlik elihood (no smoothing)and are for
the“relevantonly” caseyesultsfor “relevant+ ir-
relevant” weresimilar.

For the role extraction task, the mostimpor-
tant feature was the word: not using it, the
GM achiered only 0.65F-measurda decreasef
9.7%from 0.72F-measuraisingall the features).
Leaving out the featuresrelatedto MeSH the F-
measureobtainedwas 0.69% (a 4.1% decrease)
andthe next mostimportantfeaturewasthe part-
of-speech(0.70 F-measureot usingthis feature).
For all the other features,the F-measuraanged
betweer0.71and0.73.

For the task of relation classification, the

MeSH-basedfeaturesseemto be the most im-
portant. Leaving out the word again leadto the
biggestdecreasén the classificatioraccurag for
a single featurebut not so dramaticallyasin the
role extraction task (62.2% accurag, for a de-
creasef 4% from the original value),but leaving
out all the MeSH featurescausedhe accurag to
decreas¢he most(a decreasef 13.2%for 56.2%
accurag). For both tasks,the impactof the do-
mainknowledgealonewasnggligible.

As describedn Section3, wordscanbemapped
to differentlevels of the MeSH hierarcly. Cur-
rently, we usethe “second”level, sothat, for ex-
ample,sumgery is mappedto G02.403(whenthe
whole MeSH ID is G02.403.810.762). This is
somavhat arbitrary (and mainly chosenwith the
sparsityissuein mind), but in light of the impor
tanceof the MeSH featurest may be worthwhile
investigatingtheissueof finding the optimal level
of description.(This canbe seenasanotherform
of smoothing.)

5 Conclusions

We have addressedhe problemof distinguishing
betweenseveral different relationsthat can hold
betweenwo semanticentities,a difficult andim-
portant task in natural languageunderstanding.
We have presentedive graphicalmodelsand a
neuralnetwork for the tasksof semanticrelation
classificationandrole extractionfrom bioscience
text. The methodsproposedyield quite promis-
ing results. We also discussedhe strengthsand
weaknessesf the discriminative and generatie



Prediction Num. Sent. || Relation
Truth Vague | OD | NC | Cure | Prev. | OT | SE | Irr. || (Train, Test) || accuracy
Vague 0 3 0 4 0 0 0 1 28,8 0
Only DIS (OD) 2| 69 0 27 1 1 0| 24 492,124 55.6
No Cure (NC) 0 0 0 1 0 0 0 0 3,1 0
Cure 2 5 0 150 1 1 0 3 648,162 92.6
Prevent 0 1 0 2 5 0 0 5 50,13 38.5
Only TREAT (OT) 0 0 0 16 0 6 1| 11 132,34 17.6
Sideeffect (SE) 0 0 0 3 1 0 0 1 24,5 20
Irr elevant 1| 32 1 16 2 7 0 | 296 1416,355 83.4

Table4: Confusionmatrix for thedynamicmodelD2 for “rel + irrel.”, “only features”.In column“Num.
Sent. the numbersof sentencesisedfor training andtestingandin the last columnthe classification
accuraciegor eachrelation. Thetotal accuray for this caseis 74.9%.

approacheandthe useof alexical hierarcly.

Becausehereis no existing gold-standardor
this problem,we have developedthe relationdef-
initions of Table 1; this however may not be an
exhaustve list. In thefuturewe planto assesad-
ditional relationtypes. It is unclearat this time if
this approachwill work on othertypesof text; the
technicalnatureof biosciencdaext maylenditself
well to thistype of analysis.
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